## Run External Index Precomputation Toolkit 1. Install requirements ```shell # PYTHON = 3.11 # When using CPU to train k-means clustering conda install conda-forge::pgvector-python numpy pytorch::faiss-cpu conda-forge::psycopg h5py tqdm # or pip install pgvector numpy faiss-cpu psycopg h5py tqdm # When using GPU to train k-means clustering conda install conda-forge::pgvector-python numpy pytorch::faiss-gpu conda-forge::psycopg h5py tqdm ``` 1. Prepare dataset in `hdf5` format - If you already have your vectors stored in `PostgreSQL` using `pgvector`, you can export them to a local file by: ```shell python script/dump.py -n [table name] -c [column name] -d [dim] -o export.hdf5 ``` - If you don't have any data, but would like to give it a try, you can choose one of these datasets: ```shell wget http://ann-benchmarks.com/sift-128-euclidean.hdf5 # num=1M dim=128 metric=l2 wget http://ann-benchmarks.com/gist-960-euclidean.hdf5 # num=1M dim=960 metric=l2 wget https://myscale-datasets.s3.ap-southeast-1.amazonaws.com/laion-5m-test-ip.hdf5 # num=5M dim=768 metric=dot wget https://myscale-datasets.s3.ap-southeast-1.amazonaws.com/laion-20m-test-ip.hdf5 # num=20M dim=768 metric=dot wget https://myscale-datasets.s3.ap-southeast-1.amazonaws.com/laion-100m-test-ip.hdf5 # num=100M dim=768 metric=dot ``` 2. Preform clustering of centroids from vectors ```shell # For small dataset size from 1M to 5M python script/train.py -i [dataset file(export.hdf5)] -o [centroid filename(centroid.npy)] -lists [lists] -m [metric(l2/cos/dot)] # For large datasets size, 5M to 100M in size, use GPU and mmap chunks python script/train.py -i [dataset file(export.hdf5)] -o [centroid filename(centroid.npy)] --lists [lists] -m [metric(l2/cos/dot)] -g --mmap ``` `lists` is the number of centroids for clustering, and a typical value for large datasets(>5M) could range from: $$ 4*\sqrt{len(vectors)} \le lists \le 16*\sqrt{len(vectors)} $$ 3. To insert vectors and centroids into the database, and then create an index ```shell python script/index.py -n [table name] -i [dataset file(export.hdf5)] -c [centroid filename(centroid.npy)] -m [metric(l2/cos/dot)] -d [dim] --url postgresql://postgres:123@localhost:5432/postgres ``` 4. Let's start our tour to check the benchmark result of VectorChord ```shell python script/bench.py -n [table name] -i [dataset file(export.hdf5)] -m [metric(l2/cos/dot)] --nprob 100 --epsilon 1.0 --url postgresql://postgres:123@localhost:5432/postgres ```