/* crc32_simd.c * * Copyright 2017 The Chromium Authors * Use of this source code is governed by a BSD-style license that can be * found in the Chromium source repository LICENSE file. */ #include "crc32_simd.h" #if defined(CRC32_SIMD_AVX512_PCLMUL) /* * crc32_avx512_simd_(): compute the crc32 of the buffer, where the buffer * length must be at least 256, and a multiple of 64. Based on: * * "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" * V. Gopal, E. Ozturk, et al., 2009, http://intel.ly/2ySEwL0 */ #include <emmintrin.h> #include <smmintrin.h> #include <wmmintrin.h> #include <immintrin.h> uint32_t ZLIB_INTERNAL crc32_avx512_simd_( /* AVX512+PCLMUL */ const unsigned char *buf, z_size_t len, uint32_t crc) { /* * Definitions of the bit-reflected domain constants k1,k2,k3,k4 * are similar to those given at the end of the paper, and remaining * constants and CRC32+Barrett polynomials remain unchanged. * * Replace the index of x from 128 to 512. As follows: * k1 = ( x ^ ( 512 * 4 + 32 ) mod P(x) << 32 )' << 1 = 0x011542778a * k2 = ( x ^ ( 512 * 4 - 32 ) mod P(x) << 32 )' << 1 = 0x01322d1430 * k3 = ( x ^ ( 512 + 32 ) mod P(x) << 32 )' << 1 = 0x0154442bd4 * k4 = ( x ^ ( 512 - 32 ) mod P(x) << 32 )' << 1 = 0x01c6e41596 */ static const uint64_t zalign(64) k1k2[] = { 0x011542778a, 0x01322d1430, 0x011542778a, 0x01322d1430, 0x011542778a, 0x01322d1430, 0x011542778a, 0x01322d1430 }; static const uint64_t zalign(64) k3k4[] = { 0x0154442bd4, 0x01c6e41596, 0x0154442bd4, 0x01c6e41596, 0x0154442bd4, 0x01c6e41596, 0x0154442bd4, 0x01c6e41596 }; static const uint64_t zalign(16) k5k6[] = { 0x01751997d0, 0x00ccaa009e }; static const uint64_t zalign(16) k7k8[] = { 0x0163cd6124, 0x0000000000 }; static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 }; __m512i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8; __m128i a0, a1, a2, a3; /* * There's at least one block of 256. */ x1 = _mm512_loadu_si512((__m512i *)(buf + 0x00)); x2 = _mm512_loadu_si512((__m512i *)(buf + 0x40)); x3 = _mm512_loadu_si512((__m512i *)(buf + 0x80)); x4 = _mm512_loadu_si512((__m512i *)(buf + 0xC0)); x1 = _mm512_xor_si512(x1, _mm512_castsi128_si512(_mm_cvtsi32_si128(crc))); x0 = _mm512_load_si512((__m512i *)k1k2); buf += 256; len -= 256; /* * Parallel fold blocks of 256, if any. */ while (len >= 256) { x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00); x6 = _mm512_clmulepi64_epi128(x2, x0, 0x00); x7 = _mm512_clmulepi64_epi128(x3, x0, 0x00); x8 = _mm512_clmulepi64_epi128(x4, x0, 0x00); x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11); x2 = _mm512_clmulepi64_epi128(x2, x0, 0x11); x3 = _mm512_clmulepi64_epi128(x3, x0, 0x11); x4 = _mm512_clmulepi64_epi128(x4, x0, 0x11); y5 = _mm512_loadu_si512((__m512i *)(buf + 0x00)); y6 = _mm512_loadu_si512((__m512i *)(buf + 0x40)); y7 = _mm512_loadu_si512((__m512i *)(buf + 0x80)); y8 = _mm512_loadu_si512((__m512i *)(buf + 0xC0)); x1 = _mm512_xor_si512(x1, x5); x2 = _mm512_xor_si512(x2, x6); x3 = _mm512_xor_si512(x3, x7); x4 = _mm512_xor_si512(x4, x8); x1 = _mm512_xor_si512(x1, y5); x2 = _mm512_xor_si512(x2, y6); x3 = _mm512_xor_si512(x3, y7); x4 = _mm512_xor_si512(x4, y8); buf += 256; len -= 256; } /* * Fold into 512-bits. */ x0 = _mm512_load_si512((__m512i *)k3k4); x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00); x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11); x1 = _mm512_xor_si512(x1, x2); x1 = _mm512_xor_si512(x1, x5); x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00); x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11); x1 = _mm512_xor_si512(x1, x3); x1 = _mm512_xor_si512(x1, x5); x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00); x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11); x1 = _mm512_xor_si512(x1, x4); x1 = _mm512_xor_si512(x1, x5); /* * Single fold blocks of 64, if any. */ while (len >= 64) { x2 = _mm512_loadu_si512((__m512i *)buf); x5 = _mm512_clmulepi64_epi128(x1, x0, 0x00); x1 = _mm512_clmulepi64_epi128(x1, x0, 0x11); x1 = _mm512_xor_si512(x1, x2); x1 = _mm512_xor_si512(x1, x5); buf += 64; len -= 64; } /* * Fold 512-bits to 384-bits. */ a0 = _mm_load_si128((__m128i *)k5k6); a1 = _mm512_extracti32x4_epi32(x1, 0); a2 = _mm512_extracti32x4_epi32(x1, 1); a3 = _mm_clmulepi64_si128(a1, a0, 0x00); a1 = _mm_clmulepi64_si128(a1, a0, 0x11); a1 = _mm_xor_si128(a1, a3); a1 = _mm_xor_si128(a1, a2); /* * Fold 384-bits to 256-bits. */ a2 = _mm512_extracti32x4_epi32(x1, 2); a3 = _mm_clmulepi64_si128(a1, a0, 0x00); a1 = _mm_clmulepi64_si128(a1, a0, 0x11); a1 = _mm_xor_si128(a1, a3); a1 = _mm_xor_si128(a1, a2); /* * Fold 256-bits to 128-bits. */ a2 = _mm512_extracti32x4_epi32(x1, 3); a3 = _mm_clmulepi64_si128(a1, a0, 0x00); a1 = _mm_clmulepi64_si128(a1, a0, 0x11); a1 = _mm_xor_si128(a1, a3); a1 = _mm_xor_si128(a1, a2); /* * Fold 128-bits to 64-bits. */ a2 = _mm_clmulepi64_si128(a1, a0, 0x10); a3 = _mm_setr_epi32(~0, 0, ~0, 0); a1 = _mm_srli_si128(a1, 8); a1 = _mm_xor_si128(a1, a2); a0 = _mm_loadl_epi64((__m128i*)k7k8); a2 = _mm_srli_si128(a1, 4); a1 = _mm_and_si128(a1, a3); a1 = _mm_clmulepi64_si128(a1, a0, 0x00); a1 = _mm_xor_si128(a1, a2); /* * Barret reduce to 32-bits. */ a0 = _mm_load_si128((__m128i*)poly); a2 = _mm_and_si128(a1, a3); a2 = _mm_clmulepi64_si128(a2, a0, 0x10); a2 = _mm_and_si128(a2, a3); a2 = _mm_clmulepi64_si128(a2, a0, 0x00); a1 = _mm_xor_si128(a1, a2); /* * Return the crc32. */ return _mm_extract_epi32(a1, 1); } #elif defined(CRC32_SIMD_SSE42_PCLMUL) /* * crc32_sse42_simd_(): compute the crc32 of the buffer, where the buffer * length must be at least 64, and a multiple of 16. */ #include <emmintrin.h> #include <smmintrin.h> #include <wmmintrin.h> uint32_t ZLIB_INTERNAL crc32_sse42_simd_( /* SSE4.2+PCLMUL */ const unsigned char *buf, z_size_t len, uint32_t crc) { /* * Definitions of the bit-reflected domain constants k1,k2,k3, etc and * the CRC32+Barrett polynomials given at the end of the paper. */ static const uint64_t zalign(16) k1k2[] = { 0x0154442bd4, 0x01c6e41596 }; static const uint64_t zalign(16) k3k4[] = { 0x01751997d0, 0x00ccaa009e }; static const uint64_t zalign(16) k5k0[] = { 0x0163cd6124, 0x0000000000 }; static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 }; __m128i x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8; /* * There's at least one block of 64. */ x1 = _mm_loadu_si128((__m128i *)(buf + 0x00)); x2 = _mm_loadu_si128((__m128i *)(buf + 0x10)); x3 = _mm_loadu_si128((__m128i *)(buf + 0x20)); x4 = _mm_loadu_si128((__m128i *)(buf + 0x30)); x1 = _mm_xor_si128(x1, _mm_cvtsi32_si128(crc)); x0 = _mm_load_si128((__m128i *)k1k2); buf += 64; len -= 64; /* * Parallel fold blocks of 64, if any. */ while (len >= 64) { x5 = _mm_clmulepi64_si128(x1, x0, 0x00); x6 = _mm_clmulepi64_si128(x2, x0, 0x00); x7 = _mm_clmulepi64_si128(x3, x0, 0x00); x8 = _mm_clmulepi64_si128(x4, x0, 0x00); x1 = _mm_clmulepi64_si128(x1, x0, 0x11); x2 = _mm_clmulepi64_si128(x2, x0, 0x11); x3 = _mm_clmulepi64_si128(x3, x0, 0x11); x4 = _mm_clmulepi64_si128(x4, x0, 0x11); y5 = _mm_loadu_si128((__m128i *)(buf + 0x00)); y6 = _mm_loadu_si128((__m128i *)(buf + 0x10)); y7 = _mm_loadu_si128((__m128i *)(buf + 0x20)); y8 = _mm_loadu_si128((__m128i *)(buf + 0x30)); x1 = _mm_xor_si128(x1, x5); x2 = _mm_xor_si128(x2, x6); x3 = _mm_xor_si128(x3, x7); x4 = _mm_xor_si128(x4, x8); x1 = _mm_xor_si128(x1, y5); x2 = _mm_xor_si128(x2, y6); x3 = _mm_xor_si128(x3, y7); x4 = _mm_xor_si128(x4, y8); buf += 64; len -= 64; } /* * Fold into 128-bits. */ x0 = _mm_load_si128((__m128i *)k3k4); x5 = _mm_clmulepi64_si128(x1, x0, 0x00); x1 = _mm_clmulepi64_si128(x1, x0, 0x11); x1 = _mm_xor_si128(x1, x2); x1 = _mm_xor_si128(x1, x5); x5 = _mm_clmulepi64_si128(x1, x0, 0x00); x1 = _mm_clmulepi64_si128(x1, x0, 0x11); x1 = _mm_xor_si128(x1, x3); x1 = _mm_xor_si128(x1, x5); x5 = _mm_clmulepi64_si128(x1, x0, 0x00); x1 = _mm_clmulepi64_si128(x1, x0, 0x11); x1 = _mm_xor_si128(x1, x4); x1 = _mm_xor_si128(x1, x5); /* * Single fold blocks of 16, if any. */ while (len >= 16) { x2 = _mm_loadu_si128((__m128i *)buf); x5 = _mm_clmulepi64_si128(x1, x0, 0x00); x1 = _mm_clmulepi64_si128(x1, x0, 0x11); x1 = _mm_xor_si128(x1, x2); x1 = _mm_xor_si128(x1, x5); buf += 16; len -= 16; } /* * Fold 128-bits to 64-bits. */ x2 = _mm_clmulepi64_si128(x1, x0, 0x10); x3 = _mm_setr_epi32(~0, 0, ~0, 0); x1 = _mm_srli_si128(x1, 8); x1 = _mm_xor_si128(x1, x2); x0 = _mm_loadl_epi64((__m128i*)k5k0); x2 = _mm_srli_si128(x1, 4); x1 = _mm_and_si128(x1, x3); x1 = _mm_clmulepi64_si128(x1, x0, 0x00); x1 = _mm_xor_si128(x1, x2); /* * Barret reduce to 32-bits. */ x0 = _mm_load_si128((__m128i*)poly); x2 = _mm_and_si128(x1, x3); x2 = _mm_clmulepi64_si128(x2, x0, 0x10); x2 = _mm_and_si128(x2, x3); x2 = _mm_clmulepi64_si128(x2, x0, 0x00); x1 = _mm_xor_si128(x1, x2); /* * Return the crc32. */ return _mm_extract_epi32(x1, 1); } #elif defined(CRC32_ARMV8_CRC32) /* CRC32 checksums using ARMv8-a crypto instructions. */ #if defined(__clang__) /* We need some extra types for using PMULL. */ #if defined(__aarch64__) #include <arm_neon.h> #include <arm_acle.h> #endif /* CRC32 intrinsics are #ifdef'ed out of arm_acle.h unless we build with an * armv8 target, which is incompatible with ThinLTO optimizations on Android. * (Namely, mixing and matching different module-level targets makes ThinLTO * warn, and Android defaults to armv7-a. This restriction does not apply to * function-level `target`s, however.) * * Since we only need four crc intrinsics, and since clang's implementation of * those are just wrappers around compiler builtins, it's simplest to #define * those builtins directly. If this #define list grows too much (or we depend on * an intrinsic that isn't a trivial wrapper), we may have to find a better way * to go about this. * * NOTE: clang currently complains that "'+soft-float-abi' is not a recognized * feature for this target (ignoring feature)." This appears to be a harmless * bug in clang. * * These definitions must appear *after* including arm_acle.h otherwise that * header may end up defining functions named __builtin_arm_crc32* that call * themselves, creating an infinite loop when the intrinsic is called. */ /* XXX: Cannot hook into builtins with XCode for arm64. */ #if !defined(ARMV8_OS_MACOS) #define __crc32b __builtin_arm_crc32b #define __crc32d __builtin_arm_crc32d #define __crc32w __builtin_arm_crc32w #define __crc32cw __builtin_arm_crc32cw #endif #if defined(__aarch64__) #define TARGET_ARMV8_WITH_CRC __attribute__((target("aes,crc"))) #else // !defined(__aarch64__) #define TARGET_ARMV8_WITH_CRC __attribute__((target("armv8-a,crc"))) #endif // defined(__aarch64__) #elif defined(__GNUC__) /* For GCC, we are setting CRC extensions at module level, so ThinLTO is not * allowed. We can just include arm_acle.h. */ #include <arm_acle.h> #include <arm_neon.h> #define TARGET_ARMV8_WITH_CRC #else // !defined(__GNUC__) && !defined(_aarch64__) #error ARM CRC32 SIMD extensions only supported for Clang and GCC #endif TARGET_ARMV8_WITH_CRC uint32_t ZLIB_INTERNAL armv8_crc32_little( const unsigned char *buf, z_size_t len, uint32_t crc) { uint32_t c = (uint32_t) ~crc; while (len && ((uintptr_t)buf & 7)) { c = __crc32b(c, *buf++); --len; } const uint64_t *buf8 = (const uint64_t *)buf; while (len >= 64) { c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); c = __crc32d(c, *buf8++); len -= 64; } while (len >= 8) { c = __crc32d(c, *buf8++); len -= 8; } buf = (const unsigned char *)buf8; while (len--) { c = __crc32b(c, *buf++); } return ~c; } #if defined(__aarch64__) || defined(ARMV8_OS_MACOS) /* aarch64 specific code. */ /* * crc32_pmull_simd_(): compute the crc32 of the buffer, where the buffer * length must be at least 64, and a multiple of 16. Based on: * * "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction" * V. Gopal, E. Ozturk, et al., 2009, http://intel.ly/2ySEwL0 */ TARGET_ARMV8_WITH_CRC static inline uint8x16_t pmull_lo(const uint64x2_t a, const uint64x2_t b) { uint8x16_t r; __asm__ __volatile__ ("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r) : "w" (a), "w" (b) ); return r; } TARGET_ARMV8_WITH_CRC static inline uint8x16_t pmull_01(const uint64x2_t a, const uint64x2_t b) { uint8x16_t r; __asm__ __volatile__ ("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r) : "w" (a), "w" (vgetq_lane_u64(b, 1)) ); return r; } TARGET_ARMV8_WITH_CRC static inline uint8x16_t pmull_hi(const uint64x2_t a, const uint64x2_t b) { uint8x16_t r; __asm__ __volatile__ ("pmull2 %0.1q, %1.2d, %2.2d \n\t" : "=w" (r) : "w" (a), "w" (b) ); return r; } TARGET_ARMV8_WITH_CRC uint32_t ZLIB_INTERNAL armv8_crc32_pmull_little( const unsigned char *buf, z_size_t len, uint32_t crc) { /* * Definitions of the bit-reflected domain constants k1,k2,k3, etc and * the CRC32+Barrett polynomials given at the end of the paper. */ static const uint64_t zalign(16) k1k2[] = { 0x0154442bd4, 0x01c6e41596 }; static const uint64_t zalign(16) k3k4[] = { 0x01751997d0, 0x00ccaa009e }; static const uint64_t zalign(16) k5k0[] = { 0x0163cd6124, 0x0000000000 }; static const uint64_t zalign(16) poly[] = { 0x01db710641, 0x01f7011641 }; uint64x2_t x0, x1, x2, x3, x4, x5, x6, x7, x8, y5, y6, y7, y8; /* * There's at least one block of 64. */ x1 = vld1q_u64((const uint64_t *)(buf + 0x00)); x2 = vld1q_u64((const uint64_t *)(buf + 0x10)); x3 = vld1q_u64((const uint64_t *)(buf + 0x20)); x4 = vld1q_u64((const uint64_t *)(buf + 0x30)); x1 = veorq_u64(x1, (uint64x2_t) vsetq_lane_u32(crc, vdupq_n_u32(0), 0)); x0 = vld1q_u64(k1k2); buf += 64; len -= 64; /* * Parallel fold blocks of 64, if any. */ while (len >= 64) { x5 = (uint64x2_t) pmull_lo(x1, x0); x6 = (uint64x2_t) pmull_lo(x2, x0); x7 = (uint64x2_t) pmull_lo(x3, x0); x8 = (uint64x2_t) pmull_lo(x4, x0); y5 = vld1q_u64((const uint64_t *)(buf + 0x00)); y6 = vld1q_u64((const uint64_t *)(buf + 0x10)); y7 = vld1q_u64((const uint64_t *)(buf + 0x20)); y8 = vld1q_u64((const uint64_t *)(buf + 0x30)); x1 = (uint64x2_t) pmull_hi(x1, x0); x2 = (uint64x2_t) pmull_hi(x2, x0); x3 = (uint64x2_t) pmull_hi(x3, x0); x4 = (uint64x2_t) pmull_hi(x4, x0); x1 = veorq_u64(x1, x5); x2 = veorq_u64(x2, x6); x3 = veorq_u64(x3, x7); x4 = veorq_u64(x4, x8); x1 = veorq_u64(x1, y5); x2 = veorq_u64(x2, y6); x3 = veorq_u64(x3, y7); x4 = veorq_u64(x4, y8); buf += 64; len -= 64; } /* * Fold into 128-bits. */ x0 = vld1q_u64(k3k4); x5 = (uint64x2_t) pmull_lo(x1, x0); x1 = (uint64x2_t) pmull_hi(x1, x0); x1 = veorq_u64(x1, x2); x1 = veorq_u64(x1, x5); x5 = (uint64x2_t) pmull_lo(x1, x0); x1 = (uint64x2_t) pmull_hi(x1, x0); x1 = veorq_u64(x1, x3); x1 = veorq_u64(x1, x5); x5 = (uint64x2_t) pmull_lo(x1, x0); x1 = (uint64x2_t) pmull_hi(x1, x0); x1 = veorq_u64(x1, x4); x1 = veorq_u64(x1, x5); /* * Single fold blocks of 16, if any. */ while (len >= 16) { x2 = vld1q_u64((const uint64_t *)buf); x5 = (uint64x2_t) pmull_lo(x1, x0); x1 = (uint64x2_t) pmull_hi(x1, x0); x1 = veorq_u64(x1, x2); x1 = veorq_u64(x1, x5); buf += 16; len -= 16; } /* * Fold 128-bits to 64-bits. */ static uint32_t zalign(16) mask[] = { ~0u, 0u, ~0u, 0u }; x2 = (uint64x2_t) pmull_01(x1, x0); x1 = (uint64x2_t) vextq_u8(vreinterpretq_u8_u64(x1), vdupq_n_u8(0), 8); x3 = (uint64x2_t) vld1q_u32(mask); x1 = veorq_u64(x1, x2); x0 = vld1q_u64(k5k0); x2 = (uint64x2_t) pmull_01(x2, x0); x2 = (uint64x2_t) vextq_u8(vreinterpretq_u8_u64(x1), vdupq_n_u8(0), 4); x1 = vandq_u64(x1, x3); x1 = (uint64x2_t) pmull_lo(x1, x0); x1 = veorq_u64(x1, x2); /* * Barret reduce to 32-bits. */ x0 = vld1q_u64(poly); x2 = vandq_u64(x1, x3); x2 = (uint64x2_t) pmull_01(x2, x0); x2 = vandq_u64(x2, x3); x2 = (uint64x2_t) pmull_lo(x2, x0); x1 = veorq_u64(x1, x2); /* * Return the crc32. */ return vgetq_lane_u32(vreinterpretq_u32_u64(x1), 1); } #endif /* aarch64 specific code. */ #endif