/*------------------------------------------------------------------------- * * SQLite Foreign Data Wrapper for PostgreSQL * * Portions Copyright (c) 2018, TOSHIBA CORPORATION * * IDENTIFICATION * deparse.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "sqlite_fdw.h" #include "catalog/pg_aggregate.h" #include "catalog/pg_collation.h" #include "catalog/pg_namespace.h" #include "catalog/pg_operator.h" #include "catalog/pg_proc.h" #if PG_VERSION_NUM >= 160000 #include "catalog/pg_ts_config.h" #endif #include "catalog/pg_ts_dict.h" #if (PG_VERSION_NUM < 130000) #include "catalog/pg_type.h" #endif #include "commands/defrem.h" #include "mb/pg_wchar.h" #include "nodes/nodeFuncs.h" #include "optimizer/tlist.h" #include "parser/parsetree.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/syscache.h" #include "utils/typcache.h" /* * Global context for sqlite_foreign_expr_walker's search of an expression tree. */ typedef struct foreign_glob_cxt { PlannerInfo *root; /* global planner state */ RelOptInfo *foreignrel; /* the foreign relation we are planning for */ Relids relids; /* relids of base relations in the underlying * scan */ } foreign_glob_cxt; /* * Local (per-tree-level) context for sqlite_foreign_expr_walker's search. * This is concerned with identifying collations used in the expression. */ typedef enum { FDW_COLLATE_NONE, /* expression is of a noncollatable type */ FDW_COLLATE_SAFE, /* collation derives from a foreign Var */ FDW_COLLATE_UNSAFE, /* collation derives from something else */ } FDWCollateState; typedef struct foreign_loc_cxt { Oid collation; /* OID of current collation, if any */ FDWCollateState state; /* state of current collation choice */ } foreign_loc_cxt; /* * Context for sqlite_deparse_expr */ typedef struct deparse_expr_cxt { PlannerInfo *root; /* global planner state */ RelOptInfo *foreignrel; /* the foreign relation we are planning for */ RelOptInfo *scanrel; /* the underlying scan relation. Same as * foreignrel, when that represents a join or * a base relation. */ StringInfo buf; /* output buffer to append to */ List **params_list; /* exprs that will become remote Params */ Expr *complementarynode; /* variable where we can store, only if * needed, a complementary node to obtain * info for processing actual node. * Created mostly for * sqlite_deparse_op_expr to have both * nodes accesible during each node * deparse. */ } deparse_expr_cxt; #define QUOTE '"' #define REL_ALIAS_PREFIX "r" /* Handy macro to add relation name qualification */ #define ADD_REL_QUALIFIER(buf, varno) \ appendStringInfo((buf), "%s%d.", REL_ALIAS_PREFIX, (varno)) #define SUBQUERY_REL_ALIAS_PREFIX "s" #define SUBQUERY_COL_ALIAS_PREFIX "c" /* * Functions to determine whether an expression can be evaluated safely on * remote server. */ static bool sqlite_foreign_expr_walker(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *outer_cxt, foreign_loc_cxt *case_arg_cxt); /* * Functions to construct string representation of a node tree. */ static void sqlite_deparse_expr(Expr *node, deparse_expr_cxt *context); static void sqlite_deparse_var(Var *node, deparse_expr_cxt *context); static void sqlite_deparse_const(Const *node, deparse_expr_cxt *context, int showtype); static void sqlite_deparse_param(Param *node, deparse_expr_cxt *context); static void sqlite_deparse_func_expr(FuncExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_op_expr(OpExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_operator_name(StringInfo buf, Form_pg_operator opform); static void sqlite_deparse_scalar_array_op_expr(ScalarArrayOpExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_relabel_type(RelabelType *node, deparse_expr_cxt *context); static void sqlite_deparse_bool_expr(BoolExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_null_test(NullTest *node, deparse_expr_cxt *context); static void sqlite_deparse_case_expr(CaseExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_array_expr(ArrayExpr *node, deparse_expr_cxt *context); static void sqlite_print_remote_param(int paramindex, Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context); static void sqlite_print_remote_placeholder(Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context); static void sqlite_deparse_relation(StringInfo buf, Relation rel); static void sqlite_deparse_target_list(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, Bitmapset *attrs_used, bool qualify_col, List **retrieved_attrs, bool is_concat, bool check_null); static void sqlite_deparse_column_ref(StringInfo buf, int varno, int varattno, PlannerInfo *root, bool qualify_col, bool dml_context); static void sqlite_deparse_select(List *tlist, bool is_subquery, List **retrieved_attrs, deparse_expr_cxt *context); static void sqlite_deparse_subquery_target_list(deparse_expr_cxt *context); static void sqlite_deparse_case_expr(CaseExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_null_if_expr(NullIfExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_coalesce_expr(CoalesceExpr *node, deparse_expr_cxt *context); static void sqlite_deparse_from_expr_for_rel(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool use_alias, Index ignore_rel, List **ignore_conds, #if PG_VERSION_NUM >= 170000 List **additional_conds, #endif List **params_list); #if PG_VERSION_NUM >= 170000 static void sqlite_append_where_clause(List *exprs, List *additional_conds, deparse_expr_cxt *context); #endif static void sqlite_deparse_range_tbl_ref(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool make_subquery, Index ignore_rel, List **ignore_conds, #if PG_VERSION_NUM >= 170000 List **additional_conds, #endif List **params_list); static void sqlite_deparse_from_expr(List *quals, deparse_expr_cxt *context); static void sqlite_deparse_aggref(Aggref *node, deparse_expr_cxt *context); static void sqlite_append_limit_clause(deparse_expr_cxt *context); static void sqlite_append_conditions(List *exprs, deparse_expr_cxt *context); static void sqlite_append_group_by_clause(List *tlist, deparse_expr_cxt *context); static void sqlite_append_agg_order_by(List *orderList, List *targetList, deparse_expr_cxt *context); static void sqlite_append_order_by_clause(List *pathkeys, bool has_final_sort, deparse_expr_cxt *context); static void sqlite_append_order_by_suffix(Oid sortop, Oid sortcoltype, bool nulls_first, deparse_expr_cxt *context); static void sqlite_append_function_name(Oid funcid, deparse_expr_cxt *context); const char *sqlite_get_jointype_name(JoinType jointype); static Node *sqlite_deparse_sort_group_clause(Index ref, List *tlist, bool force_colno, deparse_expr_cxt *context); static void sqlite_deparse_explicit_target_list(List *tlist, List **retrieved_attrs, deparse_expr_cxt *context); /* * Helper functions */ static bool sqlite_is_subquery_var(Var *node, RelOptInfo *foreignrel, int *relno, int *colno); static void sqlite_get_relation_column_alias_ids(Var *node, RelOptInfo *foreignrel, int *relno, int *colno); static char *sqlite_quote_identifier(const char *s, char q); static bool sqlite_contain_immutable_functions_walker(Node *node, void *context); static bool sqlite_is_valid_type(Oid type); static int preferred_sqlite_affinity (Oid relid, int varattno); /* * Append remote name of specified foreign table to buf. * Use value of table_name FDW option (if any) instead of relation's name. * Similarly, schema_name FDW option overrides schema name. */ static void sqlite_deparse_relation(StringInfo buf, Relation rel) { ForeignTable *table; const char *relname = NULL; ListCell *lc = NULL; /* obtain additional catalog information. */ table = GetForeignTable(RelationGetRelid(rel)); /* * Use value of FDW options if any, instead of the name of object itself. */ foreach(lc, table->options) { DefElem *def = (DefElem *) lfirst(lc); if (strcmp(def->defname, "table") == 0) relname = defGetString(def); } if (relname == NULL) relname = RelationGetRelationName(rel); /* always use main database for SQLite */ appendStringInfo(buf, "%s.%s", "main", sqlite_quote_identifier(relname, QUOTE)); } static char * sqlite_quote_identifier(const char *s, char q) { char *result = palloc(strlen(s) * 2 + 3); char *r = result; *r++ = q; while (*s) { if (*s == q) *r++ = *s; *r++ = *s; s++; } *r++ = q; *r++ = '\0'; return result; } /* * Returns true if given expr is safe to evaluate on the foreign server. */ bool sqlite_is_foreign_expr(PlannerInfo *root, RelOptInfo *baserel, Expr *expr) { foreign_glob_cxt glob_cxt; foreign_loc_cxt loc_cxt; SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) (baserel->fdw_private); /* * Check that the expression consists of nodes that are safe to execute * remotely. */ glob_cxt.root = root; glob_cxt.foreignrel = baserel; /* * For an upper relation, use relids from its underneath scan relation, * because the upperrel's own relids currently aren't set to anything * meaningful by the core code. For other relation, use their own relids. */ if (IS_UPPER_REL(baserel)) glob_cxt.relids = fpinfo->outerrel->relids; else glob_cxt.relids = baserel->relids; loc_cxt.collation = InvalidOid; loc_cxt.state = FDW_COLLATE_NONE; if (!sqlite_foreign_expr_walker((Node *) expr, &glob_cxt, &loc_cxt, NULL)) return false; /* * If the expression has a valid collation that does not arise from a * foreign var, the expression can not be sent over. */ if (loc_cxt.state == FDW_COLLATE_UNSAFE) return false; /* * An expression which includes any mutable functions can't be sent over * because its result is not stable. For example, sending now() remote * side could cause confusion from clock offsets. Future versions might * be able to make this choice with more granularity. (We check this last * because it requires a lot of expensive catalog lookups.) */ if (contain_mutable_functions((Node *) expr)) return false; /* OK to evaluate on the remote server */ return true; } /* * Returns true if given expr is something we'd have to send the value of * to the foreign server. * * This should return true when the expression is a shippable node that * deparseExpr would add to context->params_list. Note that we don't care * if the expression *contains* such a node, only whether one appears at top * level. We need this to detect cases where setrefs.c would recognize a * false match between an fdw_exprs item (which came from the params_list) * and an entry in fdw_scan_tlist (which we're considering putting the given * expression into). */ bool sqlite_is_foreign_param(PlannerInfo *root, RelOptInfo *baserel, Expr *expr) { if (expr == NULL) return false; switch (nodeTag(expr)) { case T_Var: { /* It would have to be sent unless it's a foreign Var */ Var *var = (Var *) expr; SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) (baserel->fdw_private); Relids relids; if (IS_UPPER_REL(baserel)) relids = fpinfo->outerrel->relids; else relids = baserel->relids; if (bms_is_member(var->varno, relids) && var->varlevelsup == 0) return false; /* foreign Var, so not a param */ else return true; /* it'd have to be a param */ break; } case T_Param: /* Params always have to be sent to the foreign server */ return true; default: break; } return false; } static bool sqlite_is_valid_type(Oid type) { switch (type) { case INT2OID: case INT4OID: case INT8OID: case OIDOID: case FLOAT4OID: case FLOAT8OID: case NUMERICOID: case VARCHAROID: case TEXTOID: case TIMEOID: case TIMESTAMPOID: case TIMESTAMPTZOID: case UUIDOID: return true; } return false; } /* * Returns true if it's safe to push down the sort expression described by * 'pathkey' to the foreign server. */ bool sqlite_is_foreign_pathkey(PlannerInfo *root, RelOptInfo *baserel, PathKey *pathkey) { EquivalenceClass *pathkey_ec = pathkey->pk_eclass; EquivalenceMember *em; /* * is_foreign_expr would detect volatile expressions as well, but checking * ec_has_volatile here saves some cycles. */ if (pathkey_ec->ec_has_volatile) return false; /* can't push down the sort if the pathkey's opfamily is not built-in */ if (!sqlite_is_builtin(pathkey->pk_opfamily)) return false; /* Find a suitable EC member */ em = sqlite_find_em_for_rel(root, pathkey_ec, baserel); if (em) { Oid oprid; TypeCacheEntry *typentry; oprid = get_opfamily_member(pathkey->pk_opfamily, em->em_datatype, em->em_datatype, pathkey->pk_strategy); if (!OidIsValid(oprid)) elog(ERROR, "missing operator %d(%u,%u) in opfamily %u", pathkey->pk_strategy, em->em_datatype, em->em_datatype, pathkey->pk_opfamily); /* See whether operator is default < or > for sort expr's datatype. */ typentry = lookup_type_cache(exprType((Node *) em->em_expr), TYPECACHE_LT_OPR | TYPECACHE_GT_OPR); /* SQLite does not support USING, so do not push down it */ if (oprid != typentry->lt_opr && oprid != typentry->gt_opr) return false; } else return false; return true; } /* * Check if expression is safe to execute remotely, and return true if so. * * In addition, *outer_cxt is updated with collation information. * * We must check that the expression contains only node types we can deparse, * that all types/functions/operators are safe to send (which we approximate * as being built-in), and that all collations used in the expression derive * from Vars of the foreign table. Because of the latter, the logic is * pretty close to assign_collations_walker() in parse_collate.c, though we * can assume here that the given expression is valid. */ static bool sqlite_foreign_expr_walker(Node *node, foreign_glob_cxt *glob_cxt, foreign_loc_cxt *outer_cxt, foreign_loc_cxt *case_arg_cxt) { bool check_type = true; foreign_loc_cxt inner_cxt; Oid collation = InvalidOid; FDWCollateState state = FDW_COLLATE_NONE; HeapTuple tuple; Form_pg_operator form; /* Need do nothing for empty subexpressions */ if (node == NULL) return true; /* Set up inner_cxt for possible recursion to child nodes */ inner_cxt.collation = InvalidOid; inner_cxt.state = FDW_COLLATE_NONE; switch (nodeTag(node)) { case T_Var: { Var *var = (Var *) node; /* * If the Var is from the foreign table, we consider its * collation (if any) safe to use. If it is from another * table, we treat its collation the same way as we would a * Param's collation, ie it's not safe for it to have a * non-default collation. */ if (bms_is_member(var->varno, glob_cxt->relids) && var->varlevelsup == 0) { /* Var belongs to foreign table */ /* * System columns (e.g. oid, ctid) should not be sent to * the remote, since we don't make any effort to ensure * that local and remote values match (tableoid, in * particular, almost certainly doesn't match). */ if (var->varattno < 0) return false; /* Else check the collation */ collation = var->varcollid; state = OidIsValid(collation) ? FDW_COLLATE_SAFE : FDW_COLLATE_NONE; } else { /* Var belongs to some other table */ collation = var->varcollid; if (collation == InvalidOid || collation == DEFAULT_COLLATION_OID) { /* * It's noncollatable, or it's safe to combine with a * collatable foreign Var, so set state to NONE. */ state = FDW_COLLATE_NONE; } else { /* * Do not fail right away, since the Var might appear * in a collation-insensitive context. */ state = FDW_COLLATE_UNSAFE; } } } break; case T_Const: { Const *c = (Const *) node; /* SQLite cannot handle interval type */ if (c->consttype == INTERVALOID) return false; /* * If the constant has nondefault collation, either it's of a * non-builtin type, or it reflects folding of a CollateExpr; * either way, it's unsafe to send to the remote. */ if (c->constcollid != InvalidOid && c->constcollid != DEFAULT_COLLATION_OID) return false; /* Otherwise, we can consider that it doesn't set collation */ collation = InvalidOid; state = FDW_COLLATE_NONE; } break; case T_CaseTestExpr: { CaseTestExpr *c = (CaseTestExpr *) node; /* Punt if we seem not to be inside a CASE arg WHEN. */ if (!case_arg_cxt) return false; /* * Otherwise, any nondefault collation attached to the * CaseTestExpr node must be derived from foreign Var(s) in * the CASE arg. */ collation = c->collation; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (case_arg_cxt->state == FDW_COLLATE_SAFE && collation == case_arg_cxt->collation) state = FDW_COLLATE_SAFE; else if (collation == DEFAULT_COLLATION_OID) state = FDW_COLLATE_NONE; else state = FDW_COLLATE_UNSAFE; } break; case T_Param: { Param *p = (Param *) node; /* * If it's a MULTIEXPR Param, punt. We can't tell from here * whether the referenced sublink/subplan contains any remote * Vars; if it does, handling that is too complicated to * consider supporting at present. Fortunately, MULTIEXPR * Params are not reduced to plain PARAM_EXEC until the end of * planning, so we can easily detect this case. (Normal * PARAM_EXEC Params are safe to ship because their values * come from somewhere else in the plan tree; but a MULTIEXPR * references a sub-select elsewhere in the same targetlist, * so we'd be on the hook to evaluate it somehow if we wanted * to handle such cases as direct foreign updates.) */ if (p->paramkind == PARAM_MULTIEXPR) return false; if (!sqlite_is_valid_type(p->paramtype)) return false; /* * Collation rule is same as for Consts and non-foreign Vars. */ collation = p->paramcollid; if (collation == InvalidOid || collation == DEFAULT_COLLATION_OID) state = FDW_COLLATE_NONE; else state = FDW_COLLATE_UNSAFE; } break; case T_FuncExpr: { FuncExpr *func = (FuncExpr *) node; char *opername = NULL; Oid schema; /* get function name and schema */ tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(func->funcid)); if (!HeapTupleIsValid(tuple)) { elog(ERROR, "cache lookup failed for function %u", func->funcid); } opername = pstrdup(((Form_pg_proc) GETSTRUCT(tuple))->proname.data); schema = ((Form_pg_proc) GETSTRUCT(tuple))->pronamespace; ReleaseSysCache(tuple); /* ignore functions in other than the pg_catalog schema */ if (schema != PG_CATALOG_NAMESPACE) return false; /* * These function can be passed to SQLite. In case of nest * functions, for example, (round(abs(c1), 0) = 1, the * postgres core will transform to * (round((abs(t1.c1))::numeric, 0) = '1'::numeric), so * "::numberic" is kind of function format * COERCE_IMPLICIT_CAST we must check. * * In SQLite, lower/upper function does not support UNICODE * character, so we don't push down these functions. * */ if (!(func->funcformat == COERCE_IMPLICIT_CAST || strcmp(opername, "abs") == 0 || strcmp(opername, "btrim") == 0 || strcmp(opername, "length") == 0 || strcmp(opername, "ltrim") == 0 || strcmp(opername, "replace") == 0 || strcmp(opername, "round") == 0 || strcmp(opername, "rtrim") == 0 || strcmp(opername, "substr") == 0 || strcmp(opername, "mod") == 0 )) { return false; } if (!sqlite_foreign_expr_walker((Node *) func->args, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* * If function's input collation is not derived from a foreign * Var, it can't be sent to remote. */ if (func->inputcollid == InvalidOid) /* OK, inputs are all noncollatable */ ; else if (inner_cxt.state != FDW_COLLATE_SAFE || func->inputcollid != inner_cxt.collation) return false; /* * Detect whether node is introducing a collation not derived * from a foreign Var. (If so, we just mark it unsafe for now * rather than immediately returning false, since the parent * node might not care.) */ collation = func->funccollid; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (inner_cxt.state == FDW_COLLATE_SAFE && collation == inner_cxt.collation) state = FDW_COLLATE_SAFE; else if (collation == DEFAULT_COLLATION_OID) state = FDW_COLLATE_NONE; else state = FDW_COLLATE_UNSAFE; } break; case T_OpExpr: case T_NullIfExpr: { char *cur_opname = NULL; OpExpr *oe = (OpExpr *) node; /* * Similarly, only built-in operators can be sent to remote. * (If the operator is, surely its underlying function is * too.) */ if (!sqlite_is_builtin(oe->opno)) return false; tuple = SearchSysCache1(OPEROID, ObjectIdGetDatum(oe->opno)); if (!HeapTupleIsValid(tuple)) elog(ERROR, "cache lookup failed for operator %u", oe->opno); form = (Form_pg_operator) GETSTRUCT(tuple); /* opname is not a SQL identifier, so we should not quote it. */ cur_opname = pstrdup(NameStr(form->oprname)); ReleaseSysCache(tuple); /* * Factorial (!) and Bitwise XOR (^), (#) * cannot be pushed down to SQLite * Full list see in https://www.postgresql.org/docs/current/functions-bitstring.html * ILIKE cannot be pushed down to SQLite * Full list see in https://www.postgresql.org/docs/current/functions-matching.html */ if (strcmp(cur_opname, "!") == 0 || strcmp(cur_opname, "^") == 0 || strcmp(cur_opname, "#") == 0 || strcmp(cur_opname, "~~*") == 0 || strcmp(cur_opname, "!~~*") == 0) { return false; } /* * Recurse to input subexpressions. */ if (!sqlite_foreign_expr_walker((Node *) oe->args, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* * If operator's input collation is not derived from a foreign * Var, it can't be sent to remote. */ if (oe->inputcollid == InvalidOid) /* OK, inputs are all noncollatable */ ; else if (inner_cxt.state != FDW_COLLATE_SAFE || oe->inputcollid != inner_cxt.collation) return false; /* Result-collation handling is same as for functions */ collation = oe->opcollid; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (inner_cxt.state == FDW_COLLATE_SAFE && collation == inner_cxt.collation) state = FDW_COLLATE_SAFE; else state = FDW_COLLATE_UNSAFE; } break; case T_ScalarArrayOpExpr: { ScalarArrayOpExpr *oe = (ScalarArrayOpExpr *) node; /* * Again, only built-in operators can be sent to remote. */ if (!sqlite_is_builtin(oe->opno)) return false; /* * Recurse to input subexpressions. */ if (!sqlite_foreign_expr_walker((Node *) oe->args, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* * If operator's input collation is not derived from a foreign * Var, it can't be sent to remote. */ if (oe->inputcollid == InvalidOid) /* OK, inputs are all noncollatable */ ; else if (inner_cxt.state != FDW_COLLATE_SAFE || oe->inputcollid != inner_cxt.collation) return false; /* Output is always boolean and so noncollatable. */ collation = InvalidOid; state = FDW_COLLATE_NONE; } break; case T_RelabelType: { RelabelType *r = (RelabelType *) node; /* * Recurse to input subexpression. */ if (!sqlite_foreign_expr_walker((Node *) r->arg, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* * RelabelType must not introduce a collation not derived from * an input foreign Var. */ collation = r->resultcollid; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (inner_cxt.state == FDW_COLLATE_SAFE && collation == inner_cxt.collation) state = FDW_COLLATE_SAFE; else state = FDW_COLLATE_UNSAFE; } break; case T_BoolExpr: { BoolExpr *b = (BoolExpr *) node; /* * Recurse to input subexpressions. */ if (!sqlite_foreign_expr_walker((Node *) b->args, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* Output is always boolean and so noncollatable. */ collation = InvalidOid; state = FDW_COLLATE_NONE; } break; case T_NullTest: { NullTest *nt = (NullTest *) node; /* * Recurse to input subexpressions. */ if (!sqlite_foreign_expr_walker((Node *) nt->arg, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* Output is always boolean and so noncollatable. */ collation = InvalidOid; state = FDW_COLLATE_NONE; } break; case T_List: { List *l = (List *) node; ListCell *lc; /* * Recurse to component subexpressions. */ foreach(lc, l) { if (!sqlite_foreign_expr_walker((Node *) lfirst(lc), glob_cxt, &inner_cxt, case_arg_cxt)) return false; } /* * When processing a list, collation state just bubbles up * from the list elements. */ collation = inner_cxt.collation; state = inner_cxt.state; /* Don't apply exprType() to the list. */ check_type = false; } break; case T_CoalesceExpr: { CoalesceExpr *coalesce = (CoalesceExpr *) node; ListCell *lc; if (list_length(coalesce->args) < 2) return false; /* Recurse to each argument */ foreach(lc, coalesce->args) { if (!sqlite_foreign_expr_walker((Node *) lfirst(lc), glob_cxt, &inner_cxt, case_arg_cxt)) return false; } } break; case T_CaseExpr: { CaseExpr *ce = (CaseExpr *) node; foreign_loc_cxt arg_cxt; foreign_loc_cxt tmp_cxt; ListCell *lc; /* * Recurse to CASE's arg expression, if any. Its collation * has to be saved aside for use while examining CaseTestExprs * within the WHEN expressions. */ arg_cxt.collation = InvalidOid; arg_cxt.state = FDW_COLLATE_NONE; if (ce->arg) { if (!sqlite_foreign_expr_walker((Node *) ce->arg, glob_cxt, &arg_cxt, case_arg_cxt)) return false; } /* Examine the CaseWhen subexpressions. */ foreach(lc, ce->args) { CaseWhen *cw = lfirst_node(CaseWhen, lc); if (ce->arg) { /* * In a CASE-with-arg, the parser should have produced * WHEN clauses of the form "CaseTestExpr = RHS", * possibly with an implicit coercion inserted above * the CaseTestExpr. However in an expression that's * been through the optimizer, the WHEN clause could * be almost anything (since the equality operator * could have been expanded into an inline function). * In such cases forbid pushdown, because * deparseCaseExpr can't handle it. */ Node *whenExpr = (Node *) cw->expr; List *opArgs; if (!IsA(whenExpr, OpExpr)) return false; opArgs = ((OpExpr *) whenExpr)->args; if (list_length(opArgs) != 2 || !IsA(strip_implicit_coercions(linitial(opArgs)), CaseTestExpr)) return false; } /* * Recurse to WHEN expression, passing down the arg info. * Its collation doesn't affect the result (really, it * should be boolean and thus not have a collation). */ tmp_cxt.collation = InvalidOid; tmp_cxt.state = FDW_COLLATE_NONE; if (!sqlite_foreign_expr_walker((Node *) cw->expr, glob_cxt, &tmp_cxt, &arg_cxt)) return false; /* Recurse to THEN expression. */ if (!sqlite_foreign_expr_walker((Node *) cw->result, glob_cxt, &inner_cxt, case_arg_cxt)) return false; } /* Recurse to ELSE expression. */ if (!sqlite_foreign_expr_walker((Node *) ce->defresult, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* * Detect whether node is introducing a collation not derived * from a foreign Var. (If so, we just mark it unsafe for now * rather than immediately returning false, since the parent * node might not care.) This is the same as for function * nodes, except that the input collation is derived from only * the THEN and ELSE subexpressions. */ collation = ce->casecollid; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (inner_cxt.state == FDW_COLLATE_SAFE && collation == inner_cxt.collation) state = FDW_COLLATE_SAFE; else if (collation == DEFAULT_COLLATION_OID) state = FDW_COLLATE_NONE; else state = FDW_COLLATE_UNSAFE; } break; case T_Aggref: { Aggref *agg = (Aggref *) node; ListCell *lc; char *opername = NULL; Oid schema; /* get function name and schema */ tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(agg->aggfnoid)); if (!HeapTupleIsValid(tuple)) { elog(ERROR, "cache lookup failed for function %u", agg->aggfnoid); } opername = pstrdup(((Form_pg_proc) GETSTRUCT(tuple))->proname.data); schema = ((Form_pg_proc) GETSTRUCT(tuple))->pronamespace; ReleaseSysCache(tuple); /* ignore functions in other than the pg_catalog schema */ if (schema != PG_CATALOG_NAMESPACE) return false; /* these function can be passed to SQLite */ if (!(strcmp(opername, "sum") == 0 || strcmp(opername, "avg") == 0 || strcmp(opername, "max") == 0 || strcmp(opername, "min") == 0 || strcmp(opername, "count") == 0)) { return false; } /* Not safe to pushdown when not in grouping context */ if (!IS_UPPER_REL(glob_cxt->foreignrel)) return false; /* Only non-split aggregates are pushable. */ if (agg->aggsplit != AGGSPLIT_SIMPLE) return false; /* * Recurse to input args. aggdirectargs, aggorder and * aggdistinct are all present in args, so no need to check * their shippability explicitly. */ foreach(lc, agg->args) { Node *n = (Node *) lfirst(lc); /* If TargetEntry, extract the expression from it */ if (IsA(n, TargetEntry)) { TargetEntry *tle = (TargetEntry *) n; n = (Node *) tle->expr; } if (!sqlite_foreign_expr_walker(n, glob_cxt, &inner_cxt, case_arg_cxt)) return false; } if (agg->aggorder || agg->aggfilter) { return false; } /* * If aggregate's input collation is not derived from a * foreign Var, it can't be sent to remote. */ if (agg->inputcollid == InvalidOid) /* OK, inputs are all noncollatable */ ; else if (inner_cxt.state != FDW_COLLATE_SAFE || agg->inputcollid != inner_cxt.collation) return false; /* * Detect whether node is introducing a collation not derived * from a foreign Var. (If so, we just mark it unsafe for now * rather than immediately returning false, since the parent * node might not care.) */ collation = agg->aggcollid; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (inner_cxt.state == FDW_COLLATE_SAFE && collation == inner_cxt.collation) state = FDW_COLLATE_SAFE; else if (collation == DEFAULT_COLLATION_OID) state = FDW_COLLATE_NONE; else state = FDW_COLLATE_UNSAFE; } break; case T_ArrayExpr: { ArrayExpr *a = (ArrayExpr *) node; /* * Recurse to input subexpressions. */ if (!sqlite_foreign_expr_walker((Node *) a->elements, glob_cxt, &inner_cxt, case_arg_cxt)) return false; /* * ArrayExpr must not introduce a collation not derived from * an input foreign Var (same logic as for a function). */ collation = a->array_collid; if (collation == InvalidOid) state = FDW_COLLATE_NONE; else if (inner_cxt.state == FDW_COLLATE_SAFE && collation == inner_cxt.collation) state = FDW_COLLATE_SAFE; else if (collation == DEFAULT_COLLATION_OID) state = FDW_COLLATE_NONE; else state = FDW_COLLATE_UNSAFE; } break; case T_DistinctExpr: /* IS DISTINCT FROM */ return false; default: /* * If it's anything else, assume it's unsafe. This list can be * expanded later, but don't forget to add deparse support below. */ return false; } /* * If result type of given expression is not built-in, it can't be sent to * remote because it might have incompatible semantics on remote side. */ if (check_type && !sqlite_is_builtin(exprType(node))) return false; /* * Now, merge my collation information into my parent's state. */ if (state > outer_cxt->state) { /* Override previous parent state */ outer_cxt->collation = collation; outer_cxt->state = state; } else if (state == outer_cxt->state) { /* Merge, or detect error if there's a collation conflict */ switch (state) { case FDW_COLLATE_NONE: /* Nothing + nothing is still nothing */ break; case FDW_COLLATE_SAFE: if (collation != outer_cxt->collation) { /* * Non-default collation always beats default. */ if (outer_cxt->collation == DEFAULT_COLLATION_OID) { /* Override previous parent state */ outer_cxt->collation = collation; } else if (collation != DEFAULT_COLLATION_OID) { /* * Conflict; show state as indeterminate. We don't * want to "return false" right away, since parent * node might not care about collation. */ outer_cxt->state = FDW_COLLATE_UNSAFE; } } break; case FDW_COLLATE_UNSAFE: /* We're still conflicted ... */ break; } } /* It looks OK */ return true; } /* * Build the targetlist for given relation to be deparsed as SELECT clause. * * The output targetlist contains the columns that need to be fetched from the * foreign server for the given relation. If foreignrel is an upper relation, * then the output targetlist can also contains expressions to be evaluated on * foreign server. */ List * sqlite_build_tlist_to_deparse(RelOptInfo *foreignrel) { List *tlist = NIL; SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) foreignrel->fdw_private; ListCell *lc; /* * For an upper relation, we have already built the target list while * checking shippability, so just return that. */ if (IS_UPPER_REL(foreignrel)) return fpinfo->grouped_tlist; /* * We require columns specified in foreignrel->reltarget->exprs and those * required for evaluating the local conditions. */ tlist = add_to_flat_tlist(tlist, pull_var_clause((Node *) foreignrel->reltarget->exprs, PVC_RECURSE_PLACEHOLDERS)); foreach(lc, fpinfo->local_conds) { RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc); tlist = add_to_flat_tlist(tlist, pull_var_clause((Node *) rinfo->clause, PVC_RECURSE_PLACEHOLDERS)); } return tlist; } /* * Deparse SELECT statement for given relation into buf. * * tlist contains the list of desired columns to be fetched from foreign server. * For a base relation fpinfo->attrs_used is used to construct SELECT clause, * hence the tlist is ignored for a base relation. * * remote_conds is the list of conditions to be deparsed into the WHERE clause * (or, in the case of upper relations, into the HAVING clause). * * If params_list is not NULL, it receives a list of Params and other-relation * Vars used in the clauses; these values must be transmitted to the remote * server as parameter values. * * If params_list is NULL, we're generating the query for EXPLAIN purposes, * so Params and other-relation Vars should be replaced by dummy values. * * pathkeys is the list of pathkeys to order the result by. * * List of columns selected is returned in retrieved_attrs. */ void sqlite_deparse_select_stmt_for_rel(StringInfo buf, PlannerInfo *root, RelOptInfo *rel, List *tlist, List *remote_conds, List *pathkeys, bool has_final_sort, bool has_limit, bool is_subquery, List **retrieved_attrs, List **params_list) { deparse_expr_cxt context; SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) rel->fdw_private; List *quals; /* * We handle relations for foreign tables, joins between those and upper * relations. */ Assert(IS_JOIN_REL(rel) || IS_SIMPLE_REL(rel) || IS_OTHER_REL(rel) || IS_UPPER_REL(rel)); /* Fill portions of context common to upper, join and base relation */ context.buf = buf; context.root = root; context.foreignrel = rel; context.scanrel = IS_UPPER_REL(rel) ? fpinfo->outerrel : rel; context.params_list = params_list; /* Construct SELECT clause */ sqlite_deparse_select(tlist, is_subquery, retrieved_attrs, &context); /* * For upper relations, the WHERE clause is built from the remote * conditions of the underlying scan relation; otherwise, we can use the * supplied list of remote conditions directly. */ if (IS_UPPER_REL(rel)) { SqliteFdwRelationInfo *ofpinfo; ofpinfo = (SqliteFdwRelationInfo *) fpinfo->outerrel->fdw_private; quals = ofpinfo->remote_conds; } else quals = remote_conds; /* Construct FROM and WHERE clauses */ sqlite_deparse_from_expr(quals, &context); if (IS_UPPER_REL(rel)) { /* Append GROUP BY clause */ sqlite_append_group_by_clause(tlist, &context); /* Append HAVING clause */ if (remote_conds) { appendStringInfo(buf, " HAVING "); sqlite_append_conditions(remote_conds, &context); } } /* Add ORDER BY clause if we found any useful pathkeys */ if (pathkeys) sqlite_append_order_by_clause(pathkeys, has_final_sort, &context); /* Add LIMIT clause if necessary */ if (has_limit) sqlite_append_limit_clause(&context); } /* * Deparese SELECT statment */ static void sqlite_deparse_select(List *tlist, bool is_subquery, List **retrieved_attrs, deparse_expr_cxt *context) { StringInfo buf = context->buf; PlannerInfo *root = context->root; RelOptInfo *foreignrel = context->foreignrel; SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) foreignrel->fdw_private; /* * Construct SELECT list */ appendStringInfoString(buf, "SELECT "); if (is_subquery) { /* * For a relation that is deparsed as a subquery, emit expressions * specified in the relation's reltarget. Note that since this is for * the subquery, no need to care about *retrieved_attrs. */ sqlite_deparse_subquery_target_list(context); } else if (IS_JOIN_REL(foreignrel) || fpinfo->is_tlist_func_pushdown == true || IS_UPPER_REL(foreignrel)) { /* * For a join or upper relation the input tlist gives the list of * columns required to be fetched from the foreign server. */ sqlite_deparse_explicit_target_list(tlist, retrieved_attrs, context); } else { /* * For a base relation fpinfo->attrs_used gives the list of columns * required to be fetched from the foreign server. */ RangeTblEntry *rte = planner_rt_fetch(foreignrel->relid, root); /* * Core code already has some lock on each rel being planned, so we * can use NoLock here. */ Relation rel = table_open(rte->relid, NoLock); sqlite_deparse_target_list(buf, root, foreignrel->relid, rel, fpinfo->attrs_used, false, retrieved_attrs, false, false); table_close(rel, NoLock); } } /* * Construct a FROM clause and, if needed, a WHERE clause, and append those to * "buf". * * quals is the list of clauses to be included in the WHERE clause. */ static void sqlite_deparse_from_expr(List *quals, deparse_expr_cxt *context) { StringInfo buf = context->buf; RelOptInfo *scanrel = context->scanrel; #if PG_VERSION_NUM >= 170000 List *additional_conds = NIL; #endif /* For upper relations, scanrel must be either a joinrel or a baserel */ Assert(!IS_UPPER_REL(context->foreignrel) || IS_JOIN_REL(scanrel) || IS_SIMPLE_REL(scanrel)); /* Construct FROM clause */ appendStringInfoString(buf, " FROM "); sqlite_deparse_from_expr_for_rel(buf, context->root, scanrel, (bms_num_members(scanrel->relids) == BMS_MULTIPLE), (Index) 0, NULL, #if PG_VERSION_NUM >= 170000 &additional_conds, #endif context->params_list); #if PG_VERSION_NUM >= 170000 sqlite_append_where_clause(quals, additional_conds, context); if (additional_conds != NIL) list_free_deep(additional_conds); #else /* Construct WHERE clause */ if (quals != NIL) { appendStringInfo(buf, " WHERE "); sqlite_append_conditions(quals, context); } #endif } /* * Deparse conditions from the provided list and append them to buf. * * The conditions in the list are assumed to be ANDed. This function is used to * deparse WHERE clauses, JOIN .. ON clauses and HAVING clauses. */ static void sqlite_append_conditions(List *exprs, deparse_expr_cxt *context) { int nestlevel; ListCell *lc; bool is_first = true; StringInfo buf = context->buf; /* Make sure any constants in the exprs are printed portably */ nestlevel = sqlite_set_transmission_modes(); foreach(lc, exprs) { Expr *expr = (Expr *) lfirst(lc); /* Extract clause from RestrictInfo, if required */ if (IsA(expr, RestrictInfo)) expr = ((RestrictInfo *) expr)->clause; /* Connect expressions with "AND" and parenthesize each condition. */ if (!is_first) appendStringInfoString(buf, " AND "); appendStringInfoChar(buf, '('); sqlite_deparse_expr(expr, context); appendStringInfoChar(buf, ')'); is_first = false; } sqlite_reset_transmission_modes(nestlevel); } /* Output join name for given join type */ const char * sqlite_get_jointype_name(JoinType jointype) { switch (jointype) { case JOIN_INNER: return "INNER"; case JOIN_LEFT: return "LEFT"; case JOIN_RIGHT: return "RIGHT"; case JOIN_FULL: return "FULL"; #if PG_VERSION_NUM >= 170000 case JOIN_SEMI: return "SEMI"; #endif default: /* Shouldn't come here, but protect from buggy code. */ elog(ERROR, "unsupported join type %d", jointype); } /* Keep compiler happy */ return NULL; } /* * Deparse given targetlist and append it to context->buf. * * tlist is list of TargetEntry's which in turn contain Var nodes. * * retrieved_attrs is the list of continuously increasing integers starting * from 1. It has same number of entries as tlist. */ static void sqlite_deparse_explicit_target_list(List *tlist, List **retrieved_attrs, deparse_expr_cxt *context) { ListCell *lc; StringInfo buf = context->buf; int i = 0; *retrieved_attrs = NIL; foreach(lc, tlist) { TargetEntry *tle = lfirst_node(TargetEntry, lc); if (i > 0) appendStringInfoString(buf, ", "); sqlite_deparse_expr((Expr *) tle->expr, context); *retrieved_attrs = lappend_int(*retrieved_attrs, i + 1); i++; } if (i == 0) appendStringInfoString(buf, "NULL"); } /* * Emit expressions specified in the given relation's reltarget. * * This is used for deparsing the given relation as a subquery. */ static void sqlite_deparse_subquery_target_list(deparse_expr_cxt *context) { StringInfo buf = context->buf; RelOptInfo *foreignrel = context->foreignrel; bool first; ListCell *lc; int col = 1; /* Should only be called in these cases. */ Assert(IS_SIMPLE_REL(foreignrel) || IS_JOIN_REL(foreignrel)); first = true; foreach(lc, foreignrel->reltarget->exprs) { Node *node = (Node *) lfirst(lc); if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_expr((Expr *) node, context); appendStringInfo(buf, " AS %s%d", SUBQUERY_COL_ALIAS_PREFIX, col); col++; } /* Don't generate bad syntax if no expressions */ if (first) appendStringInfoString(buf, "NULL"); } /* * Construct FROM clause for given relation * * The function constructs ... JOIN ... ON ... for join relation. For a base * relation it just returns schema-qualified tablename, with the appropriate * alias if so requested. * * 'ignore_rel' is either zero or the RT index of a target relation. In the * latter case the function constructs FROM clause of UPDATE or USING clause * of DELETE; it deparses the join relation as if the relation never contained * the target relation, and creates a List of conditions to be deparsed into * the top-level WHERE clause, which is returned to *ignore_conds. * * 'additional_conds' is a pointer to a list of strings to be appended to * the WHERE clause, coming from lower-level SEMI-JOINs. */ static void sqlite_deparse_from_expr_for_rel(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool use_alias, Index ignore_rel, List **ignore_conds, #if PG_VERSION_NUM >= 170000 List **additional_conds, #endif List **params_list) { if (IS_JOIN_REL(foreignrel)) { StringInfoData join_sql_o; StringInfoData join_sql_i; SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) foreignrel->fdw_private; RelOptInfo *outerrel = fpinfo->outerrel; RelOptInfo *innerrel = fpinfo->innerrel; bool outerrel_is_target = false; bool innerrel_is_target = false; #if PG_VERSION_NUM >= 170000 List *additional_conds_i = NIL; List *additional_conds_o = NIL; #endif if (ignore_rel > 0 && bms_is_member(ignore_rel, foreignrel->relids)) { /* * If this is an inner join, add joinclauses to *ignore_conds and * set it to empty so that those can be deparsed into the WHERE * clause. Note that since the target relation can never be * within the nullable side of an outer join, those could safely * be pulled up into the WHERE clause (see foreign_join_ok()). * Note also that since the target relation is only inner-joined * to any other relation in the query, all conditions in the join * tree mentioning the target relation could be deparsed into the * WHERE clause by doing this recursively. */ if (fpinfo->jointype == JOIN_INNER) { *ignore_conds = list_concat(*ignore_conds, fpinfo->joinclauses); fpinfo->joinclauses = NIL; } /* * Check if either of the input relations is the target relation. */ if (outerrel->relid == ignore_rel) outerrel_is_target = true; else if (innerrel->relid == ignore_rel) innerrel_is_target = true; } /* Deparse outer relation if not the target relation. */ if (!outerrel_is_target) { initStringInfo(&join_sql_o); sqlite_deparse_range_tbl_ref(&join_sql_o, root, outerrel, fpinfo->make_outerrel_subquery, ignore_rel, ignore_conds, #if PG_VERSION_NUM >= 170000 &additional_conds_o, #endif params_list); /* * If inner relation is the target relation, skip deparsing it. * Note that since the join of the target relation with any other * relation in the query is an inner join and can never be within * the nullable side of an outer join, the join could be * interchanged with higher-level joins (cf. identity 1 on outer * join reordering shown in src/backend/optimizer/README), which * means it's safe to skip the target-relation deparsing here. */ if (innerrel_is_target) { Assert(fpinfo->jointype == JOIN_INNER); Assert(fpinfo->joinclauses == NIL); appendBinaryStringInfo(buf, join_sql_o.data, join_sql_o.len); #if PG_VERSION_NUM >= 170000 /* Pass EXISTS conditions to upper level */ if (additional_conds_o != NIL) { Assert(*additional_conds == NIL); *additional_conds = additional_conds_o; } #endif return; } } /* Deparse inner relation if not the target relation. */ if (!innerrel_is_target) { initStringInfo(&join_sql_i); sqlite_deparse_range_tbl_ref(&join_sql_i, root, innerrel, fpinfo->make_innerrel_subquery, ignore_rel, ignore_conds, #if PG_VERSION_NUM >= 170000 &additional_conds_i, #endif params_list); #if PG_VERSION_NUM >= 170000 /* * SEMI-JOIN is deparsed as the EXISTS subquery. It references * outer and inner relations, so it should be evaluated as the * condition in the upper-level WHERE clause. We deparse the * condition and pass it to upper level callers as an * additional_conds list. Upper level callers are responsible for * inserting conditions from the list where appropriate. */ if (fpinfo->jointype == JOIN_SEMI) { deparse_expr_cxt context; StringInfoData str; /* Construct deparsed condition from this SEMI-JOIN */ initStringInfo(&str); appendStringInfo(&str, "EXISTS (SELECT NULL FROM %s", join_sql_i.data); context.buf = &str; context.foreignrel = foreignrel; context.scanrel = foreignrel; context.root = root; context.params_list = params_list; /* * Append SEMI-JOIN clauses and EXISTS conditions from lower * levels to the current EXISTS subquery */ sqlite_append_where_clause(fpinfo->joinclauses, additional_conds_i, &context); /* * EXISTS conditions, coming from lower join levels, have just * been processed. */ if (additional_conds_i != NIL) { list_free_deep(additional_conds_i); additional_conds_i = NIL; } /* Close parentheses for EXISTS subquery */ appendStringInfoChar(&str, ')'); *additional_conds = lappend(*additional_conds, str.data); } #endif /* * If outer relation is the target relation, skip deparsing it. * See the above note about safety. */ if (outerrel_is_target) { Assert(fpinfo->jointype == JOIN_INNER); Assert(fpinfo->joinclauses == NIL); appendBinaryStringInfo(buf, join_sql_i.data, join_sql_i.len); #if PG_VERSION_NUM >= 170000 /* Pass EXISTS conditions to the upper call */ if (additional_conds_i != NIL) { Assert(*additional_conds == NIL); *additional_conds = additional_conds_i; } #endif return; } } /* Neither of the relations is the target relation. */ Assert(!outerrel_is_target && !innerrel_is_target); #if PG_VERSION_NUM >= 170000 /* * For semijoin FROM clause is deparsed as an outer relation. An inner * relation and join clauses are converted to EXISTS condition and * passed to the upper level. */ if (fpinfo->jointype == JOIN_SEMI) { appendBinaryStringInfo(buf, join_sql_o.data, join_sql_o.len); } else { #endif /* * For a join relation FROM clause, entry is deparsed as * * ((outer relation) (inner relation) ON * (joinclauses)) */ appendStringInfo(buf, "(%s %s JOIN %s ON ", join_sql_o.data, sqlite_get_jointype_name(fpinfo->jointype), join_sql_i.data); /* Append join clause; (TRUE) if no join clause */ if (fpinfo->joinclauses) { deparse_expr_cxt context; context.buf = buf; context.foreignrel = foreignrel; context.scanrel = foreignrel; context.root = root; context.params_list = params_list; appendStringInfo(buf, "("); sqlite_append_conditions(fpinfo->joinclauses, &context); appendStringInfo(buf, ")"); } else appendStringInfoString(buf, "(TRUE)"); /* End the FROM clause entry. */ appendStringInfo(buf, ")"); #if PG_VERSION_NUM >= 170000 } /* * Construct additional_conds to be passed to the upper caller from * current level additional_conds and additional_conds, coming from * inner and outer rels. */ if (additional_conds_o != NIL) { *additional_conds = list_concat(*additional_conds, additional_conds_o); list_free(additional_conds_o); } if (additional_conds_i != NIL) { *additional_conds = list_concat(*additional_conds, additional_conds_i); list_free(additional_conds_i); } #endif } else { RangeTblEntry *rte = planner_rt_fetch(foreignrel->relid, root); /* * Core code already has some lock on each rel being planned, so we * can use NoLock here. */ Relation rel = table_open(rte->relid, NoLock); sqlite_deparse_relation(buf, rel); /* * Add a unique alias to avoid any conflict in relation names due to * pulled up subqueries in the query being built for a pushed down * join. */ if (use_alias) appendStringInfo(buf, " %s%d", REL_ALIAS_PREFIX, foreignrel->relid); table_close(rel, NoLock); } } /* * Append FROM clause entry for the given relation into buf. * Conditions from lower-level SEMI-JOINs are appended to additional_conds * and should be added to upper level WHERE clause. */ static void sqlite_deparse_range_tbl_ref(StringInfo buf, PlannerInfo *root, RelOptInfo *foreignrel, bool make_subquery, Index ignore_rel, List **ignore_conds, #if PG_VERSION_NUM >= 170000 List **additional_conds, #endif List **params_list) { SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) foreignrel->fdw_private; /* Should only be called in these cases. */ Assert(IS_SIMPLE_REL(foreignrel) || IS_JOIN_REL(foreignrel)); Assert(fpinfo->local_conds == NIL); /* If make_subquery is true, deparse the relation as a subquery. */ if (make_subquery) { List *retrieved_attrs; /* * The given relation shouldn't contain the target relation, because * this should only happen for input relations for a full join, and * such relations can never contain an UPDATE/DELETE target. */ Assert(ignore_rel == 0 || !bms_is_member(ignore_rel, foreignrel->relids)); /* Deparse the subquery representing the relation. */ appendStringInfoChar(buf, '('); sqlite_deparse_select_stmt_for_rel(buf, root, foreignrel, NIL, fpinfo->remote_conds, NIL, false, false, true, &retrieved_attrs, params_list); appendStringInfoChar(buf, ')'); /* Append the relation alias. */ appendStringInfo(buf, " %s%d", SUBQUERY_REL_ALIAS_PREFIX, fpinfo->relation_index); } else sqlite_deparse_from_expr_for_rel(buf, root, foreignrel, true, ignore_rel, ignore_conds, #if PG_VERSION_NUM >= 170000 additional_conds, #endif params_list); } /* * deparse remote INSERT statement * * The statement text is appended to buf, and we also create an integer List * of the columns being retrieved by RETURNING (if any), which is returned * to *retrieved_attrs. */ void sqlite_deparse_insert(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, List *targetAttrs, bool doNothing, int *values_end_len) { #if PG_VERSION_NUM >= 140000 TupleDesc tupdesc = RelationGetDescr(rel); bool all_columns_generated = true; #endif AttrNumber pindex; bool first; ListCell *lc; appendStringInfo(buf, "INSERT %sINTO ", doNothing ? "OR IGNORE " : ""); sqlite_deparse_relation(buf, rel); #if PG_VERSION_NUM >= 140000 /* * Check all columns in table that they are all generated column or not. * If true, we will skip all columns and just add 'DEFAULT VALUES'. If * not, we still push down other columns which are not generated column. */ if (targetAttrs) { foreach(lc, targetAttrs) { int attnum = linitial_int(targetAttrs); Form_pg_attribute attr = TupleDescAttr(tupdesc, attnum - 1); if (!attr->attgenerated) { all_columns_generated = false; break; } } } #endif #if (PG_VERSION_NUM >= 140000) if (targetAttrs && !all_columns_generated) #else if (targetAttrs) #endif { appendStringInfoChar(buf, '('); first = true; foreach(lc, targetAttrs) { int attnum = lfirst_int(lc); #if PG_VERSION_NUM >= 140000 Form_pg_attribute attr = TupleDescAttr(tupdesc, attnum - 1); if (!attr->attgenerated) { #endif if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_column_ref(buf, rtindex, attnum, root, false, true); #if PG_VERSION_NUM >= 140000 } #endif } appendStringInfoString(buf, ") VALUES ("); pindex = 1; first = true; foreach(lc, targetAttrs) { #if PG_VERSION_NUM >= 140000 int attnum = lfirst_int(lc); Form_pg_attribute attr = TupleDescAttr(tupdesc, attnum - 1); if (!attr->attgenerated) { #endif if (!first) appendStringInfoString(buf, ", "); first = false; appendStringInfo(buf, "?"); pindex++; #if PG_VERSION_NUM >= 140000 } #endif } appendStringInfoChar(buf, ')'); } else appendStringInfoString(buf, " DEFAULT VALUES"); *values_end_len = buf->len; } #if PG_VERSION_NUM >= 140000 /* * rebuild remote INSERT statement * * Provided a number of rows in a batch, builds INSERT statement with the * right number of parameters. */ void sqlite_rebuild_insert(StringInfo buf, Relation rel, char *orig_query, List *target_attrs, int values_end_len, int num_params, int num_rows) { TupleDesc tupdesc = RelationGetDescr(rel); int i; bool first; ListCell *lc; /* Make sure the values_end_len is sensible */ Assert((values_end_len > 0) && (values_end_len <= strlen(orig_query))); /* Copy up to the end of the first record from the original query */ appendBinaryStringInfo(buf, orig_query, values_end_len); /* * Add records to VALUES clause (we already have parameters for the first * row, so start at the right offset). */ for (i = 0; i < num_rows; i++) { appendStringInfoString(buf, ", ("); first = true; foreach(lc, target_attrs) { int attnum = lfirst_int(lc); Form_pg_attribute attr = TupleDescAttr(tupdesc, attnum - 1); if (!attr->attgenerated) { if (!first) appendStringInfoString(buf, ", "); first = false; appendStringInfo(buf, "?"); } } appendStringInfoChar(buf, ')'); } /* Copy stuff after VALUES clause from the original query */ appendStringInfoString(buf, orig_query + values_end_len); } #endif void sqlite_deparse_analyze(StringInfo sql, char *dbname, char *relname) { appendStringInfo(sql, "SELECT"); appendStringInfo(sql, " round(((data_length + index_length)), 2)"); appendStringInfo(sql, " FROM information_schema.TABLES"); appendStringInfo(sql, " WHERE table_schema = '%s' AND table_name = '%s'", dbname, relname); } /* * Emit a target list that retrieves the columns specified in attrs_used. * This is used for both SELECT and RETURNING targetlists. */ static void sqlite_deparse_target_list(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, Bitmapset *attrs_used, bool qualify_col, List **retrieved_attrs, bool is_concat, bool check_null) { TupleDesc tupdesc = RelationGetDescr(rel); bool have_wholerow; bool first; int i; /* If there's a whole-row reference, we'll need all the columns. */ have_wholerow = bms_is_member(0 - FirstLowInvalidHeapAttributeNumber, attrs_used); first = true; *retrieved_attrs = NIL; for (i = 1; i <= tupdesc->natts; i++) { Form_pg_attribute attr = TupleDescAttr(tupdesc, i - 1); /* Ignore dropped attributes. */ if (attr->attisdropped) continue; if (have_wholerow || bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used)) { if (!first) { if (is_concat) appendStringInfoString(buf, ", '') || \",\" || COALESCE("); else if (check_null) appendStringInfoString(buf, "OR ( "); else appendStringInfoString(buf, ", "); } else if (is_concat) appendStringInfoString(buf, "COALESCE("); else if (check_null) appendStringInfoString(buf, "( "); first = false; sqlite_deparse_column_ref(buf, rtindex, i, root, qualify_col, false); if (check_null) appendStringInfoString(buf, " IS NOT NULL) "); *retrieved_attrs = lappend_int(*retrieved_attrs, i); } } /* Don't generate bad syntax if no undropped columns */ if (first) appendStringInfoString(buf, "NULL"); else if (is_concat) appendStringInfoString(buf, ", '')"); } #if PG_VERSION_NUM >= 170000 /* * Append WHERE clause, containing conditions from exprs and additional_conds, * to context->buf. */ void sqlite_append_where_clause(List *exprs, List *additional_conds, deparse_expr_cxt *context) { StringInfo buf = context->buf; bool need_and = false; ListCell *lc; if (exprs != NIL || additional_conds != NIL) appendStringInfoString(buf, " WHERE "); /* * If there are some filters, append them. */ if (exprs != NIL) { sqlite_append_conditions(exprs, context); need_and = true; } /* * If there are some EXISTS conditions, coming from SEMI-JOINS, append * them. */ foreach(lc, additional_conds) { if (need_and) appendStringInfoString(buf, " AND "); appendStringInfoString(buf, (char *) lfirst(lc)); need_and = true; } } #endif #if PG_VERSION_NUM >= 140000 /* * TRUNCATE in SQLite is supported by use DELETE FROM without WHERE condition. */ void sqlite_deparse_truncate(StringInfo buf, List *rels) { ListCell *cell; Relation rel; appendStringInfoString(buf, "PRAGMA foreign_keys = ON;"); foreach(cell, rels) { appendStringInfoString(buf, "DELETE FROM "); rel = lfirst(cell); sqlite_deparse_relation(buf, rel); appendStringInfoChar(buf, ';'); } } #endif /* * Construct name to use for given column, and emit it into buf. * If it has a column_name FDW option, use that instead of attribute name. */ static void sqlite_deparse_column_ref(StringInfo buf, int varno, int varattno, PlannerInfo *root, bool qualify_col, bool dml_context) { RangeTblEntry *rte; /* Get RangeTblEntry from array in PlannerInfo. */ rte = planner_rt_fetch(varno, root); if (varattno == 0) { /* Whole row reference */ Relation rel; Bitmapset *attrs_used; /* Required only to be passed down to deparseTargetList(). */ List *retrieved_attrs; /* * The lock on the relation will be held by upper callers, so it's * fine to open it with no lock here. */ rel = table_open(rte->relid, NoLock); /* * The local name of the foreign table can not be recognized by the * foreign server and the table it references on foreign server might * have different column ordering or different columns than those * declared locally. Hence we have to deparse whole-row reference as * ROW(columns referenced locally). Construct this by deparsing a * "whole row" attribute. */ attrs_used = bms_add_member(NULL, 0 - FirstLowInvalidHeapAttributeNumber); /* * In case the whole-row reference is under an outer join then it has * to go NULL whenever the rest of the row goes NULL. Deparsing a join * query would always involve multiple relations, thus qualify_col * would be true. */ appendStringInfoString(buf, "CASE WHEN "); sqlite_deparse_target_list(buf, root, varno, rel, attrs_used, qualify_col, &retrieved_attrs, false, true); appendStringInfoString(buf, "THEN "); appendStringInfoString(buf, "(\"(\" || "); sqlite_deparse_target_list(buf, root, varno, rel, attrs_used, qualify_col, &retrieved_attrs, true, false); appendStringInfoString(buf, "|| \")\")"); appendStringInfoString(buf, " END"); table_close(rel, NoLock); bms_free(attrs_used); } else { char *colname = NULL; List *options; ListCell *lc; Oid pg_atttyp = 0; elog(DEBUG3, "sqlite_fdw : %s , varattrno != 0", __func__); /* varno must not be any of OUTER_VAR, INNER_VAR and INDEX_VAR. */ Assert(!IS_SPECIAL_VARNO(varno)); /* * If it's a column of a foreign table, and it has the column_name FDW * option, use that value. */ options = GetForeignColumnOptions(rte->relid, varattno); foreach(lc, options) { DefElem *def = (DefElem *) lfirst(lc); if (strcmp(def->defname, "column_name") == 0) { colname = defGetString(def); elog(DEBUG3, "opt = %s\n", def->defname); break; } elog(DEBUG1, "column name = %s\n", colname); } /* * If it's a column of a regular table or it doesn't have column_name * FDW option, use attribute name. */ if (colname == NULL) #if (PG_VERSION_NUM >= 110000) colname = get_attname(rte->relid, varattno, false); #else colname = get_attname(rte->relid, varattno); #endif pg_atttyp = get_atttype(rte->relid, varattno); /* PostgreSQL data types with possible mixed affinity SQLite base we should * normalize to preferred form in SQLite before transfer to PostgreSQL. * Recommended form for normalisation is someone from 1<->1 with PostgreSQL * internal storage, hence usually this will not original text data. */ if (!dml_context && ( pg_atttyp == FLOAT8OID || pg_atttyp == FLOAT4OID || pg_atttyp == NUMERICOID) ) { elog(DEBUG2, "floatN unification for \"%s\"", colname); appendStringInfoString(buf, "sqlite_fdw_float("); if (qualify_col) ADD_REL_QUALIFIER(buf, varno); appendStringInfoString(buf, sqlite_quote_identifier(colname, '`')); appendStringInfoString(buf, ")"); } else if (!dml_context && pg_atttyp == BOOLOID) { elog(DEBUG2, "boolean unification for \"%s\"", colname); appendStringInfoString(buf, "sqlite_fdw_bool("); if (qualify_col) ADD_REL_QUALIFIER(buf, varno); appendStringInfoString(buf, sqlite_quote_identifier(colname, '`')); appendStringInfoString(buf, ")"); } else if (!dml_context && pg_atttyp == UUIDOID) { elog(DEBUG2, "UUID unification for \"%s\"", colname); appendStringInfoString(buf, "sqlite_fdw_uuid_blob("); if (qualify_col) ADD_REL_QUALIFIER(buf, varno); appendStringInfoString(buf, sqlite_quote_identifier(colname, '`')); appendStringInfoString(buf, ")"); } else { elog(DEBUG4, "column name without data unification = \"%s\"", colname); if (qualify_col) ADD_REL_QUALIFIER(buf, varno); appendStringInfoString(buf, sqlite_quote_identifier(colname, '`')); } } } /* * Get column option with optionname for a variable attribute in deparsing context */ static char * sqlite_deparse_column_option(int varno, int varattno, PlannerInfo *root, char *optionname) { RangeTblEntry *rte; char *coloptionvalue = NULL; List *options; ListCell *lc; /* varno must not be any of OUTER_VAR, INNER_VAR and INDEX_VAR. */ Assert(!IS_SPECIAL_VARNO(varno)); /* Get RangeTblEntry from array in PlannerInfo. */ rte = planner_rt_fetch(varno, root); /* * If it's a column of a foreign table, and it has the optionname value named FDW * option, use that value. */ options = GetForeignColumnOptions(rte->relid, varattno); foreach(lc, options) { DefElem *def = (DefElem *) lfirst(lc); if (strcmp(def->defname, optionname) == 0) { coloptionvalue = defGetString(def); break; } } return coloptionvalue; } /* * Convert a text value from PostgreSQL database with an encoding to SQLite value which is always UTF8 */ static const char * pg_text_value_to_sqlite_text(const char * pg_text_value) { int pg_database_encoding = GetDatabaseEncoding(); /* very fast call, see PostgreSQL mbutils.c */ return (pg_database_encoding == PG_UTF8) ? pg_text_value : (char *) pg_do_encoding_conversion((unsigned char *) pg_text_value, strlen(pg_text_value), pg_database_encoding, PG_UTF8); } /* * Append a SQL string literal representing "val" to buf. */ void sqlite_deparse_string_literal(StringInfo buf, const char *val) { const char *sqlite_text_val; const char *valptr; sqlite_text_val = pg_text_value_to_sqlite_text(val); appendStringInfoChar(buf, '\''); for (valptr = sqlite_text_val; *valptr; valptr++) { char ch = *valptr; if (SQL_STR_DOUBLE(ch, true)) appendStringInfoChar(buf, ch); appendStringInfoChar(buf, ch); } appendStringInfoChar(buf, '\''); } /* * Deparse given expression into context->buf. * * This function must support all the same node types that sqlite_foreign_expr_walker * accepts. * * Note: unlike ruleutils.c, we just use a simple hard-wired parenthesization * scheme: anything more complex than a Var, Const, function call or cast * should be self-parenthesized. */ static void sqlite_deparse_expr(Expr *node, deparse_expr_cxt *context) { if (node == NULL) return; switch (nodeTag(node)) { case T_Var: sqlite_deparse_var((Var *) node, context); break; case T_Const: sqlite_deparse_const((Const *) node, context, 0); break; case T_Param: sqlite_deparse_param((Param *) node, context); break; case T_FuncExpr: sqlite_deparse_func_expr((FuncExpr *) node, context); break; case T_OpExpr: sqlite_deparse_op_expr((OpExpr *) node, context); break; case T_ScalarArrayOpExpr: sqlite_deparse_scalar_array_op_expr((ScalarArrayOpExpr *) node, context); break; case T_RelabelType: sqlite_deparse_relabel_type((RelabelType *) node, context); break; case T_BoolExpr: sqlite_deparse_bool_expr((BoolExpr *) node, context); break; case T_NullTest: sqlite_deparse_null_test((NullTest *) node, context); break; case T_ArrayExpr: sqlite_deparse_array_expr((ArrayExpr *) node, context); break; case T_CaseExpr: sqlite_deparse_case_expr((CaseExpr *) node, context); break; case T_CoalesceExpr: sqlite_deparse_coalesce_expr((CoalesceExpr *) node, context); break; case T_NullIfExpr: sqlite_deparse_null_if_expr((NullIfExpr *) node, context); break; case T_Aggref: sqlite_deparse_aggref((Aggref *) node, context); break; default: elog(ERROR, "unsupported expression type for deparse: %d", (int) nodeTag(node)); break; } } /* * deparse remote UPDATE statement * * The statement text is appended to buf, and we also create an integer List * of the columns being retrieved by RETURNING (if any), which is returned * to *retrieved_attrs. */ void sqlite_deparse_update(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, List *targetAttrs, List *attnums) { #if PG_VERSION_NUM >= 140000 TupleDesc tupdesc = RelationGetDescr(rel); #endif AttrNumber pindex; bool first; ListCell *lc; int i; appendStringInfoString(buf, "UPDATE "); sqlite_deparse_relation(buf, rel); appendStringInfoString(buf, " SET "); pindex = 2; first = true; foreach(lc, targetAttrs) { int attnum = lfirst_int(lc); #if PG_VERSION_NUM >= 140000 Form_pg_attribute attr = TupleDescAttr(tupdesc, attnum - 1); if (!attr->attgenerated) { #endif if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_column_ref(buf, rtindex, attnum, root, false, true); appendStringInfo(buf, " = ?"); pindex++; #if PG_VERSION_NUM >= 140000 } #endif } i = 0; foreach(lc, attnums) { int attnum = lfirst_int(lc); appendStringInfo(buf, i == 0 ? " WHERE " : " AND "); sqlite_deparse_column_ref(buf, rtindex, attnum, root, false, true); appendStringInfo(buf, "=?"); i++; } } /* * Preferred SQLite affinity from "column_type" foreign column option * SQLITE_NULL if no value or no normal value */ int preferred_sqlite_affinity (Oid relid, int varattno) { char *coltype = NULL; List *options; ListCell *lc; elog(DEBUG4, "sqlite_fdw : %s ", __func__); if (varattno == 0) return SQLITE_NULL; options = GetForeignColumnOptions(relid, varattno); foreach(lc, options) { DefElem *def = (DefElem *) lfirst(lc); if (strcmp(def->defname, "column_type") == 0) { coltype = defGetString(def); elog(DEBUG4, "column type = %s", coltype); break; } } return sqlite_affinity_code(coltype); } /* * deparse remote UPDATE statement * * 'buf' is the output buffer to append the statement to 'rtindex' is the RT * index of the associated target relation 'rel' is the relation descriptor * for the target relation 'foreignrel' is the RelOptInfo for the target * relation or the join relation containing all base relations in the query * 'targetlist' is the tlist of the underlying foreign-scan plan node * 'targetAttrs' is the target columns of the UPDATE 'remote_conds' is the * qual clauses that must be evaluated remotely '*params_list' is an output * list of exprs that will become remote Params '*retrieved_attrs' is an * output list of integers of columns being retrieved by RETURNING (if any) */ void sqlite_deparse_direct_update_sql(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, RelOptInfo *foreignrel, List *targetlist, List *targetAttrs, List *remote_conds, List **params_list, List **retrieved_attrs) { deparse_expr_cxt context; int nestlevel; bool first; ListCell *lc; ListCell *lc2; #if PG_VERSION_NUM >= 170000 List *additional_conds = NIL; #endif elog(DEBUG3, "sqlite_fdw : %s\n", __func__); /* Set up context struct for recursion */ context.root = root; context.foreignrel = foreignrel; context.scanrel = foreignrel; context.buf = buf; context.params_list = params_list; appendStringInfoString(buf, "UPDATE "); sqlite_deparse_relation(buf, rel); if (IS_JOIN_REL(foreignrel)) appendStringInfo(buf, " %s%d", REL_ALIAS_PREFIX, rtindex); appendStringInfoString(buf, " SET "); /* Make sure any constants in the exprs are printed portably */ nestlevel = sqlite_set_transmission_modes(); first = true; forboth(lc, targetlist, lc2, targetAttrs) { int attnum = lfirst_int(lc2); int preferred_affinity = SQLITE_NULL; TargetEntry *tle; RangeTblEntry *rte; bool special_affinity = false; Oid pg_attyp; #if (PG_VERSION_NUM >= 140000) tle = lfirst_node(TargetEntry, lc); /* update's new-value expressions shouldn't be resjunk */ Assert(!tle->resjunk); #else (void) lc; tle = get_tle_by_resno(targetlist, attnum); #endif if (!tle) elog(ERROR, "attribute number %d not found in UPDATE targetlist", attnum); if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_column_ref(buf, rtindex, attnum, root, false, true); /* Get RangeTblEntry from array in PlannerInfo. */ rte = planner_rt_fetch(rtindex, root); pg_attyp = get_atttype(rte->relid, attnum); preferred_affinity = preferred_sqlite_affinity(rte->relid, attnum); appendStringInfoString(buf, " = "); if (pg_attyp == UUIDOID && preferred_affinity == SQLITE3_TEXT) { appendStringInfo(buf, "sqlite_fdw_uuid_str("); special_affinity = true; } sqlite_deparse_expr((Expr *) tle->expr, &context); if (special_affinity) { elog(DEBUG4, "sqlite_fdw : aff %d\n", preferred_affinity); appendStringInfoString(buf, ")"); } } sqlite_reset_transmission_modes(nestlevel); if (IS_JOIN_REL(foreignrel)) { List *ignore_conds = NIL; appendStringInfo(buf, " FROM "); sqlite_deparse_from_expr_for_rel(buf, root, foreignrel, true, rtindex, &ignore_conds, #if PG_VERSION_NUM >= 170000 &additional_conds, #endif params_list); remote_conds = list_concat(remote_conds, ignore_conds); } #if PG_VERSION_NUM >= 170000 sqlite_append_where_clause(remote_conds, additional_conds, &context); if (additional_conds != NIL) list_free_deep(additional_conds); #else if (remote_conds) { appendStringInfoString(buf, " WHERE "); sqlite_append_conditions(remote_conds, &context); } #endif } /* * deparse remote DELETE statement * * The statement text is appended to buf, and we also create an integer List * of the columns being retrieved by RETURNING (if any), which is returned * to *retrieved_attrs. */ void sqlite_deparse_delete(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, List *attname) { int i = 0; ListCell *lc; appendStringInfoString(buf, "DELETE FROM "); sqlite_deparse_relation(buf, rel); foreach(lc, attname) { int attnum = lfirst_int(lc); appendStringInfo(buf, i == 0 ? " WHERE " : " AND "); sqlite_deparse_column_ref(buf, rtindex, attnum, root, false, true); appendStringInfo(buf, "=?"); i++; } } /* * deparse remote DELETE statement * * 'buf' is the output buffer to append the statement to 'rtindex' is the RT * index of the associated target relation 'rel' is the relation descriptor * for the target relation 'foreignrel' is the RelOptInfo for the target * relation or the join relation containing all base relations in the query * 'remote_conds' is the qual clauses that must be evaluated remotely * '*params_list' is an output list of exprs that will become remote Params * '*retrieved_attrs' is an output list of integers of columns being * retrieved by RETURNING (if any) */ void sqlite_deparse_direct_delete_sql(StringInfo buf, PlannerInfo *root, Index rtindex, Relation rel, RelOptInfo *foreignrel, List *remote_conds, List **params_list, List **retrieved_attrs) { deparse_expr_cxt context; #if PG_VERSION_NUM >= 170000 List *additional_conds = NIL; #endif elog(DEBUG1, "sqlite_fdw : %s", __func__); /* Set up context struct for recursion */ context.root = root; context.foreignrel = foreignrel; context.scanrel = foreignrel; context.buf = buf; context.params_list = params_list; appendStringInfoString(buf, "DELETE FROM "); sqlite_deparse_relation(buf, rel); if (IS_JOIN_REL(foreignrel)) appendStringInfo(buf, " %s%d", REL_ALIAS_PREFIX, rtindex); if (IS_JOIN_REL(foreignrel)) { List *ignore_conds = NIL; appendStringInfo(buf, " USING "); sqlite_deparse_from_expr_for_rel(buf, root, foreignrel, true, rtindex, &ignore_conds, #if PG_VERSION_NUM >= 170000 &additional_conds, #endif params_list); remote_conds = list_concat(remote_conds, ignore_conds); } #if PG_VERSION_NUM >= 170000 sqlite_append_where_clause(remote_conds, additional_conds, &context); if (additional_conds != NIL) list_free_deep(additional_conds); #else if (remote_conds) { appendStringInfoString(buf, " WHERE "); sqlite_append_conditions(remote_conds, &context); } #endif } /* * Deparse given Var node into context->buf. * * If the Var belongs to the foreign relation, just print its remote name. * Otherwise, it's effectively a Param (and will in fact be a Param at * run time). Handle it the same way we handle plain Params --- see * deparseParam for comments. */ static void sqlite_deparse_var(Var *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; Relids relids = context->scanrel->relids; int relno; int colno; /* Qualify columns when multiple relations are involved. */ bool qualify_col = (bms_membership(relids) == BMS_MULTIPLE); /* * If the Var belongs to the foreign relation that is deparsed as a * subquery, use the relation and column alias to the Var provided by the * subquery, instead of the remote name. */ if (sqlite_is_subquery_var(node, context->scanrel, &relno, &colno)) { appendStringInfo(context->buf, "%s%d.%s%d", SUBQUERY_REL_ALIAS_PREFIX, relno, SUBQUERY_COL_ALIAS_PREFIX, colno); return; } if (bms_is_member(node->varno, relids) && node->varlevelsup == 0) { /* Var belongs to foreign table */ sqlite_deparse_column_ref(buf, node->varno, node->varattno, context->root, qualify_col, false); } else { /* Treat like a Param */ if (context->params_list) { int pindex = 0; ListCell *lc; /* find its index in params_list */ foreach(lc, *context->params_list) { pindex++; if (equal(node, (Node *) lfirst(lc))) break; } if (lc == NULL) { /* not in list, so add it */ pindex++; *context->params_list = lappend(*context->params_list, node); } sqlite_print_remote_param(pindex, node->vartype, node->vartypmod, context); } else { sqlite_print_remote_placeholder(node->vartype, node->vartypmod, context); } } } /* * With this function, we try to obtain complementary node for operation to be able * to obtain column name and column type to whom const value its compared to. * If we obtain type, we know if we need to use datetime convert expressions * or not depending if sqlite column is TEXT or INT */ static Var * get_complementary_var_node(Expr *node) { if (node == NULL) return NULL; switch (nodeTag(node)) { /* Only supported case by now is T_Var complementary node */ case T_Var: return (Var *) node; break; default: return NULL; } } /* * Deparse given constant value into context->buf. * * This function has to be kept in sync with ruleutils.c's get_const_expr. * As for that function, showtype can be -1 to never show "::typename" decoration, * or +1 to always show it, or 0 to show it only if the constant wouldn't be assumed * to be the right type by default. */ static void sqlite_deparse_const(Const *node, deparse_expr_cxt *context, int showtype) { StringInfo buf = context->buf; Oid typoutput; bool typIsVarlena; char *extval; char *sqlitecolumntype; bool convert_timestamp_tounixepoch; Var *varnode; if (node->constisnull) { appendStringInfoString(buf, "NULL"); return; } getTypeOutputInfo(node->consttype, &typoutput, &typIsVarlena); switch (node->consttype) { case INT2OID: case INT4OID: case INT8OID: case OIDOID: { extval = OidOutputFunctionCall(typoutput, node->constvalue); if (strspn(extval, "0123456789+-eE.") == strlen(extval)) { if (extval[0] == '+' || extval[0] == '-') appendStringInfo(buf, "(%s)", extval); else appendStringInfoString(buf, extval); } else ereport(ERROR, (errcode(ERRCODE_FDW_INVALID_DATA_TYPE), errmsg("Invalid input syntax. Invalid characters in number"), errhint("Value: %s", extval))); } break; case FLOAT4OID: case FLOAT8OID: case NUMERICOID: { extval = OidOutputFunctionCall(typoutput, node->constvalue); /* * No need to quote unless it's a special value such as 'NaN' or 'Infinity'. * See comments in get_const_expr(). */ if (strspn(extval, "0123456789+-eE.") == strlen(extval)) { if (extval[0] == '+' || extval[0] == '-') appendStringInfo(buf, "(%s)", extval); else appendStringInfoString(buf, extval); } else if (strcasecmp(extval, "Inf") == 0 || strcasecmp(extval, "Infinity") == 0 || strcasecmp(extval + 1, "Inf") == 0 || strcasecmp(extval + 1, "Infinity") == 0) { bool is_negative_or_positive = false; if (extval[0] == '-' || extval[0] == '+') is_negative_or_positive = true; if (is_negative_or_positive) appendStringInfo(buf, "(%c", extval[0]); appendStringInfo(buf, "9e999"); if (is_negative_or_positive) appendStringInfo(buf, ")"); } else { /* NaN and other */ appendStringInfo(buf, "\'%s\'", extval); } } break; case BITOID: case VARBITOID: { extval = OidOutputFunctionCall(typoutput, node->constvalue); if (strlen(extval) > SQLITE_FDW_BIT_DATATYPE_BUF_SIZE - 1 ) { ereport(ERROR, (errcode(ERRCODE_FDW_INVALID_DATA_TYPE), errmsg("SQLite FDW dosens't support very long bit/varbit data"), errhint("bit length %ld, maximum %ld", strlen(extval), SQLITE_FDW_BIT_DATATYPE_BUF_SIZE - 1))); } appendStringInfo(buf, "%lld", binstr2int64(extval)); } break; case BOOLOID: { extval = OidOutputFunctionCall(typoutput, node->constvalue); if (strcmp(extval, "t") == 0) appendStringInfoString(buf, "1"); else appendStringInfoString(buf, "0"); } break; case BYTEAOID: /* * the string for BYTEA always seems to be in the format "\\x##" * where # is a hex digit, Even if the value passed in is * 'hi'::bytea we will receive "\x6869". Making this assumption * allows us to quickly convert postgres escaped strings to sqlite * ones for comparison */ extval = OidOutputFunctionCall(typoutput, node->constvalue); appendStringInfo(buf, "X\'%s\'", extval + 2); break; case TIMESTAMPOID: { convert_timestamp_tounixepoch = false; extval = OidOutputFunctionCall(typoutput, node->constvalue); if (context->complementarynode != NULL) { varnode = get_complementary_var_node(context->complementarynode); if (varnode != NULL) { sqlitecolumntype = sqlite_deparse_column_option(varnode->varno, varnode->varattno, context->root, "column_type"); if (sqlitecolumntype != NULL && strcasecmp(sqlitecolumntype, "INT") == 0) convert_timestamp_tounixepoch = true; } } if (convert_timestamp_tounixepoch) appendStringInfo(buf, "strftime('%%s', '%s')", extval); else sqlite_deparse_string_literal(buf, extval); } break; case UUIDOID: /* always deparse to BLOB, in case of UPDATE with text affinity * transformation function will be added */ { int i = 0; extval = OidOutputFunctionCall(typoutput, node->constvalue); appendStringInfo(buf, "X\'"); for (i = 0; i < strlen(extval); i++) { char c = extval[i]; if ( c != '-' ) appendStringInfoChar(buf, c); } appendStringInfo(buf, "\'"); } break; default: extval = OidOutputFunctionCall(typoutput, node->constvalue); sqlite_deparse_string_literal(buf, extval); break; } } /* * Deparse given Param node. * * If we're generating the query "for real", add the Param to * context->params_list if it's not already present, and then use its index * in that list as the remote parameter number. During EXPLAIN, there's * no need to identify a parameter number. */ static void sqlite_deparse_param(Param *node, deparse_expr_cxt *context) { if (context->params_list) { int pindex = 0; ListCell *lc; /* find its index in params_list */ foreach(lc, *context->params_list) { pindex++; if (equal(node, (Node *) lfirst(lc))) break; } if (lc == NULL) { /* not in list, so add it */ pindex++; *context->params_list = lappend(*context->params_list, node); } sqlite_print_remote_param(pindex, node->paramtype, node->paramtypmod, context); } else { sqlite_print_remote_placeholder(node->paramtype, node->paramtypmod, context); } } /* * This possible that name of function in PostgreSQL and * sqlite differ, so return the sqlite equelent function name */ static char * sqlite_replace_function(char *in) { if (strcmp(in, "btrim") == 0) { return "trim"; } return in; } /* * Deparse a function call. */ static void sqlite_deparse_func_expr(FuncExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; HeapTuple proctup; Form_pg_proc procform; const char *proname; bool first; ListCell *arg; /* * If the function call came from an implicit coercion, then just show the * first argument. */ if (node->funcformat == COERCE_IMPLICIT_CAST) { sqlite_deparse_expr((Expr *) linitial(node->args), context); return; } /* * Normal function: display as proname(args). */ proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(node->funcid)); if (!HeapTupleIsValid(proctup)) elog(ERROR, "cache lookup failed for function %u", node->funcid); procform = (Form_pg_proc) GETSTRUCT(proctup); /* Translate PostgreSQL function into sqlite function */ proname = sqlite_replace_function(NameStr(procform->proname)); /* Deparse the function name ... */ appendStringInfo(buf, "%s(", proname); /* ... and all the arguments */ first = true; foreach(arg, node->args) { if (!first) appendStringInfoString(buf, ", "); sqlite_deparse_expr((Expr *) lfirst(arg), context); first = false; } appendStringInfoChar(buf, ')'); ReleaseSysCache(proctup); } /* * Deparse given operator expression. To avoid problems around * priority of operations, we always parenthesize the arguments. */ static void sqlite_deparse_op_expr(OpExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; HeapTuple tuple; Form_pg_operator form; char oprkind; /* Retrieve information about the operator from system catalog. */ tuple = SearchSysCache1(OPEROID, ObjectIdGetDatum(node->opno)); if (!HeapTupleIsValid(tuple)) elog(ERROR, "cache lookup failed for operator %u", node->opno); form = (Form_pg_operator) GETSTRUCT(tuple); oprkind = form->oprkind; /* Sanity check. */ Assert((oprkind == 'l' && list_length(node->args) == 1) || (oprkind == 'b' && list_length(node->args) == 2)); /* Always parenthesize the expression. */ appendStringInfoChar(buf, '('); /* Deparse left operand. */ if (oprkind == 'b') { context->complementarynode = llast(node->args); sqlite_deparse_expr(linitial(node->args), context); appendStringInfoChar(buf, ' '); } /* Deparse operator name. */ sqlite_deparse_operator_name(buf, form); /* Deparse right operand. */ appendStringInfoChar(buf, ' '); if (oprkind == 'b') context->complementarynode = linitial(node->args); sqlite_deparse_expr(llast(node->args), context); appendStringInfoChar(buf, ')'); ReleaseSysCache(tuple); } /* * Print the name of an operator. */ static void sqlite_deparse_operator_name(StringInfo buf, Form_pg_operator opform) { char *cur_opname = NULL; /* opname is not a SQL identifier, so we should not quote it. */ cur_opname = NameStr(opform->oprname); /* Print schema name only if it's not pg_catalog */ if (opform->oprnamespace != PG_CATALOG_NAMESPACE) { const char *opnspname; opnspname = get_namespace_name(opform->oprnamespace); /* Print fully qualified operator name. */ appendStringInfo(buf, "OPERATOR(%s.%s)", sqlite_quote_identifier(opnspname, QUOTE), cur_opname); } else { if (strcmp(cur_opname, "~~") == 0) { appendStringInfoString(buf, "LIKE"); } else if (strcmp(cur_opname, "!~~") == 0) { appendStringInfoString(buf, "NOT LIKE"); } else if (strcmp(cur_opname, "~~*") == 0 || strcmp(cur_opname, "!~~*") == 0 || /* ~ operator is both one of text RegEx operators and bit string NOT */ (strcmp(cur_opname, "~") == 0 && opform->oprresult != VARBITOID && opform->oprresult != BITOID) || strcmp(cur_opname, "!~") == 0 || strcmp(cur_opname, "~*") == 0 || strcmp(cur_opname, "!~*") == 0) { ereport(ERROR, (errcode(ERRCODE_FDW_ERROR), errmsg("SQL operator is not supported"), errhint("operator name: %s", cur_opname))); } else { appendStringInfoString(buf, cur_opname); } } } /* * Deparse given ScalarArrayOpExpr expression. To avoid problems * around priority of operations, we always parenthesize the arguments. */ static void sqlite_deparse_scalar_array_op_expr(ScalarArrayOpExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; HeapTuple tuple; Expr *arg1; Expr *arg2; Form_pg_operator form; char *opname = NULL; Oid typoutput; bool typIsVarlena; char *extval; bool useIn = false; /* Retrieve information about the operator from system catalog. */ tuple = SearchSysCache1(OPEROID, ObjectIdGetDatum(node->opno)); if (!HeapTupleIsValid(tuple)) elog(ERROR, "cache lookup failed for operator %u", node->opno); form = (Form_pg_operator) GETSTRUCT(tuple); /* Sanity check. */ Assert(list_length(node->args) == 2); opname = pstrdup(NameStr(form->oprname)); ReleaseSysCache(tuple); /* Using IN clause for '= ANY' and NOT IN clause for '<> ALL' */ if ((strcmp(opname, "=") == 0 && node->useOr == true) || (strcmp(opname, "<>") == 0 && node->useOr == false)) useIn = true; /* Get left and right argument for deparsing */ arg1 = linitial(node->args); arg2 = lsecond(node->args); if (useIn) { /* Deparse left operand. */ sqlite_deparse_expr(arg1, context); appendStringInfoChar(buf, ' '); /* Add IN clause */ if (strcmp(opname, "<>") == 0) { appendStringInfoString(buf, "NOT IN ("); } else if (strcmp(opname, "=") == 0) { appendStringInfoString(buf, "IN ("); } } switch (nodeTag((Node *) arg2)) { case T_Const: { Const *c = (Const *) arg2; bool isstr = false; const char *valptr; int i = -1; bool deparseLeft = true; if (!c->constisnull) { getTypeOutputInfo(c->consttype, &typoutput, &typIsVarlena); extval = OidOutputFunctionCall(typoutput, c->constvalue); /* Determine array type */ switch (c->consttype) { case INT4ARRAYOID: case INT8ARRAYOID: case INT2ARRAYOID: case BOOLARRAYOID: case OIDARRAYOID: case NUMERICARRAYOID: case FLOAT4ARRAYOID: case FLOAT8ARRAYOID: isstr = false; break; default: isstr = true; break; } for (valptr = extval; *valptr; valptr++) { char ch = *valptr; i++; if (useIn) { if (i == 0 && isstr) appendStringInfoChar(buf, '\''); } else if (deparseLeft) { /* Deparse left operand. */ sqlite_deparse_expr(arg1, context); /* Append operator */ appendStringInfo(buf, " %s ", opname); if (isstr) appendStringInfoChar(buf, '\''); deparseLeft = false; } /* * Remove '{', '}' and \" character from the string. * Because this syntax is not recognize by the remote * Sqlite server. */ if ((ch == '{' && i == 0) || (ch == '}' && (i == (strlen(extval) - 1))) || ch == '\"') continue; if (ch == ',') { if (useIn) { if (isstr) appendStringInfoChar(buf, '\''); appendStringInfoChar(buf, ch); appendStringInfoChar(buf, ' '); if (isstr) appendStringInfoChar(buf, '\''); } else { if (isstr) appendStringInfoChar(buf, '\''); if (node->useOr) appendStringInfoString(buf, " OR "); else appendStringInfoString(buf, " AND "); deparseLeft = true; } continue; } if (SQL_STR_DOUBLE(ch, true)) appendStringInfoChar(buf, ch); appendStringInfoChar(buf, ch); } if (isstr) appendStringInfoChar(buf, '\''); } else { appendStringInfoString(buf, " NULL"); return; } } break; case T_ArrayExpr: { bool first = true; ListCell *lc; foreach(lc, ((ArrayExpr *) arg2)->elements) { if (!first) { if (useIn) { appendStringInfoString(buf, ", "); } else { if (node->useOr) appendStringInfoString(buf, " OR "); else appendStringInfoString(buf, " AND "); } } if (useIn) { sqlite_deparse_expr(lfirst(lc), context); } else { /* Deparse left argument */ appendStringInfoChar(buf, '('); sqlite_deparse_expr(arg1, context); appendStringInfo(buf, " %s ", opname); /* Deparse each element in right argument */ sqlite_deparse_expr(lfirst(lc), context); appendStringInfoChar(buf, ')'); } first = false; } break; } default: elog(ERROR, "unsupported expression type for deparse: %d", (int) nodeTag(node)); break; } /* Close IN clause */ if (useIn) appendStringInfoChar(buf, ')'); } /* * Deparse a RelabelType (binary-compatible cast) node. */ static void sqlite_deparse_relabel_type(RelabelType *node, deparse_expr_cxt *context) { sqlite_deparse_expr(node->arg, context); } /* * Deparse a BoolExpr node. * * Note: by the time we get here, AND and OR expressions have been flattened * into N-argument form, so we'd better be prepared to deal with that. */ static void sqlite_deparse_bool_expr(BoolExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; const char *op = NULL; /* keep compiler quiet */ bool first; ListCell *lc; switch (node->boolop) { case AND_EXPR: op = "AND"; break; case OR_EXPR: op = "OR"; break; case NOT_EXPR: appendStringInfoString(buf, "(NOT "); sqlite_deparse_expr(linitial(node->args), context); appendStringInfoChar(buf, ')'); return; } appendStringInfoChar(buf, '('); first = true; foreach(lc, node->args) { if (!first) appendStringInfo(buf, " %s ", op); sqlite_deparse_expr((Expr *) lfirst(lc), context); first = false; } appendStringInfoChar(buf, ')'); } /* * Deparse IS [NOT] NULL expression. */ static void sqlite_deparse_null_test(NullTest *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; appendStringInfoChar(buf, '('); sqlite_deparse_expr(node->arg, context); if (node->nulltesttype == IS_NULL) appendStringInfoString(buf, " IS NULL)"); else appendStringInfoString(buf, " IS NOT NULL)"); } /* * Deparse ARRAY[...] construct. */ static void sqlite_deparse_array_expr(ArrayExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; bool first = true; ListCell *lc; appendStringInfoString(buf, "ARRAY["); foreach(lc, node->elements) { if (!first) appendStringInfoString(buf, ", "); sqlite_deparse_expr(lfirst(lc), context); first = false; } appendStringInfoChar(buf, ']'); } /* * Deparse CASE expression */ static void sqlite_deparse_case_expr(CaseExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; ListCell *lc = NULL; appendStringInfoString(buf, "CASE "); /* If this is a CASE arg WHEN then emit the arg expression */ if (node->arg != NULL) sqlite_deparse_expr(node->arg, context); /* Add each condition/result of the CASE clause */ foreach(lc, node->args) { CaseWhen *whenclause = (CaseWhen *) lfirst(lc); /* WHEN */ appendStringInfoString(buf, " WHEN "); if (node->arg == NULL) /* CASE WHEN */ sqlite_deparse_expr(whenclause->expr, context); else /* CASE arg WHEN */ { /* Ignore the CaseTestExpr and equality operator. */ sqlite_deparse_expr(lsecond(castNode(OpExpr, whenclause->expr)->args), context); } /* THEN */ appendStringInfoString(buf, " THEN "); sqlite_deparse_expr(whenclause->result, context); } /* add ELSE if present */ if (node->defresult != NULL) { appendStringInfoString(buf, " ELSE "); sqlite_deparse_expr(node->defresult, context); } /* append END */ appendStringInfoString(buf, " END"); } /* * Deparse given NULLIF(val1, val2) expression. */ static void sqlite_deparse_null_if_expr(NullIfExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; appendStringInfoString(buf, "NULLIF("); sqlite_deparse_expr(lfirst(list_head(node->args)), context); appendStringInfoString(buf, ", "); sqlite_deparse_expr(lfirst(list_tail(node->args)), context); appendStringInfoChar(buf, ')'); } /* * Deparse given COALESCE(...) expression. */ static void sqlite_deparse_coalesce_expr(CoalesceExpr *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; ListCell *lc; bool first = true; appendStringInfoString(buf, "COALESCE("); foreach(lc, node->args) { if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_expr(lfirst(lc), context); } appendStringInfoChar(buf, ')'); } /* * Print the representation of a parameter to be sent to the remote side. * * Note: we always label the Param's type explicitly rather than relying on * transmitting a numeric type OID in PQsendQueryParams(). This allows us to * avoid assuming that types have the same OIDs on the remote side as they * do locally --- they need only have the same names. */ static void sqlite_print_remote_param(int paramindex, Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context) { StringInfo buf = context->buf; appendStringInfo(buf, "?"); } static void sqlite_print_remote_placeholder(Oid paramtype, int32 paramtypmod, deparse_expr_cxt *context) { StringInfo buf = context->buf; appendStringInfo(buf, "(SELECT null)"); } /* * Return true if given object is one of PostgreSQL's built-in objects. * * We use FirstBootstrapObjectId as the cutoff, so that we only consider * objects with hand-assigned OIDs to be "built in", not for instance any * function or type defined in the information_schema. * * Our constraints for dealing with types are tighter than they are for * functions or operators: we want to accept only types that are in pg_catalog, * else format_type might incorrectly fail to schema-qualify their names. * (This could be fixed with some changes to format_type, but for now there's * no need.) Thus we must exclude information_schema types. * * XXX there is a problem with this, which is that the set of built-in * objects expands over time. Something that is built-in to us might not * be known to the remote server, if it's of an older version. But keeping * track of that would be a huge exercise. */ bool sqlite_is_builtin(Oid oid) { #if PG_VERSION_NUM >= 120000 return (oid < FirstGenbkiObjectId); #else return (oid < FirstBootstrapObjectId); #endif } /* * Deparse an Aggref node. */ static void sqlite_deparse_aggref(Aggref *node, deparse_expr_cxt *context) { StringInfo buf = context->buf; bool use_variadic; /* Only basic, non-split aggregation accepted. */ Assert(node->aggsplit == AGGSPLIT_SIMPLE); /* Check if need to print VARIADIC (cf. ruleutils.c) */ use_variadic = node->aggvariadic; /* Find aggregate name from aggfnoid which is a pg_proc entry */ sqlite_append_function_name(node->aggfnoid, context); appendStringInfoChar(buf, '('); /* Add DISTINCT */ appendStringInfo(buf, "%s", (node->aggdistinct != NIL) ? "DISTINCT " : ""); if (AGGKIND_IS_ORDERED_SET(node->aggkind)) { /* Add WITHIN GROUP (ORDER BY ..) */ ListCell *arg; bool first = true; Assert(!node->aggvariadic); Assert(node->aggorder != NIL); foreach(arg, node->aggdirectargs) { if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_expr((Expr *) lfirst(arg), context); } appendStringInfoString(buf, ") WITHIN GROUP (ORDER BY "); sqlite_append_agg_order_by(node->aggorder, node->args, context); } else { /* aggstar can be set only in zero-argument aggregates */ if (node->aggstar) appendStringInfoChar(buf, '*'); else { ListCell *arg; bool first = true; /* Add all the arguments */ foreach(arg, node->args) { TargetEntry *tle = (TargetEntry *) lfirst(arg); Node *n = (Node *) tle->expr; if (tle->resjunk) continue; if (!first) appendStringInfoString(buf, ", "); first = false; /* Add VARIADIC */ #if PG_VERSION_NUM < 130000 if (use_variadic && lnext(arg) == NULL) #else if (use_variadic && lnext(node->args, arg) == NULL) #endif appendStringInfoString(buf, "VARIADIC "); sqlite_deparse_expr((Expr *) n, context); } } /* Add ORDER BY */ if (node->aggorder != NIL) { appendStringInfoString(buf, " ORDER BY "); sqlite_append_agg_order_by(node->aggorder, node->args, context); } } /* Add FILTER (WHERE ..) */ if (node->aggfilter != NULL) { appendStringInfoString(buf, ") FILTER (WHERE "); sqlite_deparse_expr((Expr *) node->aggfilter, context); } appendStringInfoChar(buf, ')'); } /* * Deparse GROUP BY clause. */ static void sqlite_append_group_by_clause(List *tlist, deparse_expr_cxt *context) { StringInfo buf = context->buf; Query *query = context->root->parse; ListCell *lc; bool first = true; /* Nothing to be done, if there's no GROUP BY clause in the query. */ if (!query->groupClause) return; appendStringInfo(buf, " GROUP BY "); /* * Queries with grouping sets are not pushed down, so we don't expect * grouping sets here. */ Assert(!query->groupingSets); /* * We intentionally print query->groupClause not processed_groupClause, * leaving it to the remote planner to get rid of any redundant GROUP BY * items again. This is necessary in case processed_groupClause reduced * to empty, and in any case the redundancy situation on the remote might * be different than what we think here. */ foreach(lc, query->groupClause) { SortGroupClause *grp = (SortGroupClause *) lfirst(lc); if (!first) appendStringInfoString(buf, ", "); first = false; sqlite_deparse_sort_group_clause(grp->tleSortGroupRef, tlist, true, context); } } /* * Append ORDER BY within aggregate function. */ static void sqlite_append_agg_order_by(List *orderList, List *targetList, deparse_expr_cxt *context) { StringInfo buf = context->buf; ListCell *lc; bool first = true; foreach(lc, orderList) { SortGroupClause *srt = (SortGroupClause *) lfirst(lc); Node *sortexpr; if (!first) appendStringInfoString(buf, ", "); first = false; /* Deparse the sort expression proper. */ sortexpr = sqlite_deparse_sort_group_clause(srt->tleSortGroupRef, targetList, false, context); /* Add decoration as needed. */ sqlite_append_order_by_suffix(srt->sortop, exprType(sortexpr), srt->nulls_first, context); } } /* * Deparse ORDER BY clause defined by the given pathkeys. * * The clause should use Vars from context->scanrel if !has_final_sort, * or from context->foreignrel's targetlist if has_final_sort. * * We find a suitable pathkey expression (some earlier step * should have verified that there is one) and deparse it. */ static void sqlite_append_order_by_clause(List *pathkeys, bool has_final_sort, deparse_expr_cxt *context) { ListCell *lcell; int nestlevel; StringInfo buf = context->buf; bool gotone = false; /* Make sure any constants in the exprs are printed portably */ nestlevel = sqlite_set_transmission_modes(); foreach(lcell, pathkeys) { PathKey *pathkey = lfirst(lcell); Expr *em_expr; int sqliteVersion = sqlite3_libversion_number(); EquivalenceMember *em; Oid oprid; if (has_final_sort) { /* * By construction, context->foreignrel is the input relation to * the final sort. */ em = sqlite_find_em_for_rel_target(context->root, pathkey->pk_eclass, context->foreignrel); } else em = sqlite_find_em_for_rel(context->root, pathkey->pk_eclass, context->scanrel); /* * We don't expect any error here; it would mean that shippability * wasn't verified earlier. For the same reason, we don't recheck * shippability of the sort operator. */ if (em == NULL) elog(ERROR, "could not find pathkey item to sort"); em_expr = em->em_expr; #if PG_VERSION_NUM >= 170000 /* * If the member is a Const expression then we needn't add it to the * ORDER BY clause. This can happen in UNION ALL queries where the * union child targetlist has a Const. Adding these would be * wasteful, but also, for INT columns, an integer literal would be * seen as an ordinal column position rather than a value to sort by. * deparseConst() does have code to handle this, but it seems less * effort on all accounts just to skip these for ORDER BY clauses. */ if (IsA(em_expr, Const)) continue; #endif if (!gotone) { appendStringInfoString(buf, " ORDER BY "); gotone = true; } else appendStringInfoString(buf, ", "); /* * Lookup the operator corresponding to the strategy in the opclass. * The datatype used by the opfamily is not necessarily the same as * the expression type (for array types for example). */ oprid = get_opfamily_member(pathkey->pk_opfamily, em->em_datatype, em->em_datatype, pathkey->pk_strategy); if (!OidIsValid(oprid)) elog(ERROR, "missing operator %d(%u,%u) in opfamily %u", pathkey->pk_strategy, em->em_datatype, em->em_datatype, pathkey->pk_opfamily); sqlite_deparse_expr(em_expr, context); /* * Here we need to use the expression's actual type to discover * whether the desired operator will be the default or not. */ sqlite_append_order_by_suffix(oprid, exprType((Node *) em_expr), pathkey->pk_nulls_first, context); /* * In SQLITE3 Release v3.30.0 (2019-10-04) NULLS FIRST/LAST is * supported, but not in prior versions More info: * https://www.sqlite.org/changes.html * https://www.sqlite.org/lang_select.html#orderby */ if (sqliteVersion < 3030000) { /* * If we need a different behaviour than SQLite default...we show * warning message because NULLS FIRST/LAST is not implemented in * this SQLite version. */ if (!pathkey->pk_nulls_first && pathkey->pk_strategy == BTLessStrategyNumber) elog(WARNING, "Current Sqlite Version (%d) does not support NULLS LAST for ORDER BY ASC, degraded emitted query to ORDER BY ASC NULLS FIRST (default sqlite behaviour).", sqliteVersion); else if (pathkey->pk_nulls_first && pathkey->pk_strategy != BTLessStrategyNumber) elog(WARNING, "Current Sqlite Version (%d) does not support NULLS FIRST for ORDER BY DESC, degraded emitted query to ORDER BY DESC NULLS LAST (default sqlite behaviour).", sqliteVersion); } } sqlite_reset_transmission_modes(nestlevel); } /* * Append the ASC, DESC, USING and NULLS FIRST / NULLS LAST parts * of an ORDER BY clause. */ static void sqlite_append_order_by_suffix(Oid sortop, Oid sortcoltype, bool nulls_first, deparse_expr_cxt *context) { StringInfo buf = context->buf; TypeCacheEntry *typentry; /* See whether operator is default < or > for sort expr's datatype. */ typentry = lookup_type_cache(sortcoltype, TYPECACHE_LT_OPR | TYPECACHE_GT_OPR); /* SQLite does not support USING */ Assert (sortop == typentry->lt_opr || sortop == typentry->gt_opr); if (sortop == typentry->lt_opr) appendStringInfoString(buf, " ASC"); else if (sortop == typentry->gt_opr) appendStringInfoString(buf, " DESC"); if (nulls_first) appendStringInfoString(buf, " NULLS FIRST"); else appendStringInfoString(buf, " NULLS LAST"); } /* * Deparse LIMIT/OFFSET clause. */ static void sqlite_append_limit_clause(deparse_expr_cxt *context) { PlannerInfo *root = context->root; StringInfo buf = context->buf; int nestlevel; /* Make sure any constants in the exprs are printed portably */ nestlevel = sqlite_set_transmission_modes(); if (root->parse->limitCount) { appendStringInfoString(buf, " LIMIT "); sqlite_deparse_expr((Expr *) root->parse->limitCount, context); } else { /* * We add this LIMIT -1 because OFFSET by itself its not * implemented/allowed in SQLite. You need to provide LIMIT *always* * when using OFFSET */ appendStringInfoString(buf, " LIMIT -1"); } if (root->parse->limitOffset) { appendStringInfoString(buf, " OFFSET "); sqlite_deparse_expr((Expr *) root->parse->limitOffset, context); } sqlite_reset_transmission_modes(nestlevel); } /* * sqlite_append_function_name * Deparses function name from given function oid. */ static void sqlite_append_function_name(Oid funcid, deparse_expr_cxt *context) { StringInfo buf = context->buf; HeapTuple proctup; Form_pg_proc procform; const char *proname; proctup = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid)); if (!HeapTupleIsValid(proctup)) elog(ERROR, "cache lookup failed for function %u", funcid); procform = (Form_pg_proc) GETSTRUCT(proctup); /* Print schema name only if it's not pg_catalog */ if (procform->pronamespace != PG_CATALOG_NAMESPACE) { const char *schemaname; schemaname = get_namespace_name(procform->pronamespace); appendStringInfo(buf, "%s.", quote_identifier(schemaname)); } /* Always print the function name */ proname = NameStr(procform->proname); appendStringInfo(buf, "%s", quote_identifier(proname)); ReleaseSysCache(proctup); } /* * Appends a sort or group clause. * * Like get_rule_sortgroupclause(), returns the expression tree, so caller * need not find it again. */ static Node * sqlite_deparse_sort_group_clause(Index ref, List *tlist, bool force_colno, deparse_expr_cxt *context) { StringInfo buf = context->buf; TargetEntry *tle; Expr *expr; tle = get_sortgroupref_tle(ref, tlist); expr = tle->expr; if (force_colno) { /* Use column-number form when requested by caller. */ Assert(!tle->resjunk); appendStringInfo(buf, "%d", tle->resno); } else if (expr && IsA(expr, Const)) { /* * Force a typecast here so that we don't emit something like "GROUP * BY 2", which will be misconstrued as a column position rather than * a constant. */ sqlite_deparse_const((Const *) expr, context, 1); } else if (!expr || IsA(expr, Var)) sqlite_deparse_expr(expr, context); else { /* Always parenthesize the expression. */ appendStringInfoString(buf, "("); sqlite_deparse_expr(expr, context); appendStringInfoString(buf, ")"); } return (Node *) expr; } /* * Returns true if given Var is deparsed as a subquery output column, in * which case, *relno and *colno are set to the IDs for the relation and * column alias to the Var provided by the subquery. */ static bool sqlite_is_subquery_var(Var *node, RelOptInfo *foreignrel, int *relno, int *colno) { SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) foreignrel->fdw_private; RelOptInfo *outerrel = fpinfo->outerrel; RelOptInfo *innerrel = fpinfo->innerrel; /* Should only be called in these cases. */ Assert(IS_SIMPLE_REL(foreignrel) || IS_JOIN_REL(foreignrel)); /* * If the given relation isn't a join relation, it doesn't have any lower * subqueries, so the Var isn't a subquery output column. */ if (!IS_JOIN_REL(foreignrel)) return false; /* * If the Var doesn't belong to any lower subqueries, it isn't a subquery * output column. */ if (!bms_is_member(node->varno, fpinfo->lower_subquery_rels)) return false; if (bms_is_member(node->varno, outerrel->relids)) { /* * If outer relation is deparsed as a subquery, the Var is an output * column of the subquery; get the IDs for the relation/column alias. */ if (fpinfo->make_outerrel_subquery) { sqlite_get_relation_column_alias_ids(node, outerrel, relno, colno); return true; } /* Otherwise, recurse into the outer relation. */ return sqlite_is_subquery_var(node, outerrel, relno, colno); } else { Assert(bms_is_member(node->varno, innerrel->relids)); /* * If inner relation is deparsed as a subquery, the Var is an output * column of the subquery; get the IDs for the relation/column alias. */ if (fpinfo->make_innerrel_subquery) { sqlite_get_relation_column_alias_ids(node, innerrel, relno, colno); return true; } /* Otherwise, recurse into the inner relation. */ return sqlite_is_subquery_var(node, innerrel, relno, colno); } } /* * Get the IDs for the relation and column alias to given Var belonging to * given relation, which are returned into *relno and *colno. */ static void sqlite_get_relation_column_alias_ids(Var *node, RelOptInfo *foreignrel, int *relno, int *colno) { SqliteFdwRelationInfo *fpinfo = (SqliteFdwRelationInfo *) foreignrel->fdw_private; int i; ListCell *lc; /* Get the relation alias ID */ *relno = fpinfo->relation_index; /* Get the column alias ID */ i = 1; foreach(lc, foreignrel->reltarget->exprs) { #if PG_VERSION_NUM >= 160000 Var *tlvar = (Var *) lfirst(lc); /* * Match reltarget entries only on varno/varattno. Ideally there * would be some cross-check on varnullingrels, but it's unclear what * to do exactly; we don't have enough context to know what that value * should be. */ if (IsA(tlvar, Var) && tlvar->varno == node->varno && tlvar->varattno == node->varattno) #else if (equal(lfirst(lc), (Node *) node)) #endif { *colno = i; return; } i++; } /* Shouldn't get here */ elog(ERROR, "unexpected expression in subquery output"); } /***************************************************************************** * Check clauses for immutable functions *****************************************************************************/ /* * contain_immutable_functions * Recursively search for immutable functions within a clause. * * Returns true if any immutable function (or operator implemented by a * immutable function) is found. * * We will recursively look into TargetEntry exprs. */ static bool sqlite_contain_immutable_functions(Node *clause) { return sqlite_contain_immutable_functions_walker(clause, NULL); } static bool sqlite_contain_immutable_functions_walker(Node *node, void *context) { if (node == NULL) return false; /* Check for mutable functions in node itself */ if (nodeTag(node) == T_FuncExpr) { FuncExpr *expr = (FuncExpr *) node; if (func_volatile(expr->funcid) == PROVOLATILE_IMMUTABLE) return true; } /* * It should be safe to treat MinMaxExpr as immutable, because it will * depend on a non-cross-type btree comparison function, and those should * always be immutable. Treating XmlExpr as immutable is more dubious, * and treating CoerceToDomain as immutable is outright dangerous. But we * have done so historically, and changing this would probably cause more * problems than it would fix. In practice, if you have a non-immutable * domain constraint you are in for pain anyhow. */ /* Recurse to check arguments */ if (IsA(node, Query)) { /* Recurse into subselects */ return query_tree_walker((Query *) node, sqlite_contain_immutable_functions_walker, context, 0); } return expression_tree_walker(node, sqlite_contain_immutable_functions_walker, context); } /* * Returns true if given tlist is safe to evaluate on the foreign server. */ bool sqlite_is_foreign_function_tlist(PlannerInfo *root, RelOptInfo *baserel, List *tlist) { foreign_glob_cxt glob_cxt; foreign_loc_cxt loc_cxt; ListCell *lc; bool is_contain_function; if (!IS_SIMPLE_REL(baserel) || IS_OTHER_REL(baserel)) return false; /* * Check that the expression consists of any immutable function. */ is_contain_function = false; foreach(lc, tlist) { TargetEntry *tle = lfirst_node(TargetEntry, lc); if (sqlite_contain_immutable_functions((Node *) tle->expr)) { is_contain_function = true; break; } } if (!is_contain_function) return false; /* * Check that the expression consists of nodes that are safe to execute * remotely. */ foreach(lc, tlist) { TargetEntry *tle = lfirst_node(TargetEntry, lc); glob_cxt.root = root; glob_cxt.foreignrel = baserel; glob_cxt.relids = baserel->relids; loc_cxt.collation = InvalidOid; loc_cxt.state = FDW_COLLATE_NONE; if (!sqlite_foreign_expr_walker((Node *) tle->expr, &glob_cxt, &loc_cxt, NULL)) return false; /* * If the expression has a valid collation that does not arise from a * foreign var, the expression can not be sent over. */ if (loc_cxt.state == FDW_COLLATE_UNSAFE) return false; /* * An expression which includes any mutable functions can't be sent * over because its result is not stable. For example, sending now() * remote side could cause confusion from clock offsets. Future * versions might be able to make this choice with more granularity. * (We check this last because it requires a lot of expensive catalog * lookups.) */ if (contain_mutable_functions((Node *) tle->expr)) return false; } /* OK for the target list with functions to evaluate on the remote server */ return true; } /* * Examine each qual clause in input_conds, and classify them into two * groups, which are returned as two lists: - remote_conds contains * expressions that can be evaluated remotely - local_conds contains * expressions that can't be evaluated remotely */ void sqlite_classify_conditions(PlannerInfo *root, RelOptInfo *baserel, List *input_conds, List **remote_conds, List **local_conds) { ListCell *lc; *remote_conds = NIL; *local_conds = NIL; foreach(lc, input_conds) { RestrictInfo *ri = lfirst_node(RestrictInfo, lc); if (sqlite_is_foreign_expr(root, baserel, ri->clause)) *remote_conds = lappend(*remote_conds, ri); else *local_conds = lappend(*local_conds, ri); } }