// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/wasm/function-body-decoder.h" #include "src/utils/ostreams.h" #include "src/wasm/canonical-types.h" #include "src/wasm/function-body-decoder-impl.h" #include "src/wasm/leb-helper.h" #include "src/wasm/local-decl-encoder.h" #include "src/wasm/wasm-limits.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-opcodes-inl.h" #include "src/wasm/wasm-subtyping.h" #include "src/zone/zone.h" #include "test/common/wasm/flag-utils.h" #include "test/common/wasm/test-signatures.h" #include "test/common/wasm/wasm-macro-gen.h" #include "test/unittests/test-utils.h" #include "testing/gmock-support.h" namespace v8::internal::wasm { #define B1(a) WASM_BLOCK(a) #define B2(a, b) WASM_BLOCK(a, b) #define B3(a, b, c) WASM_BLOCK(a, b, c) #define WASM_IF_OP kExprIf, kVoidCode #define WASM_LOOP_OP kExprLoop, kVoidCode #define EXPECT_OK(result) \ do { \ if (!result.ok()) { \ GTEST_NONFATAL_FAILURE_(result.error().message().c_str()); \ return; \ } \ } while (false) static const uint8_t kCodeGetLocal0[] = {kExprLocalGet, 0}; static const uint8_t kCodeGetLocal1[] = {kExprLocalGet, 1}; static const uint8_t kCodeSetLocal0[] = {WASM_LOCAL_SET(0, WASM_ZERO)}; static const uint8_t kCodeTeeLocal0[] = {WASM_LOCAL_TEE(0, WASM_ZERO)}; static const ValueType kValueTypes[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmExternRef}; static const MachineType machineTypes[] = { MachineType::Int8(), MachineType::Uint8(), MachineType::Int16(), MachineType::Uint16(), MachineType::Int32(), MachineType::Uint32(), MachineType::Int64(), MachineType::Uint64(), MachineType::Float32(), MachineType::Float64()}; static const WasmOpcode kInt32BinopOpcodes[] = { kExprI32Add, kExprI32Sub, kExprI32Mul, kExprI32DivS, kExprI32DivU, kExprI32RemS, kExprI32RemU, kExprI32And, kExprI32Ior, kExprI32Xor, kExprI32Shl, kExprI32ShrU, kExprI32ShrS, kExprI32Eq, kExprI32LtS, kExprI32LeS, kExprI32LtU, kExprI32LeU}; #define WASM_BRV_IF_ZERO(depth, val) \ val, WASM_ZERO, kExprBrIf, static_cast(depth) constexpr size_t kMaxByteSizedLeb128 = 127; using F = std::pair; // Used to construct fixed-size signatures: MakeSig::Returns(...).Params(...); using MakeSig = FixedSizeSignature; enum MemoryType { kMemory32, kMemory64 }; // A helper for tests that require a module environment for functions, // globals, or memories. class TestModuleBuilder { public: explicit TestModuleBuilder(ModuleOrigin origin = kWasmOrigin) : mod(origin) { mod.num_declared_functions = 1; mod.validated_functions = std::make_unique[]>(1); // Asm.js functions are valid by design. if (is_asmjs_module(&mod)) mod.validated_functions[0] = 0xff; } uint8_t AddGlobal(ValueType type, bool mutability = true) { mod.globals.push_back({type, mutability, {}, {0}, false, false}); CHECK_LE(mod.globals.size(), kMaxByteSizedLeb128); return static_cast(mod.globals.size() - 1); } uint8_t AddSignature(const FunctionSig* sig, uint32_t supertype = kNoSuperType) { mod.add_signature(sig, supertype, v8_flags.wasm_final_types); CHECK_LE(mod.types.size(), kMaxByteSizedLeb128); GetTypeCanonicalizer()->AddRecursiveGroup(module(), 1); return static_cast(mod.types.size() - 1); } uint8_t AddFunction(const FunctionSig* sig, bool declared = true) { uint8_t sig_index = AddSignature(sig); return AddFunctionImpl(sig, sig_index, declared); } uint8_t AddFunction(uint32_t sig_index, bool declared = true) { DCHECK(mod.has_signature(sig_index)); return AddFunctionImpl(mod.types[sig_index].function_sig, sig_index, declared); } uint8_t AddImport(const FunctionSig* sig) { uint8_t result = AddFunction(sig); mod.functions[result].imported = true; return result; } uint8_t AddException(WasmTagSig* sig) { mod.tags.emplace_back(sig, AddSignature(sig)); CHECK_LE(mod.types.size(), kMaxByteSizedLeb128); return static_cast(mod.tags.size() - 1); } uint8_t AddTable(ValueType type, uint32_t initial_size, bool has_maximum_size, uint32_t maximum_size) { CHECK(type.is_object_reference()); mod.tables.emplace_back(); WasmTable& table = mod.tables.back(); table.type = type; table.initial_size = initial_size; table.has_maximum_size = has_maximum_size; table.maximum_size = maximum_size; return static_cast(mod.tables.size() - 1); } uint8_t AddStruct(std::initializer_list fields, uint32_t supertype = kNoSuperType) { StructType::Builder type_builder(&mod.signature_zone, static_cast(fields.size())); for (F field : fields) { type_builder.AddField(field.first, field.second); } mod.add_struct_type(type_builder.Build(), supertype, v8_flags.wasm_final_types); GetTypeCanonicalizer()->AddRecursiveGroup(module(), 1); return static_cast(mod.types.size() - 1); } uint8_t AddArray(ValueType type, bool mutability) { ArrayType* array = mod.signature_zone.New(type, mutability); mod.add_array_type(array, kNoSuperType, v8_flags.wasm_final_types); GetTypeCanonicalizer()->AddRecursiveGroup(module(), 1); return static_cast(mod.types.size() - 1); } void InitializeMemory(MemoryType mem_type = kMemory32) { mod.has_memory = true; mod.is_memory64 = mem_type == kMemory64; mod.initial_pages = 1; mod.maximum_pages = 100; } uint8_t InitializeTable(wasm::ValueType type) { mod.tables.emplace_back(); mod.tables.back().type = type; return static_cast(mod.tables.size() - 1); } uint8_t AddPassiveElementSegment(wasm::ValueType type) { mod.elem_segments.emplace_back(type, WasmElemSegment::kStatusPassive, WasmElemSegment::kExpressionElements, 0, 0); return static_cast(mod.elem_segments.size() - 1); } uint8_t AddDeclarativeElementSegment() { mod.elem_segments.emplace_back(kWasmFuncRef, WasmElemSegment::kStatusDeclarative, WasmElemSegment::kExpressionElements, 0, 0); return static_cast(mod.elem_segments.size() - 1); } // Set the number of data segments as declared by the DataCount section. void SetDataSegmentCount(uint32_t data_segment_count) { // The Data section occurs after the Code section, so we don't need to // update mod.data_segments, as it is always empty. mod.num_declared_data_segments = data_segment_count; } WasmModule* module() { return &mod; } private: uint8_t AddFunctionImpl(const FunctionSig* sig, uint32_t sig_index, bool declared) { mod.functions.push_back( {sig, // sig static_cast(mod.functions.size()), // func_index sig_index, // sig_index {0, 0}, // code false, // import false, // export declared}); // declared CHECK_LE(mod.functions.size(), kMaxByteSizedLeb128); return static_cast(mod.functions.size() - 1); } WasmModule mod; }; template class FunctionBodyDecoderTestBase : public WithZoneMixin { public: using LocalsDecl = std::pair; // All features are disabled by default and must be activated with // a WASM_FEATURE_SCOPE in individual tests. WasmFeatures enabled_features_ = WasmFeatures::None(); TestSignatures sigs; TestModuleBuilder builder; WasmModule* module = builder.module(); LocalDeclEncoder local_decls{this->zone()}; void AddLocals(ValueType type, uint32_t count) { local_decls.AddLocals(count, type); } enum AppendEnd : bool { kAppendEnd, kOmitEnd }; base::Vector PrepareBytecode(base::Vector code, AppendEnd append_end) { size_t locals_size = local_decls.Size(); size_t total_size = code.size() + locals_size + (append_end == kAppendEnd ? 1 : 0); uint8_t* buffer = this->zone()->template NewArray(total_size); // Prepend the local decls to the code. local_decls.Emit(buffer); // Emit the code. if (code.size() > 0) { memcpy(buffer + locals_size, code.begin(), code.size()); } if (append_end == kAppendEnd) { // Append an extra end opcode. buffer[total_size - 1] = kExprEnd; } return {buffer, total_size}; } template base::Vector CodeToVector(const uint8_t (&code)[N]) { return base::ArrayVector(code); } base::Vector CodeToVector( const std::initializer_list& code) { return base::VectorOf(&*code.begin(), code.size()); } base::Vector CodeToVector(base::Vector vec) { return vec; } // Prepends local variable declarations and renders nice error messages for // verification failures. template > void Validate(bool expected_success, const FunctionSig* sig, Code&& raw_code, AppendEnd append_end = kAppendEnd, const char* message = nullptr) { base::Vector code = PrepareBytecode(CodeToVector(std::forward(raw_code)), append_end); // Validate the code. FunctionBody body(sig, 0, code.begin(), code.end()); WasmFeatures unused_detected_features = WasmFeatures::None(); DecodeResult result = ValidateFunctionBody(enabled_features_, module, &unused_detected_features, body); std::ostringstream str; if (result.failed()) { str << "Verification failed: pc = +" << result.error().offset() << ", msg = " << result.error().message(); } else { str << "Verification succeeded, expected failure"; } EXPECT_EQ(result.ok(), expected_success) << str.str(); if (result.failed() && message) { EXPECT_THAT(result.error().message(), ::testing::HasSubstr(message)); } } template > void ExpectValidates(const FunctionSig* sig, Code&& raw_code, AppendEnd append_end = kAppendEnd, const char* message = nullptr) { Validate(true, sig, std::forward(raw_code), append_end, message); } template > void ExpectFailure(const FunctionSig* sig, Code&& raw_code, AppendEnd append_end = kAppendEnd, const char* message = nullptr) { Validate(false, sig, std::forward(raw_code), append_end, message); } void TestBinop(WasmOpcode opcode, const FunctionSig* success) { // op(local[0], local[1]) uint8_t code[] = {WASM_BINOP(opcode, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}; ExpectValidates(success, code); // Try all combinations of return and parameter types. for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { for (size_t k = 0; k < arraysize(kValueTypes); k++) { ValueType types[] = {kValueTypes[i], kValueTypes[j], kValueTypes[k]}; if (types[0] != success->GetReturn(0) || types[1] != success->GetParam(0) || types[2] != success->GetParam(1)) { // Test signature mismatch. FunctionSig sig(1, 2, types); ExpectFailure(&sig, code); } } } } } void TestUnop(WasmOpcode opcode, const FunctionSig* success) { TestUnop(opcode, success->GetReturn(), success->GetParam(0)); } void TestUnop(WasmOpcode opcode, ValueType ret_type, ValueType param_type) { // Return(op(local[0])) uint8_t code[] = {WASM_UNOP(opcode, WASM_LOCAL_GET(0))}; { ValueType types[] = {ret_type, param_type}; FunctionSig sig(1, 1, types); ExpectValidates(&sig, code); } // Try all combinations of return and parameter types. for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType types[] = {kValueTypes[i], kValueTypes[j]}; if (types[0] != ret_type || types[1] != param_type) { // Test signature mismatch. FunctionSig sig(1, 1, types); ExpectFailure(&sig, code); } } } } }; using FunctionBodyDecoderTest = FunctionBodyDecoderTestBase; TEST_F(FunctionBodyDecoderTest, Int32Const1) { uint8_t code[] = {kExprI32Const, 0}; for (int i = -64; i <= 63; i++) { code[1] = static_cast(i & 0x7F); ExpectValidates(sigs.i_i(), code); } } TEST_F(FunctionBodyDecoderTest, RefFunc) { builder.AddFunction(sigs.v_ii()); builder.AddFunction(sigs.ii_v()); ExpectValidates(sigs.c_v(), {kExprRefFunc, 1}); } TEST_F(FunctionBodyDecoderTest, EmptyFunction) { ExpectValidates(sigs.v_v(), {}); ExpectFailure(sigs.i_i(), {}); } TEST_F(FunctionBodyDecoderTest, IncompleteIf1) { uint8_t code[] = {kExprIf}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru) { ExpectValidates(sigs.i_i(), {WASM_I32V_1(0)}); } TEST_F(FunctionBodyDecoderTest, Int32Const_fallthru2) { ExpectFailure(sigs.i_i(), {WASM_I32V_1(0), WASM_I32V_1(1)}); } TEST_F(FunctionBodyDecoderTest, Int32Const) { const int kInc = 4498211; for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) { // TODO(binji): expand test for other sized int32s; 1 through 5 bytes. ExpectValidates(sigs.i_i(), {WASM_I32V(i)}); } } TEST_F(FunctionBodyDecoderTest, Int64Const) { const int kInc = 4498211; for (int32_t i = kMinInt; i < kMaxInt - kInc; i = i + kInc) { ExpectValidates(sigs.l_l(), {WASM_I64V((static_cast(i) << 32) | i)}); } } TEST_F(FunctionBodyDecoderTest, Float32Const) { uint8_t code[] = {kExprF32Const, 0, 0, 0, 0}; Address ptr = reinterpret_cast
(code + 1); for (int i = 0; i < 30; i++) { base::WriteLittleEndianValue(ptr, i * -7.75f); ExpectValidates(sigs.f_ff(), code); } } TEST_F(FunctionBodyDecoderTest, Float64Const) { uint8_t code[] = {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0}; Address ptr = reinterpret_cast
(code + 1); for (int i = 0; i < 30; i++) { base::WriteLittleEndianValue(ptr, i * 33.45); ExpectValidates(sigs.d_dd(), code); } } TEST_F(FunctionBodyDecoderTest, Int32Const_off_end) { uint8_t code[] = {kExprI32Const, 0xAA, 0xBB, 0xCC, 0x44}; for (size_t size = 1; size <= 4; ++size) { ExpectFailure(sigs.i_i(), base::VectorOf(code, size), kAppendEnd); // Should also fail without the trailing 'end' opcode. ExpectFailure(sigs.i_i(), base::VectorOf(code, size), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, GetLocal0_param) { ExpectValidates(sigs.i_i(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, GetLocal0_local) { AddLocals(kWasmI32, 1); ExpectValidates(sigs.i_v(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, TooManyLocals) { AddLocals(kWasmI32, 4034986500); ExpectFailure(sigs.i_v(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, GetLocal0_param_n) { for (const FunctionSig* sig : {sigs.i_i(), sigs.i_ii(), sigs.i_iii()}) { ExpectValidates(sig, kCodeGetLocal0); } } TEST_F(FunctionBodyDecoderTest, GetLocalN_local) { for (uint8_t i = 1; i < 8; i++) { AddLocals(kWasmI32, 1); for (uint8_t j = 0; j < i; j++) { ExpectValidates(sigs.i_v(), {kExprLocalGet, j}); } } } TEST_F(FunctionBodyDecoderTest, GetLocal0_fail_no_params) { ExpectFailure(sigs.i_v(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, GetLocal1_fail_no_locals) { ExpectFailure(sigs.i_i(), kCodeGetLocal1); } TEST_F(FunctionBodyDecoderTest, GetLocal_off_end) { ExpectFailure(sigs.i_i(), {kExprLocalGet}); } TEST_F(FunctionBodyDecoderTest, NumLocalBelowLimit) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1); ExpectValidates(sigs.v_v(), {WASM_NOP}); } TEST_F(FunctionBodyDecoderTest, NumLocalAtLimit) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals); ExpectValidates(sigs.v_v(), {WASM_NOP}); } TEST_F(FunctionBodyDecoderTest, NumLocalAboveLimit) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals + 1); ExpectFailure(sigs.v_v(), {WASM_NOP}); } TEST_F(FunctionBodyDecoderTest, GetLocal_varint) { const int kMaxLocals = kV8MaxWasmFunctionLocals - 1; AddLocals(kWasmI32, kMaxLocals); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_1(66)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_2(7777)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_3(8888)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(9999)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_5(kMaxLocals - 1)}); ExpectFailure(sigs.i_i(), {kExprLocalGet, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals - 1)}); ExpectValidates(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals)}); ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_4(kMaxLocals + 1)}); ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals)}); ExpectFailure(sigs.i_v(), {kExprLocalGet, U32V_4(kMaxLocals + 1)}); } TEST_F(FunctionBodyDecoderTest, GetLocal_toomany) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 100); AddLocals(kWasmI32, 100); ExpectValidates(sigs.i_v(), {kExprLocalGet, U32V_1(66)}); ExpectFailure(sigs.i_i(), {kExprLocalGet, U32V_1(66)}); } TEST_F(FunctionBodyDecoderTest, Binops_off_end) { uint8_t code1[] = {0}; // [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code1[0] = kInt32BinopOpcodes[i]; ExpectFailure(sigs.i_i(), code1); } uint8_t code3[] = {kExprLocalGet, 0, 0}; // [expr] [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code3[2] = kInt32BinopOpcodes[i]; ExpectFailure(sigs.i_i(), code3); } uint8_t code4[] = {kExprLocalGet, 0, 0, 0}; // [expr] [opcode] [opcode] for (size_t i = 0; i < arraysize(kInt32BinopOpcodes); i++) { code4[2] = kInt32BinopOpcodes[i]; code4[3] = kInt32BinopOpcodes[i]; ExpectFailure(sigs.i_i(), code4); } } TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock1) { ExpectFailure(sigs.i_i(), {WASM_ZERO, kExprBlock, kI32Code, WASM_ZERO, kExprI32Add, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock2) { ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprBlock, kI32Code, kExprI32Add, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, BinopsAcrossBlock3) { ExpectFailure(sigs.i_i(), {WASM_ZERO, WASM_ZERO, kExprIf, kI32Code, kExprI32Add, kExprElse, kExprI32Add, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, Nop) { ExpectValidates(sigs.v_v(), {kExprNop}); } TEST_F(FunctionBodyDecoderTest, SetLocal0_void) { ExpectFailure(sigs.i_i(), {WASM_LOCAL_SET(0, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, SetLocal0_param) { ExpectFailure(sigs.i_i(), kCodeSetLocal0); ExpectFailure(sigs.f_ff(), kCodeSetLocal0); ExpectFailure(sigs.d_dd(), kCodeSetLocal0); } TEST_F(FunctionBodyDecoderTest, TeeLocal0_param) { ExpectValidates(sigs.i_i(), kCodeTeeLocal0); ExpectFailure(sigs.f_ff(), kCodeTeeLocal0); ExpectFailure(sigs.d_dd(), kCodeTeeLocal0); } TEST_F(FunctionBodyDecoderTest, SetLocal0_local) { ExpectFailure(sigs.i_v(), kCodeSetLocal0); ExpectFailure(sigs.v_v(), kCodeSetLocal0); AddLocals(kWasmI32, 1); ExpectFailure(sigs.i_v(), kCodeSetLocal0); ExpectValidates(sigs.v_v(), kCodeSetLocal0); } TEST_F(FunctionBodyDecoderTest, TeeLocal0_local) { ExpectFailure(sigs.i_v(), kCodeTeeLocal0); AddLocals(kWasmI32, 1); ExpectValidates(sigs.i_v(), kCodeTeeLocal0); } TEST_F(FunctionBodyDecoderTest, TeeLocalN_local) { for (uint8_t i = 1; i < 8; i++) { AddLocals(kWasmI32, 1); for (uint8_t j = 0; j < i; j++) { ExpectFailure(sigs.v_v(), {WASM_LOCAL_TEE(j, WASM_I32V_1(i))}); ExpectValidates(sigs.i_i(), {WASM_LOCAL_TEE(j, WASM_I32V_1(i))}); } } } TEST_F(FunctionBodyDecoderTest, BlockN) { constexpr size_t kMaxSize = 200; uint8_t buffer[kMaxSize + 3]; for (size_t i = 0; i <= kMaxSize; i++) { memset(buffer, kExprNop, sizeof(buffer)); buffer[0] = kExprBlock; buffer[1] = kVoidCode; buffer[i + 2] = kExprEnd; ExpectValidates(sigs.v_i(), base::VectorOf(buffer, i + 3), kAppendEnd); } } #define WASM_EMPTY_BLOCK kExprBlock, kVoidCode, kExprEnd TEST_F(FunctionBodyDecoderTest, Block0) { ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK}); ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK}); } TEST_F(FunctionBodyDecoderTest, Block0_fallthru1) { ExpectValidates(sigs.v_v(), {WASM_BLOCK(WASM_EMPTY_BLOCK)}); ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_EMPTY_BLOCK)}); } TEST_F(FunctionBodyDecoderTest, Block0Block0) { ExpectValidates(sigs.v_v(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK}); ExpectFailure(sigs.i_i(), {WASM_EMPTY_BLOCK, WASM_EMPTY_BLOCK}); } TEST_F(FunctionBodyDecoderTest, Block0_end) { ExpectFailure(sigs.v_v(), {WASM_EMPTY_BLOCK, kExprEnd}); } #undef WASM_EMPTY_BLOCK TEST_F(FunctionBodyDecoderTest, Block1) { uint8_t code[] = {WASM_BLOCK_I(WASM_LOCAL_GET(0))}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.v_i(), code); ExpectFailure(sigs.d_dd(), code); ExpectFailure(sigs.i_f(), code); ExpectFailure(sigs.i_d(), code); } TEST_F(FunctionBodyDecoderTest, Block1_i) { uint8_t code[] = {WASM_BLOCK_I(WASM_ZERO)}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.f_ff(), code); ExpectFailure(sigs.d_dd(), code); ExpectFailure(sigs.l_ll(), code); } TEST_F(FunctionBodyDecoderTest, Block1_f) { uint8_t code[] = {WASM_BLOCK_F(WASM_F32(0))}; ExpectFailure(sigs.i_i(), code); ExpectValidates(sigs.f_ff(), code); ExpectFailure(sigs.d_dd(), code); ExpectFailure(sigs.l_ll(), code); } TEST_F(FunctionBodyDecoderTest, Block1_continue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Block1_br) { ExpectValidates(sigs.v_v(), {B1(WASM_BR(0))}); ExpectValidates(sigs.v_v(), {B1(WASM_BR(1))}); ExpectFailure(sigs.v_v(), {B1(WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, Block2_br) { ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_BR(0))}); ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_NOP)}); ExpectValidates(sigs.v_v(), {B2(WASM_BR(0), WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Block2) { ExpectFailure(sigs.i_i(), {WASM_BLOCK(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_NOP, WASM_ZERO)}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_NOP)}); ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Block2b) { uint8_t code[] = {WASM_BLOCK_I(WASM_LOCAL_SET(0, WASM_ZERO), WASM_ZERO)}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.f_ff(), code); } TEST_F(FunctionBodyDecoderTest, Block2_fallthru) { ExpectValidates(sigs.i_i(), {B2(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO)), WASM_I32V_1(23)}); } TEST_F(FunctionBodyDecoderTest, Block3) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO), WASM_I32V_1(11))}); } TEST_F(FunctionBodyDecoderTest, Block5) { ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_i(), {WASM_BLOCK(WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, BlockType) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.l_l(), {WASM_BLOCK_L(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.f_f(), {WASM_BLOCK_F(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.d_d(), {WASM_BLOCK_D(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, BlockType_fail) { ExpectFailure(sigs.i_i(), {WASM_BLOCK_L(WASM_I64V_1(0))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.i_i(), {WASM_BLOCK_F(WASM_F32(0.0))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.i_i(), {WASM_BLOCK_D(WASM_F64(1.1))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.l_l(), {WASM_BLOCK_I(WASM_ZERO)}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.l_l(), {WASM_BLOCK_F(WASM_F32(0.0))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.l_l(), {WASM_BLOCK_D(WASM_F64(1.1))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.f_ff(), {WASM_BLOCK_I(WASM_ZERO)}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.f_ff(), {WASM_BLOCK_L(WASM_I64V_1(0))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.f_ff(), {WASM_BLOCK_D(WASM_F64(1.1))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.d_dd(), {WASM_BLOCK_I(WASM_ZERO)}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.d_dd(), {WASM_BLOCK_L(WASM_I64V_1(0))}, kAppendEnd, "type error in fallthru[0]"); ExpectFailure(sigs.d_dd(), {WASM_BLOCK_F(WASM_F32(0.0))}, kAppendEnd, "type error in fallthru[0]"); } TEST_F(FunctionBodyDecoderTest, BlockF32) { static const uint8_t code[] = {WASM_BLOCK_F(kExprF32Const, 0, 0, 0, 0)}; ExpectValidates(sigs.f_ff(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.d_dd(), code); } TEST_F(FunctionBodyDecoderTest, BlockN_off_end) { uint8_t code[] = {WASM_BLOCK(kExprNop, kExprNop, kExprNop, kExprNop)}; ExpectValidates(sigs.v_v(), code); for (size_t i = 1; i < arraysize(code); i++) { ExpectFailure(sigs.v_v(), base::VectorOf(code, i), kAppendEnd); ExpectFailure(sigs.v_v(), base::VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, Block2_continue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(0))}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(1))}); ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, Block3_continue) { ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(0)))}); ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(1)))}); ExpectValidates(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(2)))}); ExpectFailure(sigs.v_v(), {B1(WASM_LOOP(WASM_NOP, WASM_BR(3)))}); } TEST_F(FunctionBodyDecoderTest, NestedBlock_return) { ExpectValidates(sigs.i_i(), {B1(B1(WASM_RETURN(WASM_ZERO))), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, BlockBrBinop) { ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_BLOCK_I(WASM_BRV(0, WASM_I32V_1(1))), WASM_I32V_1(2))}); } TEST_F(FunctionBodyDecoderTest, VoidBlockTypeVariants) { // Valid kVoidCode encoded in 2 bytes. ExpectValidates(sigs.v_v(), {kExprBlock, kVoidCode | 0x80, 0x7F, kExprEnd}); // Invalid code, whose last 7 bits coincide with kVoidCode. ExpectFailure(sigs.v_v(), {kExprBlock, kVoidCode | 0x80, 0x45, kExprEnd}, kAppendEnd, "invalid block type"); } TEST_F(FunctionBodyDecoderTest, If_empty1) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty2) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty3) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, WASM_NOP, kExprElse, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, WASM_ZERO, kExprElse, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty4) { ExpectValidates(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, WASM_NOP, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_ZERO, WASM_IF_OP, kExprElse, WASM_ZERO, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_empty_stack) { uint8_t code[] = {kExprIf}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, If_incomplete1) { uint8_t code[] = {kExprI32Const, 0, kExprIf}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, If_incomplete2) { uint8_t code[] = {kExprI32Const, 0, kExprIf, kExprNop}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, If_else_else) { uint8_t code[] = {kExprI32Const, 0, WASM_IF_OP, kExprElse, kExprElse, kExprEnd}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, IfEmpty) { ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, IfSet) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO))}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfElseEmpty) { ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), WASM_IF_OP, kExprElse, kExprEnd}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfElseUnreachable1) { ExpectValidates( sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_UNREACHABLE, WASM_LOCAL_GET(0))}); ExpectValidates( sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_UNREACHABLE)}); } TEST_F(FunctionBodyDecoderTest, IfElseUnreachable2) { static const uint8_t code[] = { WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_UNREACHABLE, WASM_LOCAL_GET(0))}; for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType types[] = {kWasmI32, kValueTypes[i]}; FunctionSig sig(1, 1, types); Validate(kValueTypes[i] == kWasmI32, &sig, code); } } TEST_F(FunctionBodyDecoderTest, OneArmedIfWithArity) { static const uint8_t code[] = {WASM_ZERO, kExprIf, kI32Code, WASM_ONE, kExprEnd}; ExpectFailure(sigs.i_v(), code, kAppendEnd, "start-arity and end-arity of one-armed if must match"); } TEST_F(FunctionBodyDecoderTest, IfBreak) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(0))}); ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(1))}); ExpectFailure(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, IfElseBreak) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(0))}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(1))}); ExpectFailure(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_BR(2))}); } TEST_F(FunctionBodyDecoderTest, Block_else) { uint8_t code[] = {kExprI32Const, 0, kExprBlock, kExprElse, kExprEnd}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, IfNop) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_NOP)}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, If_end) { ExpectValidates(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprEnd, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, If_falloff1) { ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, kExprIf}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0, WASM_IF_OP, kExprNop, kExprElse}); } TEST_F(FunctionBodyDecoderTest, IfElseNop) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfBlock1) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), B1(WASM_LOCAL_SET(0, WASM_ZERO)), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfBlock1b) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), B1(WASM_LOCAL_SET(0, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, IfBlock2a) { ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), B2(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, IfBlock2b) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), B2(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO)), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, IfElseSet) { ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_I32V_1(1)))}); } TEST_F(FunctionBodyDecoderTest, Loop0) { ExpectValidates(sigs.v_v(), {WASM_LOOP_OP, kExprEnd}); } TEST_F(FunctionBodyDecoderTest, Loop1) { static const uint8_t code[] = {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO))}; ExpectValidates(sigs.v_i(), code); ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.f_ff(), code); } TEST_F(FunctionBodyDecoderTest, Loop2) { ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_LOCAL_SET(0, WASM_ZERO))}); } TEST_F(FunctionBodyDecoderTest, Loop1_continue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Loop1_break) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(1))}); } TEST_F(FunctionBodyDecoderTest, Loop2_continue) { ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, Loop2_break) { ExpectValidates(sigs.v_i(), {WASM_LOOP(WASM_LOCAL_SET(0, WASM_ZERO), WASM_BR(1))}); } TEST_F(FunctionBodyDecoderTest, InfiniteLoop1) { ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO}); ExpectValidates(sigs.i_i(), {WASM_LOOP(WASM_BR(0)), WASM_ZERO}); ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BRV(1, WASM_ZERO))}); } TEST_F(FunctionBodyDecoderTest, InfiniteLoop2) { ExpectFailure(sigs.i_i(), {WASM_LOOP(WASM_BR(0), WASM_ZERO), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Loop2_unreachable) { ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_BR(0), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, LoopType) { ExpectValidates(sigs.i_i(), {WASM_LOOP_I(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.l_l(), {WASM_LOOP_L(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.f_f(), {WASM_LOOP_F(WASM_LOCAL_GET(0))}); ExpectValidates(sigs.d_d(), {WASM_LOOP_D(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, LoopType_void) { ExpectFailure(sigs.v_v(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.v_v(), {WASM_LOOP_F(WASM_F32(0.0))}); ExpectFailure(sigs.v_v(), {WASM_LOOP_D(WASM_F64(1.1))}); } TEST_F(FunctionBodyDecoderTest, LoopType_fail) { ExpectFailure(sigs.i_i(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.i_i(), {WASM_LOOP_F(WASM_F32(0.0))}); ExpectFailure(sigs.i_i(), {WASM_LOOP_D(WASM_F64(1.1))}); ExpectFailure(sigs.l_l(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.l_l(), {WASM_LOOP_F(WASM_F32(0.0))}); ExpectFailure(sigs.l_l(), {WASM_LOOP_D(WASM_F64(1.1))}); ExpectFailure(sigs.f_ff(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.f_ff(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.f_ff(), {WASM_LOOP_D(WASM_F64(1.1))}); ExpectFailure(sigs.d_dd(), {WASM_LOOP_I(WASM_ZERO)}); ExpectFailure(sigs.d_dd(), {WASM_LOOP_L(WASM_I64V_1(0))}); ExpectFailure(sigs.d_dd(), {WASM_LOOP_F(WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, ReturnVoid1) { static const uint8_t code[] = {kExprNop}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.i_f(), code); } TEST_F(FunctionBodyDecoderTest, ReturnVoid2) { static const uint8_t code[] = {WASM_BLOCK(WASM_BR(0))}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.i_f(), code); } TEST_F(FunctionBodyDecoderTest, ReturnVoid3) { ExpectFailure(sigs.v_v(), {kExprI32Const, 0}); ExpectFailure(sigs.v_v(), {kExprI64Const, 0}); ExpectFailure(sigs.v_v(), {kExprF32Const, 0, 0, 0, 0}); ExpectFailure(sigs.v_v(), {kExprF64Const, 0, 0, 0, 0, 0, 0, 0, 0}); ExpectFailure(sigs.v_v(), {kExprRefNull}); ExpectFailure(sigs.v_v(), {kExprRefFunc, 0}); ExpectFailure(sigs.v_i(), {kExprLocalGet, 0}); } TEST_F(FunctionBodyDecoderTest, Unreachable1) { ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_UNREACHABLE}); ExpectValidates(sigs.i_i(), {WASM_UNREACHABLE, WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Unreachable2) { ExpectFailure(sigs.v_v(), {B2(WASM_UNREACHABLE, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {B2(WASM_BR(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, UnreachableLoop1) { ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_ZERO)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_UNREACHABLE, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0), WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, Unreachable_binop1) { ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_ZERO, WASM_UNREACHABLE)}); ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Unreachable_binop2) { ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_F32(0.0), WASM_UNREACHABLE)}); ExpectFailure(sigs.i_i(), {WASM_I32_AND(WASM_UNREACHABLE, WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, Unreachable_select1) { ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_ZERO)}); ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_ZERO, WASM_UNREACHABLE, WASM_ZERO)}); ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_ZERO, WASM_ZERO, WASM_UNREACHABLE)}); } TEST_F(FunctionBodyDecoderTest, Unreachable_select2) { ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_F32(0.0), WASM_UNREACHABLE, WASM_ZERO)}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_UNREACHABLE, WASM_F32(0.0), WASM_ZERO)}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_UNREACHABLE, WASM_ZERO, WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, UnreachableRefTypes) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(return_call); uint8_t sig_index = builder.AddSignature(sigs.i_ii()); uint8_t function_index = builder.AddFunction(sig_index); uint8_t struct_index = builder.AddStruct({F(kWasmI32, true), F(kWasmI64, true)}); uint8_t array_index = builder.AddArray(kWasmI32, true); ValueType struct_type = ValueType::Ref(struct_index); ValueType struct_type_null = ValueType::RefNull(struct_index); FunctionSig sig_v_s(0, 1, &struct_type); uint8_t struct_consumer = builder.AddFunction(&sig_v_s); uint8_t struct_consumer2 = builder.AddFunction( FunctionSig::Build(zone(), {kWasmI32}, {struct_type, struct_type})); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, kExprRefIsNull}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprRefAsNonNull, kExprDrop}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, kExprCallRef, sig_index}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_REF_FUNC(function_index), kExprCallRef, sig_index}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprReturnCallRef, sig_index}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprStructNew), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_I64V(42), WASM_GC_OP(kExprStructNew), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprStructNewDefault), struct_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprStructNewDefault), struct_index, kExprCallFunction, struct_consumer}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprArrayNew), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_I32V(42), WASM_GC_OP(kExprArrayNew), array_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprArrayNewDefault), array_index, kExprDrop}); ExpectValidates( sigs.i_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefTestDeprecated), struct_index}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefTest), struct_index}); ExpectValidates(sigs.i_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefTest), kEqRefCode}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefCastDeprecated), struct_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefCast), struct_index, kExprDrop}); ExpectValidates(sigs.v_v(), {WASM_UNREACHABLE, kExprBrOnNull, 0, WASM_DROP}); ExpectValidates(&sig_v_s, {WASM_UNREACHABLE, WASM_LOCAL_GET(0), kExprBrOnNull, 0, kExprCallFunction, struct_consumer}); ExpectValidates( FunctionSig::Build(zone(), {struct_type}, {}), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefCastDeprecated), struct_index}); ExpectValidates(FunctionSig::Build(zone(), {struct_type}, {}), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefCast), struct_index}); ExpectValidates(FunctionSig::Build(zone(), {kWasmStructRef}, {}), {WASM_UNREACHABLE, WASM_GC_OP(kExprRefAsStruct)}); ExpectValidates(FunctionSig::Build(zone(), {}, {struct_type_null}), {WASM_UNREACHABLE, WASM_LOCAL_GET(0), kExprBrOnNull, 0, kExprCallFunction, struct_consumer}); ExpectFailure( sigs.v_v(), {WASM_UNREACHABLE, WASM_I32V(42), kExprBrOnNull, 0}, kAppendEnd, "br_on_null[0] expected object reference, found i32.const of type i32"); // This tests for a bug where {TypeCheckStackAgainstMerge} did not insert // unreachable values into the stack correctly. ExpectValidates(FunctionSig::Build(zone(), {kWasmI32}, {struct_type_null}), {WASM_BLOCK_R(struct_type_null, kExprUnreachable, // -- kExprLocalGet, 0, kExprRefAsNonNull, // -- kExprLocalGet, 0, kExprBrOnNull, 0, // -- kExprCallFunction, struct_consumer2, // -- kExprBr, 1), kExprDrop, WASM_I32V(1)}); } TEST_F(FunctionBodyDecoderTest, If1) { ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(9), WASM_I32V_1(8))}); ExpectValidates(sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(9), WASM_LOCAL_GET(0))}); ExpectValidates( sigs.i_i(), {WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_I32V_1(8))}); } TEST_F(FunctionBodyDecoderTest, If_off_end) { static const uint8_t kCode[] = { WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}; for (size_t len = 3; len < arraysize(kCode); len++) { ExpectFailure(sigs.i_i(), base::VectorOf(kCode, len), kAppendEnd); ExpectFailure(sigs.i_i(), base::VectorOf(kCode, len), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, If_type1) { // float|double ? 1 : 2 static const uint8_t kCode[] = { WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_I32V_1(0), WASM_I32V_1(2))}; ExpectValidates(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type2) { // 1 ? float|double : 2 static const uint8_t kCode[] = { WASM_IF_ELSE_I(WASM_I32V_1(1), WASM_LOCAL_GET(0), WASM_I32V_1(1))}; ExpectValidates(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type3) { // stmt ? 0 : 1 static const uint8_t kCode[] = { WASM_IF_ELSE_I(WASM_NOP, WASM_I32V_1(0), WASM_I32V_1(1))}; ExpectFailure(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type4) { // 0 ? stmt : 1 static const uint8_t kCode[] = { WASM_IF_ELSE_I(WASM_LOCAL_GET(0), WASM_NOP, WASM_I32V_1(1))}; ExpectFailure(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, If_type5) { // 0 ? 1 : stmt static const uint8_t kCode[] = { WASM_IF_ELSE_I(WASM_ZERO, WASM_I32V_1(1), WASM_NOP)}; ExpectFailure(sigs.i_i(), kCode); ExpectFailure(sigs.i_f(), kCode); ExpectFailure(sigs.i_d(), kCode); } TEST_F(FunctionBodyDecoderTest, Int64Local_param) { ExpectValidates(sigs.l_l(), kCodeGetLocal0); } TEST_F(FunctionBodyDecoderTest, Int64Locals) { for (uint8_t i = 1; i < 8; i++) { AddLocals(kWasmI64, 1); for (uint8_t j = 0; j < i; j++) { ExpectValidates(sigs.l_v(), {WASM_LOCAL_GET(j)}); } } } TEST_F(FunctionBodyDecoderTest, Int32Binops) { TestBinop(kExprI32Add, sigs.i_ii()); TestBinop(kExprI32Sub, sigs.i_ii()); TestBinop(kExprI32Mul, sigs.i_ii()); TestBinop(kExprI32DivS, sigs.i_ii()); TestBinop(kExprI32DivU, sigs.i_ii()); TestBinop(kExprI32RemS, sigs.i_ii()); TestBinop(kExprI32RemU, sigs.i_ii()); TestBinop(kExprI32And, sigs.i_ii()); TestBinop(kExprI32Ior, sigs.i_ii()); TestBinop(kExprI32Xor, sigs.i_ii()); TestBinop(kExprI32Shl, sigs.i_ii()); TestBinop(kExprI32ShrU, sigs.i_ii()); TestBinop(kExprI32ShrS, sigs.i_ii()); TestBinop(kExprI32Eq, sigs.i_ii()); TestBinop(kExprI32LtS, sigs.i_ii()); TestBinop(kExprI32LeS, sigs.i_ii()); TestBinop(kExprI32LtU, sigs.i_ii()); TestBinop(kExprI32LeU, sigs.i_ii()); } TEST_F(FunctionBodyDecoderTest, DoubleBinops) { TestBinop(kExprF64Add, sigs.d_dd()); TestBinop(kExprF64Sub, sigs.d_dd()); TestBinop(kExprF64Mul, sigs.d_dd()); TestBinop(kExprF64Div, sigs.d_dd()); TestBinop(kExprF64Eq, sigs.i_dd()); TestBinop(kExprF64Lt, sigs.i_dd()); TestBinop(kExprF64Le, sigs.i_dd()); } TEST_F(FunctionBodyDecoderTest, FloatBinops) { TestBinop(kExprF32Add, sigs.f_ff()); TestBinop(kExprF32Sub, sigs.f_ff()); TestBinop(kExprF32Mul, sigs.f_ff()); TestBinop(kExprF32Div, sigs.f_ff()); TestBinop(kExprF32Eq, sigs.i_ff()); TestBinop(kExprF32Lt, sigs.i_ff()); TestBinop(kExprF32Le, sigs.i_ff()); } TEST_F(FunctionBodyDecoderTest, TypeConversions) { TestUnop(kExprI32SConvertF32, kWasmI32, kWasmF32); TestUnop(kExprI32SConvertF64, kWasmI32, kWasmF64); TestUnop(kExprI32UConvertF32, kWasmI32, kWasmF32); TestUnop(kExprI32UConvertF64, kWasmI32, kWasmF64); TestUnop(kExprF64SConvertI32, kWasmF64, kWasmI32); TestUnop(kExprF64UConvertI32, kWasmF64, kWasmI32); TestUnop(kExprF64ConvertF32, kWasmF64, kWasmF32); TestUnop(kExprF32SConvertI32, kWasmF32, kWasmI32); TestUnop(kExprF32UConvertI32, kWasmF32, kWasmI32); TestUnop(kExprF32ConvertF64, kWasmF32, kWasmF64); } TEST_F(FunctionBodyDecoderTest, MacrosVoid) { builder.InitializeMemory(); ExpectValidates(sigs.v_i(), {WASM_LOCAL_SET(0, WASM_I32V_3(87348))}); ExpectValidates( sigs.v_i(), {WASM_STORE_MEM(MachineType::Int32(), WASM_I32V_1(24), WASM_I32V_1(40))}); ExpectValidates(sigs.v_i(), {WASM_IF(WASM_LOCAL_GET(0), WASM_NOP)}); ExpectValidates(sigs.v_i(), {WASM_IF_ELSE(WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_NOP}); ExpectValidates(sigs.v_v(), {B1(WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_BR(0))}); } TEST_F(FunctionBodyDecoderTest, MacrosContinue) { ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_CONTINUE(0))}); } TEST_F(FunctionBodyDecoderTest, MacrosVariadic) { ExpectValidates(sigs.v_v(), {B2(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {B3(WASM_NOP, WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.v_v(), {WASM_LOOP(WASM_NOP, WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, MacrosNestedBlocks) { ExpectValidates(sigs.v_v(), {B2(WASM_NOP, B2(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.v_v(), {B3(WASM_NOP, // -- B2(WASM_NOP, WASM_NOP), // -- B2(WASM_NOP, WASM_NOP))}); // -- ExpectValidates(sigs.v_v(), {B1(B1(B2(WASM_NOP, WASM_NOP)))}); } TEST_F(FunctionBodyDecoderTest, MultipleReturn) { static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig_ii_v(2, 0, kIntTypes5); ExpectValidates(&sig_ii_v, {WASM_RETURN(WASM_ZERO, WASM_ONE)}); ExpectFailure(&sig_ii_v, {WASM_RETURN(WASM_ZERO)}); FunctionSig sig_iii_v(3, 0, kIntTypes5); ExpectValidates(&sig_iii_v, {WASM_RETURN(WASM_ZERO, WASM_ONE, WASM_I32V_1(44))}); ExpectFailure(&sig_iii_v, {WASM_RETURN(WASM_ZERO, WASM_ONE)}); } TEST_F(FunctionBodyDecoderTest, MultipleReturn_fallthru) { static ValueType kIntTypes5[] = {kWasmI32, kWasmI32, kWasmI32, kWasmI32, kWasmI32}; FunctionSig sig_ii_v(2, 0, kIntTypes5); ExpectValidates(&sig_ii_v, {WASM_ZERO, WASM_ONE}); ExpectFailure(&sig_ii_v, {WASM_ZERO}); FunctionSig sig_iii_v(3, 0, kIntTypes5); ExpectValidates(&sig_iii_v, {WASM_ZERO, WASM_ONE, WASM_I32V_1(44)}); ExpectFailure(&sig_iii_v, {WASM_ZERO, WASM_ONE}); } TEST_F(FunctionBodyDecoderTest, MacrosInt32) { ExpectValidates(sigs.i_i(), {WASM_I32_ADD(WASM_LOCAL_GET(0), WASM_I32V_1(12))}); ExpectValidates(sigs.i_i(), {WASM_I32_SUB(WASM_LOCAL_GET(0), WASM_I32V_1(13))}); ExpectValidates(sigs.i_i(), {WASM_I32_MUL(WASM_LOCAL_GET(0), WASM_I32V_1(14))}); ExpectValidates(sigs.i_i(), {WASM_I32_DIVS(WASM_LOCAL_GET(0), WASM_I32V_1(15))}); ExpectValidates(sigs.i_i(), {WASM_I32_DIVU(WASM_LOCAL_GET(0), WASM_I32V_1(16))}); ExpectValidates(sigs.i_i(), {WASM_I32_REMS(WASM_LOCAL_GET(0), WASM_I32V_1(17))}); ExpectValidates(sigs.i_i(), {WASM_I32_REMU(WASM_LOCAL_GET(0), WASM_I32V_1(18))}); ExpectValidates(sigs.i_i(), {WASM_I32_AND(WASM_LOCAL_GET(0), WASM_I32V_1(19))}); ExpectValidates(sigs.i_i(), {WASM_I32_IOR(WASM_LOCAL_GET(0), WASM_I32V_1(20))}); ExpectValidates(sigs.i_i(), {WASM_I32_XOR(WASM_LOCAL_GET(0), WASM_I32V_1(21))}); ExpectValidates(sigs.i_i(), {WASM_I32_SHL(WASM_LOCAL_GET(0), WASM_I32V_1(22))}); ExpectValidates(sigs.i_i(), {WASM_I32_SHR(WASM_LOCAL_GET(0), WASM_I32V_1(23))}); ExpectValidates(sigs.i_i(), {WASM_I32_SAR(WASM_LOCAL_GET(0), WASM_I32V_1(24))}); ExpectValidates(sigs.i_i(), {WASM_I32_ROR(WASM_LOCAL_GET(0), WASM_I32V_1(24))}); ExpectValidates(sigs.i_i(), {WASM_I32_ROL(WASM_LOCAL_GET(0), WASM_I32V_1(24))}); ExpectValidates(sigs.i_i(), {WASM_I32_EQ(WASM_LOCAL_GET(0), WASM_I32V_1(25))}); ExpectValidates(sigs.i_i(), {WASM_I32_NE(WASM_LOCAL_GET(0), WASM_I32V_1(25))}); ExpectValidates(sigs.i_i(), {WASM_I32_LTS(WASM_LOCAL_GET(0), WASM_I32V_1(26))}); ExpectValidates(sigs.i_i(), {WASM_I32_LES(WASM_LOCAL_GET(0), WASM_I32V_1(27))}); ExpectValidates(sigs.i_i(), {WASM_I32_LTU(WASM_LOCAL_GET(0), WASM_I32V_1(28))}); ExpectValidates(sigs.i_i(), {WASM_I32_LEU(WASM_LOCAL_GET(0), WASM_I32V_1(29))}); ExpectValidates(sigs.i_i(), {WASM_I32_GTS(WASM_LOCAL_GET(0), WASM_I32V_1(26))}); ExpectValidates(sigs.i_i(), {WASM_I32_GES(WASM_LOCAL_GET(0), WASM_I32V_1(27))}); ExpectValidates(sigs.i_i(), {WASM_I32_GTU(WASM_LOCAL_GET(0), WASM_I32V_1(28))}); ExpectValidates(sigs.i_i(), {WASM_I32_GEU(WASM_LOCAL_GET(0), WASM_I32V_1(29))}); } TEST_F(FunctionBodyDecoderTest, MacrosInt64) { ExpectValidates(sigs.l_ll(), {WASM_I64_ADD(WASM_LOCAL_GET(0), WASM_I64V_1(12))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SUB(WASM_LOCAL_GET(0), WASM_I64V_1(13))}); ExpectValidates(sigs.l_ll(), {WASM_I64_MUL(WASM_LOCAL_GET(0), WASM_I64V_1(14))}); ExpectValidates(sigs.l_ll(), {WASM_I64_DIVS(WASM_LOCAL_GET(0), WASM_I64V_1(15))}); ExpectValidates(sigs.l_ll(), {WASM_I64_DIVU(WASM_LOCAL_GET(0), WASM_I64V_1(16))}); ExpectValidates(sigs.l_ll(), {WASM_I64_REMS(WASM_LOCAL_GET(0), WASM_I64V_1(17))}); ExpectValidates(sigs.l_ll(), {WASM_I64_REMU(WASM_LOCAL_GET(0), WASM_I64V_1(18))}); ExpectValidates(sigs.l_ll(), {WASM_I64_AND(WASM_LOCAL_GET(0), WASM_I64V_1(19))}); ExpectValidates(sigs.l_ll(), {WASM_I64_IOR(WASM_LOCAL_GET(0), WASM_I64V_1(20))}); ExpectValidates(sigs.l_ll(), {WASM_I64_XOR(WASM_LOCAL_GET(0), WASM_I64V_1(21))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SHL(WASM_LOCAL_GET(0), WASM_I64V_1(22))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SHR(WASM_LOCAL_GET(0), WASM_I64V_1(23))}); ExpectValidates(sigs.l_ll(), {WASM_I64_SAR(WASM_LOCAL_GET(0), WASM_I64V_1(24))}); ExpectValidates(sigs.l_ll(), {WASM_I64_ROR(WASM_LOCAL_GET(0), WASM_I64V_1(24))}); ExpectValidates(sigs.l_ll(), {WASM_I64_ROL(WASM_LOCAL_GET(0), WASM_I64V_1(24))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LTS(WASM_LOCAL_GET(0), WASM_I64V_1(26))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LES(WASM_LOCAL_GET(0), WASM_I64V_1(27))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LTU(WASM_LOCAL_GET(0), WASM_I64V_1(28))}); ExpectValidates(sigs.i_ll(), {WASM_I64_LEU(WASM_LOCAL_GET(0), WASM_I64V_1(29))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GTS(WASM_LOCAL_GET(0), WASM_I64V_1(26))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GES(WASM_LOCAL_GET(0), WASM_I64V_1(27))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GTU(WASM_LOCAL_GET(0), WASM_I64V_1(28))}); ExpectValidates(sigs.i_ll(), {WASM_I64_GEU(WASM_LOCAL_GET(0), WASM_I64V_1(29))}); ExpectValidates(sigs.i_ll(), {WASM_I64_EQ(WASM_LOCAL_GET(0), WASM_I64V_1(25))}); ExpectValidates(sigs.i_ll(), {WASM_I64_NE(WASM_LOCAL_GET(0), WASM_I64V_1(25))}); } TEST_F(FunctionBodyDecoderTest, AllSimpleExpressions) { // Test all simple expressions which are described by a signature. #define DECODE_TEST(name, opcode, sig, ...) \ { \ const FunctionSig* sig = WasmOpcodes::Signature(kExpr##name); \ if (sig->parameter_count() == 1) { \ TestUnop(kExpr##name, sig); \ } else { \ TestBinop(kExpr##name, sig); \ } \ } FOREACH_SIMPLE_OPCODE(DECODE_TEST); #undef DECODE_TEST } TEST_F(FunctionBodyDecoderTest, MemorySize) { builder.InitializeMemory(); uint8_t code[] = {kExprMemorySize, 0}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.f_ff(), code); } TEST_F(FunctionBodyDecoderTest, LoadMemOffset) { builder.InitializeMemory(); for (int offset = 0; offset < 128; offset += 7) { uint8_t code[] = {kExprI32Const, 0, kExprI32LoadMem, ZERO_ALIGNMENT, static_cast(offset)}; ExpectValidates(sigs.i_i(), code); } } TEST_F(FunctionBodyDecoderTest, LoadMemAlignment) { builder.InitializeMemory(); struct { WasmOpcode instruction; uint32_t maximum_aligment; } values[] = { {kExprI32LoadMem8U, 0}, // -- {kExprI32LoadMem8S, 0}, // -- {kExprI32LoadMem16U, 1}, // -- {kExprI32LoadMem16S, 1}, // -- {kExprI64LoadMem8U, 0}, // -- {kExprI64LoadMem8S, 0}, // -- {kExprI64LoadMem16U, 1}, // -- {kExprI64LoadMem16S, 1}, // -- {kExprI64LoadMem32U, 2}, // -- {kExprI64LoadMem32S, 2}, // -- {kExprI32LoadMem, 2}, // -- {kExprI64LoadMem, 3}, // -- {kExprF32LoadMem, 2}, // -- {kExprF64LoadMem, 3}, // -- }; for (size_t i = 0; i < arraysize(values); i++) { for (uint8_t alignment = 0; alignment <= 4; alignment++) { uint8_t code[] = {WASM_ZERO, static_cast(values[i].instruction), alignment, ZERO_OFFSET, WASM_DROP}; Validate(alignment <= values[i].maximum_aligment, sigs.v_i(), code); } } } TEST_F(FunctionBodyDecoderTest, StoreMemOffset) { builder.InitializeMemory(); for (uint8_t offset = 0; offset < 128; offset += 7) { uint8_t code[] = {WASM_STORE_MEM_OFFSET(MachineType::Int32(), offset, WASM_ZERO, WASM_ZERO)}; ExpectValidates(sigs.v_i(), code); } } TEST_F(FunctionBodyDecoderTest, StoreMemOffset_void) { builder.InitializeMemory(); ExpectFailure(sigs.i_i(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), 0, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, LoadMemOffset_varint) { builder.InitializeMemory(); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_1(0x45)}); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_2(0x3999)}); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_3(0x344445)}); ExpectValidates(sigs.i_i(), {WASM_ZERO, kExprI32LoadMem, ZERO_ALIGNMENT, U32V_4(0x36666667)}); } TEST_F(FunctionBodyDecoderTest, StoreMemOffset_varint) { builder.InitializeMemory(); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_1(0x33)}); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_2(0x1111)}); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_3(0x222222)}); ExpectValidates(sigs.v_i(), {WASM_ZERO, WASM_ZERO, kExprI32StoreMem, ZERO_ALIGNMENT, U32V_4(0x44444444)}); } TEST_F(FunctionBodyDecoderTest, AllLoadMemCombinations) { builder.InitializeMemory(); for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; uint8_t code[] = {WASM_LOAD_MEM(mem_type, WASM_ZERO)}; FunctionSig sig(1, 0, &local_type); Validate(local_type == ValueType::For(mem_type), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, AllStoreMemCombinations) { builder.InitializeMemory(); for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(machineTypes); j++) { MachineType mem_type = machineTypes[j]; uint8_t code[] = {WASM_STORE_MEM(mem_type, WASM_ZERO, WASM_LOCAL_GET(0))}; FunctionSig sig(0, 1, &local_type); Validate(local_type == ValueType::For(mem_type), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, SimpleCalls) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_v()); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); ExpectValidates(sig, {WASM_CALL_FUNCTION0(0)}); ExpectValidates(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(27))}); ExpectValidates(sig, {WASM_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))}); } TEST_F(FunctionBodyDecoderTest, CallsWithTooFewArguments) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); builder.AddFunction(sigs.f_ff()); ExpectFailure(sig, {WASM_CALL_FUNCTION0(0)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(2, WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs2) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_i()); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(17))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F32(17.1))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(17.1))}); } TEST_F(FunctionBodyDecoderTest, CallsWithMismatchedSigs3) { const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_f()); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(0, WASM_F64(37.2))}); builder.AddFunction(sigs.i_d()); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I32V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_I64V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(1, WASM_F32(17.6))}); } TEST_F(FunctionBodyDecoderTest, SimpleReturnCalls) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_v()); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION0(0)}); ExpectValidates(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(27))}); ExpectValidates( sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_I32V_1(37), WASM_I32V_2(77))}); } TEST_F(FunctionBodyDecoderTest, ReturnCallsWithTooFewArguments) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_i()); builder.AddFunction(sigs.i_ii()); builder.AddFunction(sigs.f_ff()); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION0(0)}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(2, WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, ReturnCallWithSubtype) { WASM_FEATURE_SCOPE(return_call); auto sig = MakeSig::Returns(kWasmAnyRef); auto callee_sig = MakeSig::Returns(kWasmAnyRef.AsNonNull()); builder.AddFunction(&callee_sig); ExpectValidates(&sig, {WASM_RETURN_CALL_FUNCTION0(0)}); } TEST_F(FunctionBodyDecoderTest, ReturnCallsWithMismatchedSigs) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddFunction(sigs.i_f()); builder.AddFunction(sigs.f_f()); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(0, WASM_F64(37.2))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F64(37.2))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_F32(37.2))}); ExpectFailure(sig, {WASM_RETURN_CALL_FUNCTION(1, WASM_I32V_1(17))}); } TEST_F(FunctionBodyDecoderTest, SimpleIndirectReturnCalls) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, true, 30); uint8_t sig0 = builder.AddSignature(sigs.i_v()); uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectValidates( sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsOutOfBounds) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, false, 20); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)}); builder.AddSignature(sigs.i_v()); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(0, WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)}); builder.AddSignature(sigs.i_i()); ExpectValidates(sig, {WASM_RETURN_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithMismatchedSigs3) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmVoid); uint8_t sig0 = builder.AddSignature(sigs.i_f()); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_F64(37.2))}); uint8_t sig1 = builder.AddFunction(sigs.i_d()); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectReturnCallsWithoutTableCrash) { WASM_FEATURE_SCOPE(return_call); const FunctionSig* sig = sigs.i_i(); uint8_t sig0 = builder.AddSignature(sigs.i_v()); uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectFailure(sig, {WASM_RETURN_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IncompleteIndirectReturnCall) { const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmVoid); static uint8_t code[] = {kExprReturnCallIndirect}; ExpectFailure(sig, base::ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, MultiReturn) { ValueType storage[] = {kWasmI32, kWasmI32}; FunctionSig sig_ii_v(2, 0, storage); FunctionSig sig_v_ii(0, 2, storage); builder.AddFunction(&sig_v_ii); builder.AddFunction(&sig_ii_v); ExpectValidates(&sig_ii_v, {WASM_CALL_FUNCTION0(1)}); ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), WASM_DROP, WASM_DROP}); ExpectValidates(sigs.v_v(), {WASM_CALL_FUNCTION0(1), kExprCallFunction, 0}); } TEST_F(FunctionBodyDecoderTest, MultiReturnType) { for (size_t a = 0; a < arraysize(kValueTypes); a++) { for (size_t b = 0; b < arraysize(kValueTypes); b++) { for (size_t c = 0; c < arraysize(kValueTypes); c++) { for (size_t d = 0; d < arraysize(kValueTypes); d++) { ValueType storage_ab[] = {kValueTypes[a], kValueTypes[b]}; FunctionSig sig_ab_v(2, 0, storage_ab); ValueType storage_cd[] = {kValueTypes[c], kValueTypes[d]}; FunctionSig sig_cd_v(2, 0, storage_cd); TestModuleBuilder builder; module = builder.module(); builder.AddFunction(&sig_cd_v); ExpectValidates(&sig_cd_v, {WASM_CALL_FUNCTION0(0)}); if (IsSubtypeOf(kValueTypes[c], kValueTypes[a], module) && IsSubtypeOf(kValueTypes[d], kValueTypes[b], module)) { ExpectValidates(&sig_ab_v, {WASM_CALL_FUNCTION0(0)}); } else { ExpectFailure(&sig_ab_v, {WASM_CALL_FUNCTION0(0)}); } } } } } } TEST_F(FunctionBodyDecoderTest, SimpleIndirectCalls) { const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, false, 20); uint8_t sig0 = builder.AddSignature(sigs.i_v()); uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectValidates(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectValidates(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsOutOfBounds) { const FunctionSig* sig = sigs.i_i(); builder.AddTable(kWasmFuncRef, 20, false, 20); ExpectFailure(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)}); builder.AddSignature(sigs.i_v()); ExpectValidates(sig, {WASM_CALL_INDIRECT(0, WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(22), WASM_ZERO)}); builder.AddSignature(sigs.i_i()); ExpectValidates(sig, {WASM_CALL_INDIRECT(1, WASM_I32V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(2, WASM_I32V_1(27), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs1) { const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmVoid); uint8_t sig0 = builder.AddSignature(sigs.i_f()); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_F64(37.2))}); uint8_t sig1 = builder.AddFunction(sigs.i_d()); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I64V_1(16), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_F32(17.6), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsWithMismatchedSigs2) { WASM_FEATURE_SCOPE(typed_funcref); uint8_t table_type_index = builder.AddSignature(sigs.i_i()); uint8_t table_index = builder.InitializeTable(ValueType::RefNull(table_type_index)); ExpectValidates(sigs.i_v(), {WASM_CALL_INDIRECT_TABLE(table_index, table_type_index, WASM_I32V_1(42), WASM_ZERO)}); uint8_t wrong_type_index = builder.AddSignature(sigs.i_ii()); ExpectFailure(sigs.i_v(), {WASM_CALL_INDIRECT_TABLE(table_index, wrong_type_index, WASM_I32V_1(42), WASM_ZERO)}, kAppendEnd, "call_indirect: Immediate signature #1 is not a subtype of " "immediate table #0"); uint8_t non_function_table_index = builder.InitializeTable(kWasmExternRef); ExpectFailure( sigs.i_v(), {WASM_CALL_INDIRECT_TABLE(non_function_table_index, table_type_index, WASM_I32V_1(42), WASM_ZERO)}, kAppendEnd, "call_indirect: immediate table #1 is not of a function type"); } TEST_F(FunctionBodyDecoderTest, TablesWithFunctionSubtyping) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); EXPERIMENTAL_FLAG_SCOPE(gc); uint8_t empty_struct = builder.AddStruct({}); uint8_t super_struct = builder.AddStruct({F(kWasmI32, true)}, empty_struct); uint8_t sub_struct = builder.AddStruct({F(kWasmI32, true), F(kWasmF64, true)}, super_struct); uint8_t table_supertype = builder.AddSignature( FunctionSig::Build(zone(), {ValueType::RefNull(empty_struct)}, {ValueType::RefNull(sub_struct)})); uint8_t table_type = builder.AddSignature( FunctionSig::Build(zone(), {ValueType::RefNull(super_struct)}, {ValueType::RefNull(sub_struct)}), table_supertype); auto function_sig = FunctionSig::Build(zone(), {ValueType::RefNull(sub_struct)}, {ValueType::RefNull(super_struct)}); uint8_t function_type = builder.AddSignature(function_sig, table_type); uint8_t function = builder.AddFunction(function_type); uint8_t table = builder.InitializeTable(ValueType::RefNull(table_type)); // We can call-indirect from a typed function table with an immediate type // that is a subtype of the table type. ExpectValidates( FunctionSig::Build(zone(), {ValueType::RefNull(sub_struct)}, {}), {WASM_CALL_INDIRECT_TABLE(table, function_type, WASM_STRUCT_NEW_DEFAULT(super_struct), WASM_ZERO)}); // table.set's subtyping works as expected. ExpectValidates(sigs.v_i(), {WASM_TABLE_SET(0, WASM_LOCAL_GET(0), WASM_REF_FUNC(function))}); // table.get's subtyping works as expected. ExpectValidates( FunctionSig::Build(zone(), {ValueType::RefNull(table_supertype)}, {kWasmI32}), {WASM_TABLE_GET(0, WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, IndirectCallsWithoutTableCrash) { const FunctionSig* sig = sigs.i_i(); uint8_t sig0 = builder.AddSignature(sigs.i_v()); uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig0, WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig1, WASM_I32V_1(22), WASM_ZERO)}); ExpectFailure(sig, {WASM_CALL_INDIRECT(sig2, WASM_I32V_1(32), WASM_I32V_2(72), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, IncompleteIndirectCall) { const FunctionSig* sig = sigs.i_i(); builder.InitializeTable(wasm::kWasmVoid); static uint8_t code[] = {kExprCallIndirect}; ExpectFailure(sig, base::ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, IncompleteStore) { const FunctionSig* sig = sigs.i_i(); builder.InitializeMemory(); builder.InitializeTable(wasm::kWasmVoid); static uint8_t code[] = {kExprI32StoreMem}; ExpectFailure(sig, base::ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, IncompleteI8x16Shuffle) { WASM_FEATURE_SCOPE(simd); const FunctionSig* sig = sigs.i_i(); builder.InitializeMemory(); builder.InitializeTable(wasm::kWasmVoid); static uint8_t code[] = {kSimdPrefix, static_cast(kExprI8x16Shuffle & 0xff)}; ExpectFailure(sig, base::ArrayVector(code), kOmitEnd); } TEST_F(FunctionBodyDecoderTest, SimpleImportCalls) { const FunctionSig* sig = sigs.i_i(); uint8_t f0 = builder.AddImport(sigs.i_v()); uint8_t f1 = builder.AddImport(sigs.i_i()); uint8_t f2 = builder.AddImport(sigs.i_ii()); ExpectValidates(sig, {WASM_CALL_FUNCTION0(f0)}); ExpectValidates(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(22))}); ExpectValidates(sig, {WASM_CALL_FUNCTION(f2, WASM_I32V_1(32), WASM_I32V_2(72))}); } TEST_F(FunctionBodyDecoderTest, ImportCallsWithMismatchedSigs3) { const FunctionSig* sig = sigs.i_i(); uint8_t f0 = builder.AddImport(sigs.i_f()); ExpectFailure(sig, {WASM_CALL_FUNCTION0(f0)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I32V_1(17))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_I64V_1(27))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f0, WASM_F64(37.2))}); uint8_t f1 = builder.AddImport(sigs.i_d()); ExpectFailure(sig, {WASM_CALL_FUNCTION0(f1)}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I32V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_I64V_1(16))}); ExpectFailure(sig, {WASM_CALL_FUNCTION(f1, WASM_F32(17.6))}); } TEST_F(FunctionBodyDecoderTest, Int32Globals) { const FunctionSig* sig = sigs.i_i(); builder.AddGlobal(kWasmI32); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectFailure(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0))}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, ImmutableGlobal) { const FunctionSig* sig = sigs.v_v(); uint32_t g0 = builder.AddGlobal(kWasmI32, true); uint32_t g1 = builder.AddGlobal(kWasmI32, false); ExpectValidates(sig, {WASM_GLOBAL_SET(g0, WASM_ZERO)}); ExpectFailure(sig, {WASM_GLOBAL_SET(g1, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Int32Globals_fail) { const FunctionSig* sig = sigs.i_i(); builder.AddGlobal(kWasmI64); builder.AddGlobal(kWasmI64); builder.AddGlobal(kWasmF32); builder.AddGlobal(kWasmF64); ExpectFailure(sig, {WASM_GLOBAL_GET(0)}); ExpectFailure(sig, {WASM_GLOBAL_GET(1)}); ExpectFailure(sig, {WASM_GLOBAL_GET(2)}); ExpectFailure(sig, {WASM_GLOBAL_GET(3)}); ExpectFailure(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_ZERO}); ExpectFailure(sig, {WASM_GLOBAL_SET(1, WASM_LOCAL_GET(0)), WASM_ZERO}); ExpectFailure(sig, {WASM_GLOBAL_SET(2, WASM_LOCAL_GET(0)), WASM_ZERO}); ExpectFailure(sig, {WASM_GLOBAL_SET(3, WASM_LOCAL_GET(0)), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Int64Globals) { const FunctionSig* sig = sigs.l_l(); builder.AddGlobal(kWasmI64); builder.AddGlobal(kWasmI64); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_GET(1)}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_SET(1, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, Float32Globals) { const FunctionSig* sig = sigs.f_ff(); builder.AddGlobal(kWasmF32); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, Float64Globals) { const FunctionSig* sig = sigs.d_dd(); builder.AddGlobal(kWasmF64); ExpectValidates(sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, NullRefGlobals) { WASM_FEATURE_SCOPE(gc); ValueType nullRefs[] = {kWasmNullRef, kWasmNullRef, kWasmNullRef}; FunctionSig sig(1, 2, nullRefs); builder.AddGlobal(kWasmNullRef); ExpectValidates(&sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(&sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); ExpectValidates( &sig, {WASM_GLOBAL_SET(0, WASM_REF_NULL(kNoneCode)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, NullExternRefGlobals) { WASM_FEATURE_SCOPE(gc); ValueType nullExternRefs[] = {kWasmNullExternRef, kWasmNullExternRef, kWasmNullExternRef}; FunctionSig sig(1, 2, nullExternRefs); builder.AddGlobal(kWasmNullExternRef); ExpectValidates(&sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(&sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); ExpectValidates(&sig, {WASM_GLOBAL_SET(0, WASM_REF_NULL(kNoExternCode)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, NullFuncRefGlobals) { WASM_FEATURE_SCOPE(gc); ValueType nullFuncRefs[] = {kWasmNullFuncRef, kWasmNullFuncRef, kWasmNullFuncRef}; FunctionSig sig(1, 2, nullFuncRefs); builder.AddGlobal(kWasmNullFuncRef); ExpectValidates(&sig, {WASM_GLOBAL_GET(0)}); ExpectValidates(&sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(0)}); ExpectValidates(&sig, {WASM_GLOBAL_SET(0, WASM_REF_NULL(kNoFuncCode)), WASM_LOCAL_GET(0)}); } TEST_F(FunctionBodyDecoderTest, AllGetGlobalCombinations) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType global_type = kValueTypes[j]; FunctionSig sig(1, 0, &local_type); TestModuleBuilder builder; module = builder.module(); builder.AddGlobal(global_type); Validate(IsSubtypeOf(global_type, local_type, module), &sig, {WASM_GLOBAL_GET(0)}); } } } TEST_F(FunctionBodyDecoderTest, AllSetGlobalCombinations) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType local_type = kValueTypes[i]; for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType global_type = kValueTypes[j]; FunctionSig sig(0, 1, &local_type); TestModuleBuilder builder; module = builder.module(); builder.AddGlobal(global_type); Validate(IsSubtypeOf(local_type, global_type, module), &sig, {WASM_GLOBAL_SET(0, WASM_LOCAL_GET(0))}); } } } TEST_F(FunctionBodyDecoderTest, TableSet) { WASM_FEATURE_SCOPE(typed_funcref); uint8_t tab_type = builder.AddSignature(sigs.i_i()); uint8_t tab_ref1 = builder.AddTable(kWasmExternRef, 10, true, 20); uint8_t tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30); uint8_t tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20); uint8_t tab_ref2 = builder.AddTable(kWasmExternRef, 10, false, 20); uint8_t tab_typed_func = builder.AddTable(ValueType::RefNull(tab_type), 10, false, 20); ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32, ValueType::Ref(tab_type)}; FunctionSig sig(0, 4, sig_types); uint8_t local_ref = 0; uint8_t local_func = 1; uint8_t local_int = 2; uint8_t local_typed_func = 3; ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(6), WASM_LOCAL_GET(local_ref))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(5), WASM_LOCAL_GET(local_func))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(7), WASM_LOCAL_GET(local_func))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(8), WASM_LOCAL_GET(local_ref))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_typed_func, WASM_I32V(8), WASM_LOCAL_GET(local_typed_func))}); ExpectValidates(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(8), WASM_LOCAL_GET(local_typed_func))}); // Only values of the correct type can be set to a table. ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(4), WASM_LOCAL_GET(local_func))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(9), WASM_LOCAL_GET(local_ref))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_func2, WASM_I32V(3), WASM_LOCAL_GET(local_ref))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref2, WASM_I32V(2), WASM_LOCAL_GET(local_func))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_ref1, WASM_I32V(9), WASM_LOCAL_GET(local_int))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_func1, WASM_I32V(3), WASM_LOCAL_GET(local_int))}); ExpectFailure(&sig, {WASM_TABLE_SET(tab_typed_func, WASM_I32V(3), WASM_LOCAL_GET(local_func))}); // Out-of-bounds table index should fail. uint8_t oob_tab = 37; ExpectFailure( &sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(9), WASM_LOCAL_GET(local_ref))}); ExpectFailure(&sig, {WASM_TABLE_SET(oob_tab, WASM_I32V(3), WASM_LOCAL_GET(local_func))}); } TEST_F(FunctionBodyDecoderTest, TableGet) { WASM_FEATURE_SCOPE(typed_funcref); uint8_t tab_type = builder.AddSignature(sigs.i_i()); uint8_t tab_ref1 = builder.AddTable(kWasmExternRef, 10, true, 20); uint8_t tab_func1 = builder.AddTable(kWasmFuncRef, 20, true, 30); uint8_t tab_func2 = builder.AddTable(kWasmFuncRef, 10, false, 20); uint8_t tab_ref2 = builder.AddTable(kWasmExternRef, 10, false, 20); uint8_t tab_typed_func = builder.AddTable(ValueType::RefNull(tab_type), 10, false, 20); ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32, ValueType::RefNull(tab_type)}; FunctionSig sig(0, 4, sig_types); uint8_t local_ref = 0; uint8_t local_func = 1; uint8_t local_int = 2; uint8_t local_typed_func = 3; ExpectValidates( &sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(tab_ref1, WASM_I32V(6)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(tab_ref2, WASM_I32V(8)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_func1, WASM_I32V(5)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_func2, WASM_I32V(7)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_ref, WASM_SEQ(WASM_I32V(6), kExprTableGet, U32V_2(tab_ref1)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_typed_func, WASM_I32V(7)))}); ExpectValidates( &sig, {WASM_LOCAL_SET(local_typed_func, WASM_TABLE_GET(tab_typed_func, WASM_I32V(7)))}); // We cannot store references as any other type. ExpectFailure(&sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_ref1, WASM_I32V(4)))}); ExpectFailure(&sig, {WASM_LOCAL_SET( local_ref, WASM_TABLE_GET(tab_func1, WASM_I32V(9)))}); ExpectFailure(&sig, {WASM_LOCAL_SET( local_ref, WASM_TABLE_GET(tab_func2, WASM_I32V(3)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(tab_ref2, WASM_I32V(2)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_int, WASM_TABLE_GET(tab_ref1, WASM_I32V(9)))}); ExpectFailure(&sig, {WASM_LOCAL_SET( local_int, WASM_TABLE_GET(tab_func1, WASM_I32V(3)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_typed_func, WASM_TABLE_GET(tab_func1, WASM_I32V(3)))}); // Out-of-bounds table index should fail. uint8_t oob_tab = 37; ExpectFailure( &sig, {WASM_LOCAL_SET(local_ref, WASM_TABLE_GET(oob_tab, WASM_I32V(9)))}); ExpectFailure(&sig, {WASM_LOCAL_SET(local_func, WASM_TABLE_GET(oob_tab, WASM_I32V(3)))}); } TEST_F(FunctionBodyDecoderTest, MultiTableCallIndirect) { uint8_t tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20); uint8_t tab_func = builder.AddTable(kWasmFuncRef, 20, true, 30); ValueType sig_types[]{kWasmExternRef, kWasmFuncRef, kWasmI32}; FunctionSig sig(0, 3, sig_types); uint8_t sig_index = builder.AddSignature(sigs.i_v()); // We can store funcref values as externref, but not the other way around. ExpectValidates(sigs.i_v(), {kExprI32Const, 0, kExprCallIndirect, sig_index, tab_func}); ExpectFailure(sigs.i_v(), {kExprI32Const, 0, kExprCallIndirect, sig_index, tab_ref}); } TEST_F(FunctionBodyDecoderTest, WasmMemoryGrow) { builder.InitializeMemory(); uint8_t code[] = {WASM_LOCAL_GET(0), kExprMemoryGrow, 0}; ExpectValidates(sigs.i_i(), code); ExpectFailure(sigs.i_d(), code); } TEST_F(FunctionBodyDecoderTest, BreakEnd) { ExpectValidates( sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD(WASM_BRV(0, WASM_ZERO), WASM_ZERO))}); ExpectValidates( sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD(WASM_ZERO, WASM_BRV(0, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, BreakIfBinop) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD( WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO), WASM_ZERO))}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_I32_ADD( WASM_ZERO, WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))}); ExpectValidates( sigs.f_ff(), {WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, BreakIfBinop_fail) { ExpectFailure( sigs.f_ff(), {WASM_BLOCK_F(WASM_F32_ABS(WASM_BRV_IF(0, WASM_ZERO, WASM_ZERO)))}); ExpectFailure( sigs.i_i(), {WASM_BLOCK_I(WASM_F32_ABS(WASM_BRV_IF(0, WASM_F32(0.0f), WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, BreakIfUnrNarrow) { ExpectFailure( sigs.f_ff(), {WASM_BLOCK_I(WASM_BRV_IF(0, WASM_UNREACHABLE, WASM_UNREACHABLE), WASM_RETURN0), WASM_F32(0.0)}); } TEST_F(FunctionBodyDecoderTest, BreakNesting1) { for (int i = 0; i < 5; i++) { // (block[2] (loop[2] (if (get p) break[N]) (set p 1)) p) uint8_t code[] = {WASM_BLOCK_I( WASM_LOOP(WASM_IF(WASM_LOCAL_GET(0), WASM_BRV(i + 1, WASM_ZERO)), WASM_LOCAL_SET(0, WASM_I32V_1(1))), WASM_ZERO)}; Validate(i < 3, sigs.i_i(), code); } } TEST_F(FunctionBodyDecoderTest, BreakNesting2) { for (int i = 0; i < 7; i++) { uint8_t code[] = {B1(WASM_LOOP(WASM_IF(WASM_ZERO, WASM_BR(i)), WASM_NOP))}; Validate(i <= 3, sigs.v_v(), code); } } TEST_F(FunctionBodyDecoderTest, BreakNesting3) { for (int i = 0; i < 7; i++) { // (block[1] (loop[1] (block[1] (if 0 break[N]) uint8_t code[] = { WASM_BLOCK(WASM_LOOP(B1(WASM_IF(WASM_ZERO, WASM_BR(i + 1)))))}; Validate(i < 4, sigs.v_v(), code); } } TEST_F(FunctionBodyDecoderTest, BreaksWithMultipleTypes) { ExpectFailure(sigs.i_i(), {B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_F32(7.7))}); ExpectFailure(sigs.i_i(), {B2(WASM_BRV_IF_ZERO(0, WASM_I32V_1(7)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))}); ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(8)), WASM_BRV_IF_ZERO(0, WASM_I32V_1(0)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)))}); ExpectFailure(sigs.i_i(), {B3(WASM_BRV_IF_ZERO(0, WASM_I32V_1(9)), WASM_BRV_IF_ZERO(0, WASM_F32(7.7)), WASM_BRV_IF_ZERO(0, WASM_I32V_1(11)))}); } TEST_F(FunctionBodyDecoderTest, BreakNesting_6_levels) { for (int mask = 0; mask < 64; mask++) { for (int i = 0; i < 14; i++) { uint8_t code[] = {WASM_BLOCK(WASM_BLOCK( WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BLOCK(WASM_BR(i)))))))}; int depth = 6; int m = mask; for (size_t pos = 0; pos < sizeof(code) - 1; pos++) { if (code[pos] != kExprBlock) continue; if (m & 1) { code[pos] = kExprLoop; code[pos + 1] = kVoidCode; } m >>= 1; } Validate(i <= depth, sigs.v_v(), code); } } } TEST_F(FunctionBodyDecoderTest, Break_TypeCheck) { for (const FunctionSig* sig : {sigs.i_i(), sigs.l_l(), sigs.f_ff(), sigs.d_dd()}) { // unify X and X => OK uint8_t code[] = {WASM_BLOCK_T( sig->GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(0))}; ExpectValidates(sig, code); } // unify i32 and f32 => fail ExpectFailure(sigs.i_i(), {WASM_BLOCK_I(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_ZERO)), WASM_F32(1.2))}); // unify f64 and f64 => OK ExpectValidates( sigs.d_dd(), {WASM_BLOCK_D(WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))), WASM_F64(1.2))}); } TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll1) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, storage); uint8_t code[] = {WASM_BLOCK_T( sig.GetReturn(), WASM_IF(WASM_ZERO, WASM_BRV(0, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(1))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll2) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, storage); uint8_t code[] = {WASM_IF_ELSE_T(sig.GetReturn(0), WASM_ZERO, WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(1))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, Break_TypeCheckAll3) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType storage[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, storage); uint8_t code[] = {WASM_IF_ELSE_T(sig.GetReturn(), WASM_ZERO, WASM_LOCAL_GET(1), WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, Break_Unify) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; ValueType storage[] = {kWasmI32, kWasmI32, type}; FunctionSig sig(1, 2, storage); uint8_t code1[] = {WASM_BLOCK_T( type, WASM_IF(WASM_ZERO, WASM_BRV(1, WASM_LOCAL_GET(which))), WASM_LOCAL_GET(which ^ 1))}; Validate(type == kWasmI32, &sig, code1); } } } TEST_F(FunctionBodyDecoderTest, BreakIf_cond_type) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j]}; FunctionSig sig(1, 2, types); uint8_t code[] = {WASM_BLOCK_T( types[0], WASM_BRV_IF(0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)))}; Validate(types[2] == kWasmI32, &sig, code); } } } TEST_F(FunctionBodyDecoderTest, BreakIf_val_type) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { for (size_t j = 0; j < arraysize(kValueTypes); j++) { ValueType types[] = {kValueTypes[i], kValueTypes[i], kValueTypes[j], kWasmI32}; FunctionSig sig(1, 3, types); uint8_t code[] = {WASM_BLOCK_T( types[1], WASM_BRV_IF(0, WASM_LOCAL_GET(1), WASM_LOCAL_GET(2)), WASM_DROP, WASM_LOCAL_GET(0))}; Validate(IsSubtypeOf(kValueTypes[j], kValueTypes[i], module), &sig, code); } } } TEST_F(FunctionBodyDecoderTest, BreakIf_Unify) { for (int which = 0; which < 2; which++) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; ValueType storage[] = {kWasmI32, kWasmI32, type}; FunctionSig sig(1, 2, storage); uint8_t code[] = {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(which)), WASM_DROP, WASM_LOCAL_GET(which ^ 1))}; Validate(type == kWasmI32, &sig, code); } } } TEST_F(FunctionBodyDecoderTest, BrTable0) { ExpectFailure(sigs.v_v(), {kExprBrTable, 0, BR_TARGET(0)}); } TEST_F(FunctionBodyDecoderTest, BrTable0b) { static uint8_t code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(0)}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, BrTable0c) { static uint8_t code[] = {kExprI32Const, 11, kExprBrTable, 0, BR_TARGET(1)}; ExpectFailure(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); } TEST_F(FunctionBodyDecoderTest, BrTable1a) { ExpectValidates(sigs.v_v(), {B1(WASM_BR_TABLE(WASM_I32V_2(67), 0, BR_TARGET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrTable1b) { static uint8_t code[] = {B1(WASM_BR_TABLE(WASM_ZERO, 0, BR_TARGET(0)))}; ExpectValidates(sigs.v_v(), code); ExpectFailure(sigs.i_i(), code); ExpectFailure(sigs.f_ff(), code); ExpectFailure(sigs.d_dd(), code); } TEST_F(FunctionBodyDecoderTest, BrTable2a) { ExpectValidates( sigs.v_v(), {B1(WASM_BR_TABLE(WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrTable2b) { ExpectValidates(sigs.v_v(), {WASM_BLOCK(WASM_BLOCK(WASM_BR_TABLE( WASM_I32V_2(67), 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTableSubtyping) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t supertype1 = builder.AddStruct({F(kWasmI8, true)}); uint8_t supertype2 = builder.AddStruct({F(kWasmI8, true), F(kWasmI16, false)}, supertype1); uint8_t subtype = builder.AddStruct( {F(kWasmI8, true), F(kWasmI16, false), F(kWasmI32, true)}, supertype2); ExpectValidates( sigs.v_v(), {WASM_BLOCK_R(wasm::ValueType::Ref(supertype1), WASM_BLOCK_R(wasm::ValueType::Ref(supertype2), WASM_STRUCT_NEW(subtype, WASM_I32V(10), WASM_I32V(20), WASM_I32V(30)), WASM_BR_TABLE(WASM_I32V(5), 1, BR_TARGET(0), BR_TARGET(1))), WASM_UNREACHABLE), WASM_DROP}); } TEST_F(FunctionBodyDecoderTest, BrTable_off_end) { static uint8_t code[] = { B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(0)))}; for (size_t len = 1; len < sizeof(code); len++) { ExpectFailure(sigs.i_i(), base::VectorOf(code, len), kAppendEnd); ExpectFailure(sigs.i_i(), base::VectorOf(code, len), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br1) { for (int depth = 0; depth < 4; depth++) { uint8_t code[] = { B1(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(depth)))}; Validate(depth <= 1, sigs.v_i(), code); } } TEST_F(FunctionBodyDecoderTest, BrTable_invalid_br2) { for (int depth = 0; depth < 7; depth++) { uint8_t code[] = { WASM_LOOP(WASM_BR_TABLE(WASM_LOCAL_GET(0), 0, BR_TARGET(depth)))}; Validate(depth < 2, sigs.v_i(), code); } } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch1) { ExpectFailure( sigs.v_v(), {WASM_BLOCK(WASM_BLOCK_I( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch2) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_I(WASM_BLOCK( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch_loop1) { ExpectFailure( sigs.v_v(), {WASM_LOOP(WASM_BLOCK_I( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_arity_mismatch_loop2) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_I(WASM_LOOP( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_loop_block) { ExpectValidates( sigs.v_v(), {WASM_LOOP(WASM_BLOCK( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_block_loop) { ExpectValidates( sigs.v_v(), {WASM_LOOP(WASM_BLOCK( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch1) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_I(WASM_BLOCK_F( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch2) { ExpectFailure( sigs.v_v(), {WASM_BLOCK_F(WASM_BLOCK_I( WASM_ONE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrTable_type_mismatch_unreachable) { ExpectFailure(sigs.v_v(), {WASM_BLOCK_F(WASM_BLOCK_I( WASM_UNREACHABLE, WASM_BR_TABLE(WASM_ONE, 1, BR_TARGET(0), BR_TARGET(1))))}); } TEST_F(FunctionBodyDecoderTest, BrUnreachable1) { ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0)}); } TEST_F(FunctionBodyDecoderTest, BrUnreachable2) { ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0), WASM_NOP}); ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprBrTable, 0, BR_TARGET(0), WASM_ZERO}); } TEST_F(FunctionBodyDecoderTest, Brv1) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_BRV(0, WASM_ZERO))}); ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_LOOP_I(WASM_BRV(2, WASM_ZERO)))}); } TEST_F(FunctionBodyDecoderTest, Brv1_type) { ExpectValidates(sigs.i_ii(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.l_ll(), {WASM_BLOCK_L(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.f_ff(), {WASM_BLOCK_F(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.d_dd(), {WASM_BLOCK_D(WASM_BRV(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, Brv1_type_n) { ExpectFailure(sigs.i_f(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))}); ExpectFailure(sigs.i_d(), {WASM_BLOCK_I(WASM_BRV(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrvIf1) { ExpectValidates(sigs.i_v(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_ZERO))}); } TEST_F(FunctionBodyDecoderTest, BrvIf1_type) { ExpectValidates(sigs.i_i(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.l_l(), {WASM_BLOCK_L(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.f_ff(), {WASM_BLOCK_F(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectValidates(sigs.d_dd(), {WASM_BLOCK_D(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, BrvIf1_type_n) { ExpectFailure(sigs.i_f(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); ExpectFailure(sigs.i_d(), {WASM_BLOCK_I(WASM_BRV_IF_ZERO(0, WASM_LOCAL_GET(0)))}); } TEST_F(FunctionBodyDecoderTest, Select) { ExpectValidates(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectValidates(sigs.f_ff(), {WASM_SELECT(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)}); ExpectValidates(sigs.d_dd(), {WASM_SELECT(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)}); ExpectValidates(sigs.l_l(), {WASM_SELECT(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Select_needs_value_type) { ExpectFailure(sigs.a_a(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectFailure(sigs.c_c(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Select_fail1) { ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(0.0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_F32(0.0), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_F32(0.0))}); } TEST_F(FunctionBodyDecoderTest, Select_fail2) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; if (type == kWasmI32) continue; // Select without specified type is only allowed for number types. if (type == kWasmExternRef) continue; ValueType types[] = {type, kWasmI32, type}; FunctionSig sig(1, 2, types); ExpectValidates(&sig, {WASM_SELECT(WASM_LOCAL_GET(1), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))}); ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}); ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))}); ExpectFailure(&sig, {WASM_SELECT(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}); } } TEST_F(FunctionBodyDecoderTest, Select_TypeCheck) { ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(9.9), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_LOCAL_GET(0), WASM_F64(0.25), WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_i(), {WASM_SELECT(WASM_F32(9.9), WASM_LOCAL_GET(0), WASM_I64V_1(0))}); } TEST_F(FunctionBodyDecoderTest, SelectWithType) { ExpectValidates(sigs.i_i(), {WASM_SELECT_I(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectValidates(sigs.f_ff(), {WASM_SELECT_F(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)}); ExpectValidates(sigs.d_dd(), {WASM_SELECT_D(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)}); ExpectValidates(sigs.l_l(), {WASM_SELECT_L(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)}); ExpectValidates(sigs.a_a(), {WASM_SELECT_R(WASM_REF_NULL(kExternRefCode), WASM_REF_NULL(kExternRefCode), WASM_ZERO)}); ExpectValidates(sigs.c_c(), {WASM_SELECT_A(WASM_REF_NULL(kFuncRefCode), WASM_REF_NULL(kFuncRefCode), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, SelectWithType_fail) { ExpectFailure(sigs.i_i(), {WASM_SELECT_F(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_ZERO)}); ExpectFailure(sigs.f_ff(), {WASM_SELECT_D(WASM_F32(0.0), WASM_F32(0.0), WASM_ZERO)}); ExpectFailure(sigs.d_dd(), {WASM_SELECT_L(WASM_F64(0.0), WASM_F64(0.0), WASM_ZERO)}); ExpectFailure(sigs.l_l(), {WASM_SELECT_I(WASM_I64V_1(0), WASM_I64V_1(0), WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, Throw) { uint8_t ex1 = builder.AddException(sigs.v_v()); uint8_t ex2 = builder.AddException(sigs.v_i()); uint8_t ex3 = builder.AddException(sigs.v_ii()); ExpectValidates(sigs.v_v(), {kExprThrow, ex1}); ExpectValidates(sigs.v_v(), {WASM_I32V(0), kExprThrow, ex2}); ExpectFailure(sigs.v_v(), {WASM_F32(0.0), kExprThrow, ex2}); ExpectValidates(sigs.v_v(), {WASM_I32V(0), WASM_I32V(0), kExprThrow, ex3}); ExpectFailure(sigs.v_v(), {WASM_F32(0.0), WASM_I32V(0), kExprThrow, ex3}); ExpectFailure(sigs.v_v(), {kExprThrow, 99}); } TEST_F(FunctionBodyDecoderTest, ThrowUnreachable) { uint8_t ex1 = builder.AddException(sigs.v_v()); uint8_t ex2 = builder.AddException(sigs.v_i()); ExpectValidates(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_NOP}); ExpectValidates(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_NOP}); ExpectValidates(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_ZERO}); ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_ZERO}); ExpectFailure(sigs.i_i(), {WASM_LOCAL_GET(0), kExprThrow, ex1, WASM_F32(0.0)}); ExpectFailure(sigs.v_i(), {WASM_LOCAL_GET(0), kExprThrow, ex2, WASM_F32(0.0)}); } #define WASM_TRY_OP kExprTry, kVoidCode TEST_F(FunctionBodyDecoderTest, TryCatch) { uint8_t ex = builder.AddException(sigs.v_v()); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, kExprEnd}); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, kExprCatchAll, kExprEnd}); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprEnd}, kAppendEnd); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprCatchAll, kExprCatch, ex, kExprEnd}, kAppendEnd, "catch after catch-all for try"); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprCatchAll, kExprCatchAll, kExprEnd}, kAppendEnd, "catch-all already present for try"); ExpectFailure(sigs.v_v(), {kExprCatch, ex, kExprEnd}, kAppendEnd, "catch does not match a try"); } TEST_F(FunctionBodyDecoderTest, Rethrow) { ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatchAll, kExprRethrow, 0, kExprEnd}); ExpectFailure(sigs.v_v(), {WASM_TRY_OP, kExprRethrow, 0, kExprCatch, kExprEnd}, kAppendEnd, "rethrow not targeting catch or catch-all"); ExpectFailure(sigs.v_v(), {WASM_BLOCK(kExprRethrow, 0)}, kAppendEnd, "rethrow not targeting catch or catch-all"); ExpectFailure(sigs.v_v(), {kExprRethrow, 0}, kAppendEnd, "rethrow not targeting catch or catch-all"); } TEST_F(FunctionBodyDecoderTest, TryDelegate) { uint8_t ex = builder.AddException(sigs.v_v()); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0), kExprCatch, ex, kExprEnd}); ExpectValidates( sigs.v_v(), {WASM_BLOCK(WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 2), kExprCatch, ex, kExprEnd)}); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, kExprCatch, ex, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0), kExprEnd}, kAppendEnd); ExpectValidates(sigs.v_v(), {WASM_TRY_OP, WASM_BLOCK(WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 0)), kExprCatch, ex, kExprEnd}, kAppendEnd); ExpectFailure( sigs.v_v(), {WASM_BLOCK(WASM_TRY_OP, WASM_TRY_DELEGATE(WASM_STMTS(kExprThrow, ex), 3), kExprCatch, ex, kExprEnd)}, kAppendEnd, "invalid branch depth: 3"); ExpectFailure( sigs.v_v(), {WASM_TRY_OP, WASM_TRY_OP, kExprCatch, ex, kExprDelegate, 0, kExprEnd}, kAppendEnd, "delegate does not match a try"); ExpectFailure( sigs.v_v(), {WASM_TRY_OP, WASM_TRY_OP, kExprCatchAll, kExprDelegate, 1, kExprEnd}, kAppendEnd, "delegate does not match a try"); } #undef WASM_TRY_OP TEST_F(FunctionBodyDecoderTest, MultiValBlock1) { uint8_t sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates( sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_NOP), kExprI32Add}, kAppendEnd, "expected 2 elements on the stack for fallthru, found 0"); ExpectFailure( sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0)), kExprI32Add}, kAppendEnd, "expected 2 elements on the stack for fallthru, found 1"); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), kExprI32Add}, kAppendEnd, "expected 2 elements on the stack for fallthru, found 3"); ExpectFailure( sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprF32Add}, kAppendEnd, "f32.add[0] expected type f32, found block of type i32"); uint8_t sig1 = builder.AddSignature(sigs.v_i()); ExpectFailure( sigs.v_i(), {WASM_LOCAL_GET(0), WASM_BLOCK(WASM_BLOCK_X(sig1, WASM_UNREACHABLE))}, kAppendEnd, "not enough arguments on the stack for block (need 1, got 0)"); } TEST_F(FunctionBodyDecoderTest, MultiValBlock2) { uint8_t sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_F32_ADD(WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, MultiValBlockBr) { uint8_t sig0 = builder.AddSignature(sigs.ii_v()); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_BR(0)), kExprI32Add}); ExpectValidates(sigs.i_ii(), {WASM_BLOCK_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_BR(0)), kExprI32Add}); } TEST_F(FunctionBodyDecoderTest, MultiValLoop1) { uint8_t sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates( sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOCAL_GET(0)), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_LOOP_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprF32Add}); } TEST_F(FunctionBodyDecoderTest, MultiValIf) { uint8_t sig0 = builder.AddSignature(sigs.ii_v()); ExpectValidates( sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_NOP, WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_NOP, WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_NOP), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_LOCAL_GET(1)), kExprI32Add}); ExpectFailure( sigs.i_ii(), {WASM_IF_ELSE_X( sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(0), WASM_LOCAL_GET(0)), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(1), WASM_LOCAL_GET(1))), kExprI32Add}); ExpectFailure(sigs.i_ii(), {WASM_IF_ELSE_X(sig0, WASM_LOCAL_GET(0), WASM_SEQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))), kExprF32Add}); } TEST_F(FunctionBodyDecoderTest, BlockParam) { uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_BLOCK_X(sig1, WASM_LOCAL_GET(1), WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_BLOCK_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_BLOCK_X(sig1, WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig1, WASM_NOP), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_BLOCK_X(sig1, WASM_LOCAL_GET(0)), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_BLOCK_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP)), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_BLOCK_X(sig1, WASM_F32_NEG(WASM_NOP)), WASM_RETURN(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, LoopParam) { uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_LOCAL_GET(1), WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig1, WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig1, WASM_NOP), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOOP_X(sig1, WASM_LOCAL_GET(0)), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig2, WASM_I32_ADD(WASM_NOP, WASM_NOP)), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_F32_NEG(WASM_NOP)), WASM_RETURN(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, LoopParamBr) { uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BR(0))}); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BRV(0, WASM_LOCAL_GET(1)))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig2, WASM_BR(0))}); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BLOCK_X(sig1, WASM_BR(1)))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOOP_X(sig1, WASM_BLOCK(WASM_BR(1))), WASM_RETURN(WASM_LOCAL_GET(0))}); ExpectFailure(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_LOOP_X(sig2, WASM_BLOCK_X(sig1, WASM_BR(1))), WASM_RETURN(WASM_LOCAL_GET(0))}); } TEST_F(FunctionBodyDecoderTest, IfParam) { uint8_t sig1 = builder.AddSignature(sigs.i_i()); uint8_t sig2 = builder.AddSignature(sigs.i_ii()); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_IF_X(sig1, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_LOCAL_GET(1)))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_IF_ELSE_X(sig1, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_LOCAL_GET(1)), WASM_I32_EQZ(WASM_NOP))}); ExpectValidates( sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_IF_ELSE_X(sig2, WASM_LOCAL_GET(0), WASM_I32_ADD(WASM_NOP, WASM_NOP), WASM_I32_MUL(WASM_NOP, WASM_NOP))}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_IF_X(sig1, WASM_LOCAL_GET(0), WASM_NOP), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); ExpectValidates(sigs.i_ii(), {WASM_LOCAL_GET(0), WASM_LOCAL_GET(1), WASM_IF_ELSE_X(sig1, WASM_LOCAL_GET(0), WASM_NOP, WASM_I32_EQZ(WASM_NOP)), WASM_I32_ADD(WASM_NOP, WASM_NOP)}); } TEST_F(FunctionBodyDecoderTest, Regression709741) { AddLocals(kWasmI32, kV8MaxWasmFunctionLocals - 1); ExpectValidates(sigs.v_v(), {WASM_NOP}); uint8_t code[] = {WASM_NOP, WASM_END}; for (size_t i = 0; i < arraysize(code); ++i) { FunctionBody body(sigs.v_v(), 0, code, code + i); WasmFeatures unused_detected_features; DecodeResult result = ValidateFunctionBody(WasmFeatures::All(), module, &unused_detected_features, body); if (result.ok()) { std::ostringstream str; str << "Expected verification to fail"; } } } TEST_F(FunctionBodyDecoderTest, MemoryInit) { builder.InitializeMemory(); builder.SetDataSegmentCount(1); ExpectValidates(sigs.v_v(), {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(0, 1, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, MemoryInitInvalid) { builder.InitializeMemory(); builder.SetDataSegmentCount(1); uint8_t code[] = {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO), WASM_END}; for (size_t i = 0; i <= arraysize(code); ++i) { Validate(i == arraysize(code), sigs.v_v(), base::VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, DataDrop) { builder.InitializeMemory(); builder.SetDataSegmentCount(1); ExpectValidates(sigs.v_v(), {WASM_DATA_DROP(0)}); ExpectFailure(sigs.v_v(), {WASM_DATA_DROP(1)}); } TEST_F(FunctionBodyDecoderTest, DataSegmentIndexUnsigned) { builder.InitializeMemory(); builder.SetDataSegmentCount(65); // Make sure that the index is interpreted as an unsigned number; 64 is // interpreted as -64 when decoded as a signed LEB. ExpectValidates(sigs.v_v(), {WASM_MEMORY_INIT(64, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectValidates(sigs.v_v(), {WASM_DATA_DROP(64)}); } TEST_F(FunctionBodyDecoderTest, MemoryCopy) { builder.InitializeMemory(); ExpectValidates(sigs.v_v(), {WASM_MEMORY_COPY(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, MemoryFill) { builder.InitializeMemory(); ExpectValidates(sigs.v_v(), {WASM_MEMORY_FILL(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, BulkMemoryOpsWithoutMemory) { ExpectFailure(sigs.v_v(), {WASM_MEMORY_INIT(0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_MEMORY_COPY(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_MEMORY_FILL(WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableInit) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(0, 1, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableInitWrongType) { uint32_t table_index = builder.InitializeTable(wasm::kWasmFuncRef); uint32_t element_index = builder.AddPassiveElementSegment(wasm::kWasmExternRef); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(table_index, element_index, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableInitInvalid) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); uint8_t code[] = {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO), WASM_END}; for (size_t i = 0; i <= arraysize(code); ++i) { Validate(i == arraysize(code), sigs.v_v(), base::VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, ElemDrop) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(0)}); ExpectFailure(sigs.v_v(), {WASM_ELEM_DROP(1)}); } TEST_F(FunctionBodyDecoderTest, TableInitDeclarativeElem) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddDeclarativeElementSegment(); uint8_t code[] = {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO), WASM_END}; for (size_t i = 0; i <= arraysize(code); ++i) { Validate(i == arraysize(code), sigs.v_v(), base::VectorOf(code, i), kOmitEnd); } } TEST_F(FunctionBodyDecoderTest, DeclarativeElemDrop) { builder.InitializeTable(wasm::kWasmFuncRef); builder.AddDeclarativeElementSegment(); ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(0)}); ExpectFailure(sigs.v_v(), {WASM_ELEM_DROP(1)}); } TEST_F(FunctionBodyDecoderTest, RefFuncDeclared) { uint8_t function_index = builder.AddFunction(sigs.v_i()); ExpectValidates(sigs.c_v(), {WASM_REF_FUNC(function_index)}); } TEST_F(FunctionBodyDecoderTest, RefFuncUndeclared) { uint8_t function_index = builder.AddFunction(sigs.v_i(), false); ExpectFailure(sigs.c_v(), {WASM_REF_FUNC(function_index)}); } TEST_F(FunctionBodyDecoderTest, ElemSegmentIndexUnsigned) { builder.InitializeTable(wasm::kWasmFuncRef); for (int i = 0; i < 65; ++i) { builder.AddPassiveElementSegment(wasm::kWasmFuncRef); } // Make sure that the index is interpreted as an unsigned number; 64 is // interpreted as -64 when decoded as a signed LEB. ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(0, 64, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectValidates(sigs.v_v(), {WASM_ELEM_DROP(64)}); } TEST_F(FunctionBodyDecoderTest, TableCopy) { builder.InitializeTable(wasm::kWasmVoid); ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableCopyWrongType) { uint32_t dst_table_index = builder.InitializeTable(wasm::kWasmFuncRef); uint32_t src_table_index = builder.InitializeTable(wasm::kWasmExternRef); ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(dst_table_index, src_table_index, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableGrow) { uint8_t tab_func = builder.AddTable(kWasmFuncRef, 10, true, 20); uint8_t tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20); ExpectValidates( sigs.i_c(), {WASM_TABLE_GROW(tab_func, WASM_REF_NULL(kFuncRefCode), WASM_ONE)}); ExpectValidates( sigs.i_a(), {WASM_TABLE_GROW(tab_ref, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); // FuncRef table cannot be initialized with an ExternRef value. ExpectFailure(sigs.i_a(), {WASM_TABLE_GROW(tab_func, WASM_LOCAL_GET(0), WASM_ONE)}); // ExternRef table cannot be initialized with a FuncRef value. ExpectFailure(sigs.i_c(), {WASM_TABLE_GROW(tab_ref, WASM_LOCAL_GET(0), WASM_ONE)}); // Check that the table index gets verified. ExpectFailure( sigs.i_a(), {WASM_TABLE_GROW(tab_ref + 2, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); } TEST_F(FunctionBodyDecoderTest, TableSize) { int tab = builder.AddTable(kWasmFuncRef, 10, true, 20); ExpectValidates(sigs.i_v(), {WASM_TABLE_SIZE(tab)}); ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(tab + 2)}); } TEST_F(FunctionBodyDecoderTest, TableFill) { uint8_t tab_func = builder.AddTable(kWasmFuncRef, 10, true, 20); uint8_t tab_ref = builder.AddTable(kWasmExternRef, 10, true, 20); ExpectValidates(sigs.v_c(), {WASM_TABLE_FILL(tab_func, WASM_ONE, WASM_REF_NULL(kFuncRefCode), WASM_ONE)}); ExpectValidates(sigs.v_a(), {WASM_TABLE_FILL(tab_ref, WASM_ONE, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); // FuncRef table cannot be initialized with an ExternRef value. ExpectFailure(sigs.v_a(), {WASM_TABLE_FILL(tab_func, WASM_ONE, WASM_LOCAL_GET(0), WASM_ONE)}); // ExternRef table cannot be initialized with a FuncRef value. ExpectFailure(sigs.v_c(), {WASM_TABLE_FILL(tab_ref, WASM_ONE, WASM_LOCAL_GET(0), WASM_ONE)}); // Check that the table index gets verified. ExpectFailure(sigs.v_a(), {WASM_TABLE_FILL(tab_ref + 2, WASM_ONE, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); } TEST_F(FunctionBodyDecoderTest, TableOpsWithoutTable) { ExpectFailure(sigs.i_v(), {WASM_TABLE_GROW(0, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); ExpectFailure(sigs.i_v(), {WASM_TABLE_SIZE(0)}); ExpectFailure( sigs.i_a(), {WASM_TABLE_FILL(0, WASM_ONE, WASM_REF_NULL(kExternRefCode), WASM_ONE)}); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(0, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } TEST_F(FunctionBodyDecoderTest, TableCopyMultiTable) { { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); module = builder.module(); // We added one table, therefore table.copy on table 0 should work. int table_src = 0; int table_dst = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // There is only one table, so table.copy on table 1 should fail. table_src = 0; table_dst = 1; ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); table_src = 1; table_dst = 0; ExpectFailure(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmFuncRef); module = builder.module(); // We added two tables, therefore table.copy on table 0 should work. int table_src = 0; int table_dst = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // Also table.copy on table 1 should work now. table_src = 1; table_dst = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); table_src = 0; table_dst = 1; ExpectValidates(sigs.v_v(), {WASM_TABLE_COPY(table_dst, table_src, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } } TEST_F(FunctionBodyDecoderTest, TableInitMultiTable) { { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmExternRef); module = builder.module(); // We added one table, therefore table.init on table 0 should work. int table_index = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // There is only one table, so table.init on table 1 should fail. table_index = 1; ExpectFailure(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } { TestModuleBuilder builder; builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddTable(kWasmExternRef, 10, true, 20); builder.AddPassiveElementSegment(wasm::kWasmExternRef); module = builder.module(); // We added two tables, therefore table.init on table 0 should work. int table_index = 0; ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); // Also table.init on table 1 should work now. table_index = 1; ExpectValidates(sigs.v_v(), {WASM_TABLE_INIT(table_index, 0, WASM_ZERO, WASM_ZERO, WASM_ZERO)}); } } TEST_F(FunctionBodyDecoderTest, UnpackPackedTypes) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); { TestModuleBuilder builder; uint8_t type_index = builder.AddStruct({F(kWasmI8, true), F(kWasmI16, false)}); module = builder.module(); ExpectValidates(sigs.v_v(), {WASM_STRUCT_SET(type_index, 0, WASM_STRUCT_NEW(type_index, WASM_I32V(1), WASM_I32V(42)), WASM_I32V(-1))}); } { TestModuleBuilder builder; uint8_t type_index = builder.AddArray(kWasmI8, true); module = builder.module(); ExpectValidates( sigs.v_v(), {WASM_ARRAY_SET(type_index, WASM_ARRAY_NEW(type_index, WASM_I32V(10), WASM_I32V(5)), WASM_I32V(3), WASM_I32V(12345678))}); } } ValueType ref(uint8_t type_index) { return ValueType::Ref(type_index); } ValueType refNull(uint8_t type_index) { return ValueType::RefNull(type_index); } TEST_F(FunctionBodyDecoderTest, StructOrArrayNewDefault) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); TestModuleBuilder builder; uint8_t struct_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t struct_non_def_index = builder.AddStruct({F(ref(struct_index), true)}); uint8_t struct_immutable_index = builder.AddStruct({F(kWasmI32, false)}); uint8_t array_index = builder.AddArray(kWasmI32, true); uint8_t array_non_def_index = builder.AddArray(ref(array_index), true); uint8_t array_immutable_index = builder.AddArray(kWasmI32, false); module = builder.module(); ExpectValidates(sigs.v_v(), {WASM_STRUCT_NEW_DEFAULT(struct_index), WASM_DROP}); ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW_DEFAULT(struct_non_def_index), WASM_DROP}, kAppendEnd, "struct.new_default: struct type 1 has field 0 of " "non-defaultable type (ref 0)"); ExpectValidates(sigs.v_v(), {WASM_STRUCT_NEW_DEFAULT(struct_immutable_index), WASM_DROP}); ExpectValidates( sigs.v_v(), {WASM_ARRAY_NEW_DEFAULT(array_index, WASM_I32V(3)), WASM_DROP}); ExpectFailure( sigs.v_v(), {WASM_ARRAY_NEW_DEFAULT(array_non_def_index, WASM_I32V(3)), WASM_DROP}, kAppendEnd, "array.new_default: array type 4 has non-defaultable element type (ref " "3)"); ExpectValidates( sigs.v_v(), {WASM_ARRAY_NEW_DEFAULT(array_immutable_index, WASM_I32V(3)), WASM_DROP}); } TEST_F(FunctionBodyDecoderTest, DefaultableLocal) { WASM_FEATURE_SCOPE(typed_funcref); AddLocals(kWasmExternRef, 1); ExpectValidates(sigs.v_v(), {}); } TEST_F(FunctionBodyDecoderTest, NonDefaultableLocals) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); ValueType rep = ref(struct_type_index); FunctionSig sig(0, 1, &rep); AddLocals(rep, 2); uint8_t ex = builder.AddException(sigs.v_v()); // Declaring non-defaultable locals is fine. ExpectValidates(&sig, {}); // Loading from an uninitialized non-defaultable local fails. ExpectFailure(&sig, {WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd, "uninitialized non-defaultable local: 1"); // Loading from an initialized local is fine. ExpectValidates(&sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(1), WASM_DROP}); ExpectValidates(&sig, {WASM_LOCAL_TEE(1, WASM_LOCAL_GET(0)), WASM_LOCAL_GET(1), WASM_DROP, WASM_DROP}); // Non-nullable locals must be initialized with non-null values. ExpectFailure(&sig, {WASM_LOCAL_SET(1, WASM_REF_NULL(struct_type_index))}, kAppendEnd, "expected type (ref 0), found ref.null of type (ref null 0)"); // Initialization is propagated into inner blocks. ExpectValidates( &sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), WASM_BLOCK(WASM_LOCAL_GET(1), WASM_DROP), WASM_LOOP(WASM_LOCAL_GET(1), WASM_DROP), WASM_IF_ELSE(WASM_ZERO, WASM_SEQ(WASM_LOCAL_GET(1), WASM_DROP), WASM_SEQ(WASM_LOCAL_GET(1), WASM_DROP)), kExprTry, kVoidCode, WASM_LOCAL_GET(1), WASM_DROP, kExprCatch, ex, WASM_LOCAL_GET(1), WASM_DROP, kExprEnd, WASM_LOCAL_GET(1), WASM_DROP}); // Initialization is forgotten at the end of a block. ExpectFailure(&sig, {WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), WASM_BLOCK(WASM_LOCAL_SET(2, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(1), WASM_DROP, // OK WASM_LOCAL_GET(2), WASM_DROP}, // Error kAppendEnd, "uninitialized non-defaultable local: 2"); // Initialization is forgotten at the end of if/else, even if both // branches initialized the local. ExpectFailure(&sig, {WASM_IF_ELSE(WASM_ZERO, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), WASM_LOCAL_SET(1, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd, "uninitialized non-defaultable local: 1"); // Initialization does not carry from the "then" branch to the "else" branch. ExpectFailure(&sig, {WASM_IF_ELSE(WASM_ONE, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), WASM_SEQ(WASM_LOCAL_GET(1), WASM_DROP))}, kAppendEnd, "uninitialized non-defaultable local: 1"); // Initialization is forgotten at the end of a loop. ExpectFailure(&sig, {WASM_LOOP(WASM_LOCAL_SET(1, WASM_LOCAL_GET(0))), WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd, "uninitialized non-defaultable local: 1"); // Initialization is forgotten at the end of a try, with or without catch. ExpectFailure(&sig, {kExprTry, kVoidCode, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), kExprEnd, WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd, "uninitialized non-defaultable local: 1"); ExpectFailure(&sig, {kExprTry, kVoidCode, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), kExprCatch, ex, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), kExprEnd, WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd, "uninitialized non-defaultable local: 1"); ExpectFailure(&sig, {kExprTry, kVoidCode, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), kExprCatchAll, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), kExprEnd, WASM_LOCAL_GET(1), WASM_DROP}, kAppendEnd, "uninitialized non-defaultable local: 1"); // Initialization does not carry from a "try" block to its "catch" block. ExpectFailure(&sig, {kExprTry, kVoidCode, WASM_LOCAL_SET(1, WASM_LOCAL_GET(0)), kExprCatch, ex, WASM_LOCAL_GET(1), WASM_DROP, kExprEnd}, kAppendEnd, "uninitialized non-defaultable local: 1"); } TEST_F(FunctionBodyDecoderTest, RefEq) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(simd); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); ValueType eqref_subtypes[] = { kWasmEqRef, kWasmI31Ref.AsNonNull(), kWasmEqRef.AsNonNull(), kWasmI31Ref, ref(struct_type_index), refNull(struct_type_index)}; ValueType non_eqref_subtypes[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmS128, kWasmFuncRef, kWasmExternRef, kWasmAnyRef, ValueType::Ref(HeapType::kExtern), ValueType::Ref(HeapType::kAny), ValueType::Ref(HeapType::kFunc)}; for (ValueType type1 : eqref_subtypes) { for (ValueType type2 : eqref_subtypes) { ValueType reps[] = {kWasmI32, type1, type2}; FunctionSig sig(1, 2, reps); ExpectValidates(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}); } } for (ValueType type1 : eqref_subtypes) { for (ValueType type2 : non_eqref_subtypes) { ValueType reps[] = {kWasmI32, type1, type2}; FunctionSig sig(1, 2, reps); ExpectFailure(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(0), WASM_LOCAL_GET(1))}, kAppendEnd, "expected type eqref, found local.get of type"); ExpectFailure(&sig, {WASM_REF_EQ(WASM_LOCAL_GET(1), WASM_LOCAL_GET(0))}, kAppendEnd, "expected type eqref, found local.get of type"); } } } TEST_F(FunctionBodyDecoderTest, RefAsNonNull) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(simd); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint32_t heap_types[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kAny, HeapType::kI31}; ValueType non_compatible_types[] = {kWasmI32, kWasmI64, kWasmF32, kWasmF64, kWasmS128}; // It works with nullable types. for (uint32_t heap_type : heap_types) { ValueType reprs[] = {ValueType::Ref(heap_type), ValueType::RefNull(heap_type)}; FunctionSig sig(1, 1, reprs); ExpectValidates(&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))}); } // It works with non-nullable types. for (uint32_t heap_type : heap_types) { ValueType reprs[] = {ValueType::Ref(heap_type), ValueType::Ref(heap_type)}; FunctionSig sig(1, 1, reprs); ExpectValidates(&sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))}); } // It fails with other types. for (ValueType type : non_compatible_types) { FunctionSig sig(0, 1, &type); ExpectFailure( &sig, {WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), kExprDrop}, kAppendEnd, "ref.as_non_null[0] expected reference type, found local.get of type"); } } TEST_F(FunctionBodyDecoderTest, RefNull) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint32_t type_reprs[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kAny, HeapType::kI31, HeapType::kNone}; // It works with heap types. for (uint32_t type_repr : type_reprs) { const ValueType type = ValueType::RefNull(type_repr); const FunctionSig sig(1, 0, &type); ExpectValidates(&sig, {WASM_REF_NULL(WASM_HEAP_TYPE(HeapType(type_repr)))}); } // It fails for undeclared types. ExpectFailure(sigs.v_v(), {WASM_REF_NULL(42), kExprDrop}, kAppendEnd, "Type index 42 is out of bounds"); } TEST_F(FunctionBodyDecoderTest, RefIsNull) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); ExpectValidates(sigs.i_i(), {WASM_REF_IS_NULL(WASM_REF_NULL(kExternRefCode))}); ExpectFailure( sigs.i_i(), {WASM_REF_IS_NULL(WASM_LOCAL_GET(0))}, kAppendEnd, "ref.is_null[0] expected reference type, found local.get of type i32"); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint32_t heap_types[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kAny, HeapType::kI31}; for (uint32_t heap_type : heap_types) { const ValueType types[] = {kWasmI32, ValueType::RefNull(heap_type)}; const FunctionSig sig(1, 1, types); // It works for nullable references. ExpectValidates(&sig, {WASM_REF_IS_NULL(WASM_LOCAL_GET(0))}); // It works for non-nullable references. ExpectValidates( &sig, {WASM_REF_IS_NULL(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))}); } // It fails if the argument type is not a reference type. ExpectFailure( sigs.v_v(), {WASM_REF_IS_NULL(WASM_I32V(0)), kExprDrop}, kAppendEnd, "ref.is_null[0] expected reference type, found i32.const of type i32"); } TEST_F(FunctionBodyDecoderTest, BrOnNull) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint32_t type_reprs[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kAny, HeapType::kI31, HeapType::kNone}; for (uint32_t type_repr : type_reprs) { const ValueType reps[] = {ValueType::Ref(type_repr), ValueType::RefNull(type_repr)}; const FunctionSig sig(1, 1, reps); ExpectValidates( &sig, {WASM_BLOCK_R(reps[0], WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_BR_ON_NULL(0, WASM_LOCAL_GET(0)), WASM_I32V(0), kExprSelectWithType, 1, WASM_REF_TYPE(reps[0]))}); // Should have block return value on stack before calling br_on_null. ExpectFailure(&sig, {WASM_BLOCK_R(reps[0], WASM_BR_ON_NULL(0, WASM_LOCAL_GET(0)), WASM_I32V(0), kExprSelectWithType, 1, WASM_REF_TYPE(reps[0]))}, kAppendEnd, "expected 1 elements on the stack for branch, found 0"); } } TEST_F(FunctionBodyDecoderTest, BrOnNonNull) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint32_t type_reprs[] = { struct_type_index, array_type_index, HeapType::kFunc, HeapType::kEq, HeapType::kExtern, HeapType::kAny, HeapType::kI31}; for (uint32_t type_repr : type_reprs) { const ValueType reps[] = {ValueType::Ref(type_repr), ValueType::RefNull(type_repr)}; const FunctionSig sig(1, 1, reps); ExpectValidates( &sig, {WASM_BLOCK_R(reps[0], WASM_BR_ON_NON_NULL(0, WASM_LOCAL_GET(0)), WASM_RETURN(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))))}); // Wrong branch type. ExpectFailure( &sig, {WASM_BLOCK_I(WASM_BR_ON_NON_NULL(0, WASM_LOCAL_GET(0)), WASM_RETURN(WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0))))}, kAppendEnd, ("type error in branch[0] (expected i32, got " + reps[0].name() + ")") .c_str()); // br_on_non_null does not leave a value on the stack. ExpectFailure(&sig, {WASM_BR_ON_NON_NULL(0, WASM_LOCAL_GET(0))}, kAppendEnd, "expected 1 elements on the stack for fallthru, found 0"); } } TEST_F(FunctionBodyDecoderTest, GCStruct) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); uint8_t array_type_index = builder.AddArray(kWasmI32, true); uint8_t immutable_struct_type_index = builder.AddStruct({F(kWasmI32, false)}); uint8_t field_index = 0; ValueType struct_type = ValueType::Ref(struct_type_index); ValueType reps_i_r[] = {kWasmI32, struct_type}; ValueType reps_f_r[] = {kWasmF32, struct_type}; const FunctionSig sig_i_r(1, 1, reps_i_r); const FunctionSig sig_v_r(0, 1, &struct_type); const FunctionSig sig_r_v(1, 0, &struct_type); const FunctionSig sig_f_r(1, 1, reps_f_r); /** struct.new **/ ExpectValidates(&sig_r_v, {WASM_STRUCT_NEW(struct_type_index, WASM_I32V(0))}); // Too few arguments. ExpectFailure(&sig_r_v, {WASM_GC_OP(kExprStructNew), struct_type_index}, kAppendEnd, "not enough arguments on the stack for struct.new " "(need 1, got 0)"); // Too many arguments. ExpectFailure( &sig_r_v, {WASM_STRUCT_NEW(struct_type_index, WASM_I32V(0), WASM_I32V(1))}, kAppendEnd, "expected 1 elements on the stack for fallthru, found 2"); // Mistyped arguments. ExpectFailure(&sig_v_r, {WASM_STRUCT_NEW(struct_type_index, WASM_LOCAL_GET(0))}, kAppendEnd, "struct.new[0] expected type i32, found local.get of " "type (ref 0)"); // Wrongly typed index. ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW(array_type_index, WASM_I32V(0)), kExprDrop}, kAppendEnd, "invalid struct index: 1"); // Out-of-bounds index. ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW(42, WASM_I32V(0)), kExprDrop}, kAppendEnd, "invalid struct index: 42"); /** struct.get **/ ExpectValidates(&sig_i_r, {WASM_STRUCT_GET(struct_type_index, field_index, WASM_LOCAL_GET(0))}); // With non-nullable struct. ExpectValidates(&sig_i_r, {WASM_STRUCT_GET(struct_type_index, field_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))}); // Wrong index. ExpectFailure( &sig_v_r, {WASM_STRUCT_GET(struct_type_index, field_index + 1, WASM_LOCAL_GET(0)), kExprDrop}, kAppendEnd, "invalid field index: 1"); // Mistyped expected type. ExpectFailure( &sig_f_r, {WASM_STRUCT_GET(struct_type_index, field_index, WASM_LOCAL_GET(0))}, kAppendEnd, "type error in fallthru[0] (expected f32, got i32)"); /** struct.set **/ ExpectValidates(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_LOCAL_GET(0), WASM_I32V(0))}); // Non-nullable struct. ExpectValidates( &sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_I32V(0))}); // Wrong index. ExpectFailure(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index + 1, WASM_LOCAL_GET(0), WASM_I32V(0))}, kAppendEnd, "invalid field index: 1"); // Mistyped input. ExpectFailure(&sig_v_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_LOCAL_GET(0), WASM_I64V(0))}, kAppendEnd, "struct.set[1] expected type i32, found i64.const of type i64"); // Expecting output. ExpectFailure(&sig_i_r, {WASM_STRUCT_SET(struct_type_index, field_index, WASM_LOCAL_GET(0), WASM_I32V(0))}, kAppendEnd, "expected 1 elements on the stack for fallthru, found 0"); // Setting immutable field. ExpectFailure(sigs.v_v(), {WASM_STRUCT_SET( immutable_struct_type_index, field_index, WASM_STRUCT_NEW(immutable_struct_type_index, WASM_I32V(42)), WASM_I32V(0))}, kAppendEnd, "struct.set: Field 0 of type 2 is immutable."); // struct.get_s/u fail ExpectFailure( &sig_i_r, {WASM_STRUCT_GET_S(struct_type_index, field_index, WASM_LOCAL_GET(0))}, kAppendEnd, "struct.get_s: Immediate field 0 of type 0 has non-packed type i32. Use " "struct.get instead."); ExpectFailure( &sig_i_r, {WASM_STRUCT_GET_U(struct_type_index, field_index, WASM_LOCAL_GET(0))}, kAppendEnd, "struct.get_u: Immediate field 0 of type 0 has non-packed type i32. Use " "struct.get instead."); } TEST_F(FunctionBodyDecoderTest, GCArray) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t array_type_index = builder.AddArray(kWasmFuncRef, true); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, false)}); uint8_t immutable_array_type_index = builder.AddArray(kWasmI32, false); ValueType array_type = ValueType::Ref(array_type_index); ValueType immutable_array_type = ValueType::Ref(immutable_array_type_index); ValueType reps_c_r[] = {kWasmFuncRef, array_type}; ValueType reps_f_r[] = {kWasmF32, array_type}; ValueType reps_i_r[] = {kWasmI32, array_type}; ValueType reps_i_a[] = {kWasmI32, kWasmArrayRef}; ValueType reps_i_s[] = {kWasmI32, ValueType::Ref(struct_type_index)}; const FunctionSig sig_c_r(1, 1, reps_c_r); const FunctionSig sig_v_r(0, 1, &array_type); const FunctionSig sig_v_r2(0, 1, &immutable_array_type); const FunctionSig sig_r_v(1, 0, &array_type); const FunctionSig sig_f_r(1, 1, reps_f_r); const FunctionSig sig_v_cr(0, 2, reps_c_r); const FunctionSig sig_i_r(1, 1, reps_i_r); const FunctionSig sig_i_a(1, 1, reps_i_a); const FunctionSig sig_i_s(1, 1, reps_i_s); /** array.new **/ ExpectValidates(&sig_r_v, {WASM_ARRAY_NEW(array_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I32V(10))}); // Too few arguments. ExpectFailure(&sig_r_v, {WASM_I32V(10), WASM_GC_OP(kExprArrayNew), array_type_index}, kAppendEnd, "not enough arguments on the stack for array.new " "(need 2, got 1)"); // Mistyped initializer. ExpectFailure(&sig_r_v, {WASM_ARRAY_NEW(array_type_index, WASM_REF_NULL(kExternRefCode), WASM_I32V(10))}, kAppendEnd, "array.new[0] expected type funcref, found ref.null " "of type externref"); // Mistyped length. ExpectFailure(&sig_r_v, {WASM_ARRAY_NEW(array_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I64V(5))}, kAppendEnd, "array.new[1] expected type i32, found i64.const of type i64"); // Wrong type index. ExpectFailure(sigs.v_v(), {WASM_ARRAY_NEW(struct_type_index, WASM_REF_NULL(kFuncRefCode), WASM_I32V(10)), kExprDrop}, kAppendEnd, "invalid array index: 1"); /** array.get **/ ExpectValidates(&sig_c_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}); // With non-nullable array type. ExpectValidates( &sig_c_r, {WASM_ARRAY_GET(array_type_index, WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)), WASM_I32V(5))}); // Wrongly typed index. ExpectFailure( &sig_v_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I64V(5)), kExprDrop}, kAppendEnd, "array.get[1] expected type i32, found i64.const of type i64"); // Mistyped expected type. ExpectFailure( &sig_f_r, {WASM_ARRAY_GET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}, kAppendEnd, "type error in fallthru[0] (expected f32, got funcref)"); // array.get_s/u fail. ExpectFailure( &sig_c_r, {WASM_ARRAY_GET_S(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}, kAppendEnd, "array.get_s: Immediate array type 0 has non-packed type funcref. Use " "array.get instead."); ExpectFailure( &sig_c_r, {WASM_ARRAY_GET_U(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(5))}, kAppendEnd, "array.get_u: Immediate array type 0 has non-packed type funcref. Use " "array.get instead."); /** array.set **/ ExpectValidates(&sig_v_r, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(0), WASM_I32V(42), WASM_REF_NULL(kFuncRefCode))}); // With non-nullable array type. ExpectValidates( &sig_v_cr, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I32V(42), WASM_REF_AS_NON_NULL(WASM_LOCAL_GET(0)))}); // Non-array type index. ExpectFailure(&sig_v_cr, {WASM_ARRAY_SET(struct_type_index, WASM_LOCAL_GET(1), WASM_I32V(42), WASM_LOCAL_GET(0))}, kAppendEnd, "invalid array index: 1"); // Wrongly typed index. ExpectFailure(&sig_v_cr, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I64V(42), WASM_LOCAL_GET(0))}, kAppendEnd, "array.set[1] expected type i32, found i64.const of type i64"); // Wrongly typed value. ExpectFailure( &sig_v_cr, {WASM_ARRAY_SET(array_type_index, WASM_LOCAL_GET(1), WASM_I32V(42), WASM_I64V(0))}, kAppendEnd, "array.set[2] expected type funcref, found i64.const of type i64"); /** array.len **/ // Works both with conrete array types and arrayref. ExpectValidates(&sig_i_r, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))}); ExpectValidates(&sig_i_a, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))}); // Wrong return type. ExpectFailure(&sig_f_r, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))}, kAppendEnd, "type error in fallthru[0] (expected f32, got i32)"); // Non-array argument. ExpectFailure( &sig_i_s, {WASM_ARRAY_LEN(WASM_LOCAL_GET(0))}, kAppendEnd, "array.len[0] expected type arrayref, found local.get of type (ref 1)"); // Immutable array. // Allocating and reading is OK: ExpectValidates( sigs.i_v(), {WASM_ARRAY_GET( immutable_array_type_index, WASM_ARRAY_NEW_FIXED(immutable_array_type_index, 1, WASM_I32V(42)), WASM_I32V(0))}); // Writing fails: ExpectFailure(&sig_v_r2, {WASM_ARRAY_SET(immutable_array_type_index, WASM_LOCAL_GET(0), WASM_I32V(0), WASM_I32V(42))}, kAppendEnd, "array.set: immediate array type 2 is immutable"); } TEST_F(FunctionBodyDecoderTest, PackedFields) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t array_type_index = builder.AddArray(kWasmI8, true); uint8_t struct_type_index = builder.AddStruct({F(kWasmI16, true)}); uint8_t field_index = 0; // *.new with packed fields works. ExpectValidates(sigs.v_v(), {WASM_ARRAY_NEW(array_type_index, WASM_I32V(0), WASM_I32V(5)), kExprDrop}); ExpectValidates( sigs.v_v(), {WASM_STRUCT_NEW(struct_type_index, WASM_I32V(42)), kExprDrop}); // It can't unpack types other that i32. ExpectFailure( sigs.v_v(), {WASM_ARRAY_NEW(array_type_index, WASM_I64V(0), WASM_I32V(5)), kExprDrop}, kAppendEnd, "array.new[0] expected type i32, found i64.const of type i64"); ExpectFailure(sigs.v_v(), {WASM_STRUCT_NEW(struct_type_index, WASM_I64V(42)), kExprDrop}, kAppendEnd, "struct.new[0] expected type i32, found i64.const of type i64"); // *.set with packed fields works. ExpectValidates(sigs.v_v(), {WASM_ARRAY_SET(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0), WASM_I32V(5))}); ExpectValidates(sigs.v_v(), {WASM_STRUCT_SET(struct_type_index, field_index, WASM_REF_NULL(struct_type_index), WASM_I32V(42))}); // It can't unpack into types other that i32. ExpectFailure( sigs.v_v(), {WASM_ARRAY_SET(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0), WASM_I64V(5))}, kAppendEnd, "array.set[2] expected type i32, found i64.const of type i64"); ExpectFailure( sigs.v_v(), {WASM_STRUCT_NEW(struct_type_index, field_index, WASM_REF_NULL(struct_type_index), WASM_I64V(42))}, kAppendEnd, "struct.new[0] expected type i32, found i64.const of type i64"); // *.get_s/u works. ExpectValidates(sigs.i_v(), {WASM_ARRAY_GET_S(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0))}); ExpectValidates(sigs.i_v(), {WASM_ARRAY_GET_U(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0))}); ExpectValidates(sigs.i_v(), {WASM_STRUCT_GET_S(struct_type_index, field_index, WASM_REF_NULL(struct_type_index))}); ExpectValidates(sigs.i_v(), {WASM_STRUCT_GET_U(struct_type_index, field_index, WASM_REF_NULL(struct_type_index))}); // *.get fails. ExpectFailure(sigs.i_v(), {WASM_ARRAY_GET(array_type_index, WASM_REF_NULL(array_type_index), WASM_I32V(0))}, kAppendEnd, "array.get: Immediate array type 0 has packed type i8. Use " "array.get_s or array.get_u instead."); ExpectFailure(sigs.i_v(), {WASM_STRUCT_GET(struct_type_index, field_index, WASM_REF_NULL(struct_type_index))}, kAppendEnd, "struct.get: Immediate field 0 of type 1 has packed type i16. " "Use struct.get_s or struct.get_u instead."); } TEST_F(FunctionBodyDecoderTest, PackedTypesAsLocals) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); AddLocals(kWasmI8, 1); ExpectFailure(sigs.v_v(), {}, kAppendEnd, "invalid value type"); } TEST_F(FunctionBodyDecoderTest, RefTestCast) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); HeapType::Representation array_heap = static_cast(builder.AddArray(kWasmI8, true)); HeapType::Representation super_struct_heap = static_cast( builder.AddStruct({F(kWasmI16, true)})); HeapType::Representation sub_struct_heap = static_cast( builder.AddStruct({F(kWasmI16, true), F(kWasmI32, false)})); HeapType::Representation func_heap_1 = static_cast(builder.AddSignature(sigs.i_i())); HeapType::Representation func_heap_2 = static_cast(builder.AddSignature(sigs.i_v())); std::tuple tests[] = { std::make_tuple(HeapType::kArray, array_heap, true, true), std::make_tuple(HeapType::kStruct, super_struct_heap, true, true), std::make_tuple(HeapType::kFunc, func_heap_1, true, true), std::make_tuple(func_heap_1, func_heap_1, true, true), std::make_tuple(func_heap_1, func_heap_2, true, true), std::make_tuple(super_struct_heap, sub_struct_heap, true, true), std::make_tuple(array_heap, sub_struct_heap, true, true), std::make_tuple(super_struct_heap, func_heap_1, true, false), std::make_tuple(HeapType::kEq, super_struct_heap, false, true), std::make_tuple(HeapType::kExtern, func_heap_1, false, false), std::make_tuple(HeapType::kAny, array_heap, false, true), std::make_tuple(HeapType::kI31, array_heap, false, true), std::make_tuple(HeapType::kNone, array_heap, true, true), std::make_tuple(HeapType::kNone, func_heap_1, true, false), }; for (auto test : tests) { HeapType from_heap = HeapType(std::get<0>(test)); HeapType to_heap = HeapType(std::get<1>(test)); bool should_pass = std::get<2>(test); bool should_pass_new_ops = std::get<3>(test); SCOPED_TRACE("from_heap = " + from_heap.name() + ", to_heap = " + to_heap.name()); ValueType test_reps[] = {kWasmI32, ValueType::RefNull(from_heap)}; FunctionSig test_sig(1, 1, test_reps); ValueType cast_reps[] = {ValueType::RefNull(to_heap), ValueType::RefNull(from_heap)}; FunctionSig cast_sig(1, 1, cast_reps); if (should_pass) { ExpectValidates(&test_sig, {WASM_REF_TEST_DEPRECATED(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}); ExpectValidates(&cast_sig, {WASM_REF_CAST_DEPRECATED(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}); } else { std::string error_message = "[0] expected subtype of (ref null func), (ref null struct) or (ref " "null array), found local.get of type " + test_reps[1].name(); ExpectFailure(&test_sig, {WASM_REF_TEST_DEPRECATED(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}, kAppendEnd, ("ref.test" + error_message).c_str()); ExpectFailure(&cast_sig, {WASM_REF_CAST_DEPRECATED(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}, kAppendEnd, ("ref.cast" + error_message).c_str()); } if (should_pass_new_ops) { ExpectValidates(&test_sig, {WASM_REF_TEST(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}); ExpectValidates(&cast_sig, {WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}); ExpectValidates(&test_sig, {WASM_REF_TEST_NULL(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}); ExpectValidates(&cast_sig, {WASM_REF_CAST_NULL(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}); } else { std::string error_message = "local.get of type " + cast_reps[1].name() + " has to be in the same reference type hierarchy as (ref " + to_heap.name() + ")"; ExpectFailure(&test_sig, {WASM_REF_TEST(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}, kAppendEnd, ("Invalid types for ref.test: " + error_message).c_str()); ExpectFailure(&cast_sig, {WASM_REF_CAST(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}, kAppendEnd, ("Invalid types for ref.cast: " + error_message).c_str()); ExpectFailure( &test_sig, {WASM_REF_TEST_NULL(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}, kAppendEnd, ("Invalid types for ref.test null: " + error_message).c_str()); ExpectFailure( &cast_sig, {WASM_REF_CAST_NULL(WASM_LOCAL_GET(0), WASM_HEAP_TYPE(to_heap))}, kAppendEnd, ("Invalid types for ref.cast null: " + error_message).c_str()); } } // Trivial type error. ExpectFailure(sigs.v_v(), {WASM_REF_TEST_DEPRECATED(WASM_I32V(1), array_heap), kExprDrop}, kAppendEnd, "ref.test[0] expected subtype of (ref null func), (ref null " "struct) or (ref null array), found i32.const of type i32"); ExpectFailure(sigs.v_v(), {WASM_REF_TEST(WASM_I32V(1), array_heap), kExprDrop}, kAppendEnd, "Invalid types for ref.test: i32.const of type i32 has to be " "in the same reference type hierarchy as (ref 0)"); ExpectFailure(sigs.v_v(), {WASM_REF_CAST_DEPRECATED(WASM_I32V(1), array_heap), kExprDrop}, kAppendEnd, "ref.cast[0] expected subtype of (ref null func), (ref null " "struct) or (ref null array), found i32.const of type i32"); ExpectFailure(sigs.v_v(), {WASM_REF_CAST(WASM_I32V(1), array_heap), kExprDrop}, kAppendEnd, "Invalid types for ref.cast: i32.const of type i32 has to be " "in the same reference type hierarchy as (ref 0)"); } TEST_F(FunctionBodyDecoderTest, BrOnCastOrCastFail) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t super_struct = builder.AddStruct({F(kWasmI16, true)}); uint8_t sub_struct = builder.AddStruct({F(kWasmI16, true), F(kWasmI32, false)}, super_struct); ValueType supertype = ValueType::RefNull(super_struct); ValueType subtype = ValueType::RefNull(sub_struct); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmI32, subtype}, {supertype}), {WASM_I32V(42), WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, super_struct, sub_struct), WASM_GC_OP(kExprRefCast), sub_struct}); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmI32, subtype}, {supertype}), {WASM_I32V(42), WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, super_struct, sub_struct), WASM_GC_OP(kExprRefCast), sub_struct}); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmI32, supertype}, {supertype}), {WASM_I32V(42), WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, super_struct, sub_struct)}); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmI32, supertype}, {supertype}), {WASM_I32V(42), WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL_NULL(0, super_struct, sub_struct)}); // Wrong branch type. ExpectFailure( FunctionSig::Build(this->zone(), {}, {supertype}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, super_struct, sub_struct), WASM_UNREACHABLE}, kAppendEnd, "br_on_cast must target a branch of arity at least 1"); ExpectFailure( FunctionSig::Build(this->zone(), {subtype}, {supertype}), {WASM_I32V(42), WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, super_struct, sub_struct)}, kAppendEnd, "type error in branch[0] (expected (ref null 1), got (ref null 0))"); ExpectFailure(FunctionSig::Build(this->zone(), {subtype}, {supertype}), {WASM_I32V(42), WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL_NULL(0, super_struct, sub_struct)}, kAppendEnd, "type error in branch[0] (expected (ref null 1), got (ref 0))"); // Wrong fallthrough type. ExpectFailure( FunctionSig::Build(this->zone(), {subtype}, {supertype}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, super_struct, sub_struct)}, kAppendEnd, "type error in fallthru[0] (expected (ref null 1), got (ref null 0))"); ExpectFailure( FunctionSig::Build(this->zone(), {supertype}, {supertype}), {WASM_BLOCK_I(WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, super_struct, sub_struct))}, kAppendEnd, "type error in branch[0] (expected i32, got (ref null 0))"); ExpectFailure( FunctionSig::Build(this->zone(), {supertype}, {supertype}), {WASM_BLOCK_I(WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL_NULL(0, super_struct, sub_struct))}, kAppendEnd, "type error in branch[0] (expected i32, got (ref 0))"); // Wrong argument type. ExpectFailure( FunctionSig::Build(this->zone(), {subtype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, super_struct, sub_struct), WASM_GC_OP(kExprRefCast), sub_struct}, kAppendEnd, "br_on_cast[0] expected type (ref null 0), found local.get of type " "externref"); ExpectFailure( FunctionSig::Build(this->zone(), {subtype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST_NULL(0, super_struct, sub_struct), WASM_GC_OP(kExprRefCast), sub_struct}, kAppendEnd, "br_on_cast[0] expected type (ref null 0), found local.get of type " "externref"); ExpectFailure( FunctionSig::Build(this->zone(), {supertype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, super_struct, sub_struct)}, kAppendEnd, "br_on_cast_fail[0] expected type (ref null 0), found local.get of type " "externref"); ExpectFailure( FunctionSig::Build(this->zone(), {supertype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL_NULL(0, super_struct, sub_struct)}, kAppendEnd, "br_on_cast_fail[0] expected type (ref null 0), found local.get of " "type externref"); // Wrong immediate type. ExpectFailure( FunctionSig::Build(this->zone(), {subtype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST(0, kExternRefCode, sub_struct), WASM_GC_OP(kExprRefCast), sub_struct}, kAppendEnd, "invalid types for br_on_cast: (ref 1) is not a subtype of externref"); ExpectFailure( FunctionSig::Build(this->zone(), {subtype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST_NULL(0, kExternRefCode, sub_struct), WASM_GC_OP(kExprRefCast), sub_struct}, kAppendEnd, "invalid types for br_on_cast: (ref null 1) is not a subtype of " "externref"); ExpectFailure( FunctionSig::Build(this->zone(), {supertype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL(0, kExternRefCode, sub_struct)}, kAppendEnd, "invalid types for br_on_cast_fail: (ref 1) is not a subtype of " "externref"); ExpectFailure( FunctionSig::Build(this->zone(), {supertype}, {kWasmExternRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_CAST_FAIL_NULL(0, kExternRefCode, sub_struct)}, kAppendEnd, "invalid types for br_on_cast_fail: (ref null 1) is not a subtype " "of externref"); } TEST_F(FunctionBodyDecoderTest, BrOnAbstractType) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); ValueType kNonNullableFunc = ValueType::Ref(HeapType::kFunc); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmStructRef}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_STRUCT(0), WASM_GC_OP(kExprRefAsStruct)}); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_NON_STRUCT(0)}); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmI31Ref}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_I31(0), WASM_GC_OP(kExprRefAsI31)}); ExpectValidates( FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_NON_I31(0)}); // Wrong branch type. ExpectFailure(FunctionSig::Build(this->zone(), {}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_STRUCT(0), WASM_UNREACHABLE}, kAppendEnd, "br_on_struct must target a branch of arity at least 1"); ExpectFailure( FunctionSig::Build(this->zone(), {kNonNullableFunc}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_NON_STRUCT(0)}, kAppendEnd, "type error in branch[0] (expected (ref func), got anyref)"); // Wrong fallthrough type. ExpectFailure( FunctionSig::Build(this->zone(), {kWasmStructRef}, {kWasmAnyRef}), {WASM_LOCAL_GET(0), WASM_BR_ON_STRUCT(0)}, kAppendEnd, "type error in fallthru[0] (expected structref, got anyref)"); ExpectFailure(FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}), {WASM_BLOCK_I(WASM_LOCAL_GET(0), WASM_BR_ON_NON_STRUCT(0))}, kAppendEnd, "type error in branch[0] (expected i32, got anyref)"); // Argument type error. ExpectFailure( FunctionSig::Build(this->zone(), {kWasmI31Ref}, {kWasmI32}), {WASM_LOCAL_GET(0), WASM_BR_ON_I31(0), WASM_GC_OP(kExprRefAsI31)}, kAppendEnd, "br_on_i31[0] expected type anyref, found local.get of type i32"); } TEST_F(FunctionBodyDecoderTest, BrWithBottom) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); // Merging an unsatisfiable non-nullable (ref none) into a target that // expects a non-null struct is OK. ExpectValidates( FunctionSig::Build(this->zone(), {ValueType::Ref(HeapType::kStruct)}, {ValueType::Ref(HeapType::kStruct)}), {WASM_BR_ON_NON_NULL(0, WASM_REF_NULL(ValueTypeCode::kNoneCode)), WASM_LOCAL_GET(0)}); // Merging the same value into a target that expects a value outside // the "anyref" hierarchy is invalid... ExpectFailure( FunctionSig::Build(this->zone(), {kWasmFuncRef}, {kWasmFuncRef}), {WASM_BR_ON_NON_NULL(0, WASM_REF_NULL(ValueTypeCode::kNoneCode)), WASM_LOCAL_GET(0)}, kAppendEnd, "type error in branch[0] (expected funcref, got (ref none))"); // ...because it would have to be a (ref nofunc) in that case. ExpectValidates( FunctionSig::Build(this->zone(), {kWasmFuncRef}, {kWasmFuncRef}), {WASM_BR_ON_NON_NULL(0, WASM_REF_NULL(ValueTypeCode::kNoFuncCode)), WASM_LOCAL_GET(0)}); // (ref nofunc) in turn doesn't match anyref. ExpectFailure( FunctionSig::Build(this->zone(), {kWasmAnyRef}, {kWasmAnyRef}), {WASM_BR_ON_NON_NULL(0, WASM_REF_NULL(ValueTypeCode::kNoFuncCode)), WASM_LOCAL_GET(0)}, kAppendEnd, "type error in branch[0] (expected anyref, got (ref nofunc))"); } TEST_F(FunctionBodyDecoderTest, LocalTeeTyping) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t array_type = builder.AddArray(kWasmI8, true); ValueType types[] = {ValueType::Ref(array_type)}; FunctionSig sig(1, 0, types); AddLocals(ValueType::RefNull(array_type), 1); ExpectFailure( &sig, {WASM_LOCAL_TEE(0, WASM_ARRAY_NEW_DEFAULT(array_type, WASM_I32V(5)))}, kAppendEnd, "expected (ref 0), got (ref null 0)"); } TEST_F(FunctionBodyDecoderTest, MergeNullableTypes) { WASM_FEATURE_SCOPE(typed_funcref); WASM_FEATURE_SCOPE(gc); uint8_t struct_type_index = builder.AddStruct({F(kWasmI32, true)}); ValueType struct_type = refNull(struct_type_index); FunctionSig loop_sig(0, 1, &struct_type); uint8_t loop_sig_index = builder.AddSignature(&loop_sig); // Verifies that when a loop consuming a nullable type is entered with a // statically known non-null value on the stack, its {start_merge_} can // consume null values later. // Regression test for crbug.com/1234453. ExpectValidates(sigs.v_v(), {WASM_GC_OP(kExprStructNewDefault), struct_type_index, WASM_LOOP_X(loop_sig_index, kExprDrop, kExprRefNull, struct_type_index, kExprBr, 0)}); } // This tests that num_locals_ in decoder remains consistent, even if we fail // mid-DecodeLocals(). TEST_F(FunctionBodyDecoderTest, Regress_1154439) { WASM_FEATURE_SCOPE(typed_funcref); AddLocals(kWasmI32, 1); AddLocals(kWasmI64, 1000000); ExpectFailure(sigs.v_v(), {}, kAppendEnd, "local count too large"); } TEST_F(FunctionBodyDecoderTest, DropOnEmptyStack) { // Valid code: ExpectValidates(sigs.v_v(), {kExprI32Const, 1, kExprDrop}, kAppendEnd); // Invalid code (dropping from empty stack): ExpectFailure(sigs.v_v(), {kExprDrop}, kAppendEnd, "not enough arguments on the stack for drop"); // Valid code (dropping from empty stack in unreachable code): ExpectValidates(sigs.v_v(), {kExprUnreachable, kExprDrop}, kAppendEnd); } TEST_F(FunctionBodyDecoderTest, ExternInternalize) { WASM_FEATURE_SCOPE(gc); ExpectValidates(FunctionSig::Build(zone(), {kWasmAnyRef}, {}), {WASM_GC_INTERNALIZE(WASM_REF_NULL(kNoExternCode))}); ExpectValidates(FunctionSig::Build(zone(), {kWasmAnyRef}, {kWasmExternRef}), {WASM_GC_INTERNALIZE(WASM_LOCAL_GET(0))}); ExpectValidates( FunctionSig::Build(zone(), {kWasmAnyRef}, {kWasmExternRef.AsNonNull()}), {WASM_GC_INTERNALIZE(WASM_LOCAL_GET(0))}); ExpectFailure(FunctionSig::Build(zone(), {kWasmAnyRef}, {}), {WASM_GC_INTERNALIZE(kExprNop)}, kAppendEnd, "not enough arguments on the stack for extern.internalize " "(need 1, got 0)"); ExpectFailure( FunctionSig::Build(zone(), {kWasmAnyRef.AsNonNull()}, {kWasmExternRef}), {WASM_GC_INTERNALIZE(WASM_LOCAL_GET(0))}, kAppendEnd, "type error in fallthru[0] (expected (ref any), got anyref)"); ExpectFailure(FunctionSig::Build(zone(), {kWasmAnyRef}, {kWasmAnyRef}), {WASM_GC_INTERNALIZE(WASM_LOCAL_GET(0))}, kAppendEnd, "extern.internalize[0] expected type externref, found " "local.get of type anyref"); } TEST_F(FunctionBodyDecoderTest, ExternExternalize) { WASM_FEATURE_SCOPE(gc); ExpectValidates(FunctionSig::Build(zone(), {kWasmExternRef}, {}), {WASM_GC_EXTERNALIZE(WASM_REF_NULL(kNoneCode))}); ExpectValidates(FunctionSig::Build(zone(), {kWasmExternRef}, {kWasmAnyRef}), {WASM_GC_EXTERNALIZE(WASM_LOCAL_GET(0))}); ExpectValidates( FunctionSig::Build(zone(), {kWasmExternRef}, {kWasmAnyRef.AsNonNull()}), {WASM_GC_EXTERNALIZE(WASM_LOCAL_GET(0))}); ExpectFailure(FunctionSig::Build(zone(), {kWasmExternRef}, {}), {WASM_GC_EXTERNALIZE(kExprNop)}, kAppendEnd, "not enough arguments on the stack for extern.externalize " "(need 1, got 0)"); ExpectFailure( FunctionSig::Build(zone(), {kWasmExternRef.AsNonNull()}, {kWasmAnyRef}), {WASM_GC_EXTERNALIZE(WASM_LOCAL_GET(0))}, kAppendEnd, "type error in fallthru[0] (expected (ref extern), got externref)"); ExpectFailure(FunctionSig::Build(zone(), {kWasmExternRef}, {kWasmExternRef}), {WASM_GC_EXTERNALIZE(WASM_LOCAL_GET(0))}, kAppendEnd, "extern.externalize[0] expected type anyref, found " "local.get of type externref"); } class BranchTableIteratorTest : public TestWithZone { public: BranchTableIteratorTest() : TestWithZone() {} void CheckBrTableSize(const uint8_t* start, const uint8_t* end) { Decoder decoder(start, end); BranchTableImmediate operand(&decoder, start + 1, Decoder::kFullValidation); BranchTableIterator iterator(&decoder, operand); EXPECT_EQ(end - start - 1u, iterator.length()); EXPECT_OK(decoder); } void CheckBrTableError(const uint8_t* start, const uint8_t* end) { Decoder decoder(start, end); BranchTableImmediate operand(&decoder, start + 1, Decoder::kFullValidation); BranchTableIterator iterator(&decoder, operand); iterator.length(); EXPECT_FALSE(decoder.ok()); } }; #define CHECK_BR_TABLE_LENGTH(...) \ { \ static uint8_t code[] = {kExprBrTable, __VA_ARGS__}; \ CheckBrTableSize(code, code + sizeof(code)); \ } #define CHECK_BR_TABLE_ERROR(...) \ { \ static uint8_t code[] = {kExprBrTable, __VA_ARGS__}; \ CheckBrTableError(code, code + sizeof(code)); \ } TEST_F(BranchTableIteratorTest, count0) { CHECK_BR_TABLE_LENGTH(0, U32V_1(1)); CHECK_BR_TABLE_LENGTH(0, U32V_2(200)); CHECK_BR_TABLE_LENGTH(0, U32V_3(30000)); CHECK_BR_TABLE_LENGTH(0, U32V_4(400000)); CHECK_BR_TABLE_LENGTH(0, U32V_1(2)); CHECK_BR_TABLE_LENGTH(0, U32V_2(300)); CHECK_BR_TABLE_LENGTH(0, U32V_3(40000)); CHECK_BR_TABLE_LENGTH(0, U32V_4(500000)); } TEST_F(BranchTableIteratorTest, count1) { CHECK_BR_TABLE_LENGTH(1, U32V_1(1), U32V_1(6)); CHECK_BR_TABLE_LENGTH(1, U32V_2(200), U32V_1(8)); CHECK_BR_TABLE_LENGTH(1, U32V_3(30000), U32V_1(9)); CHECK_BR_TABLE_LENGTH(1, U32V_4(400000), U32V_1(11)); CHECK_BR_TABLE_LENGTH(1, U32V_1(2), U32V_2(6)); CHECK_BR_TABLE_LENGTH(1, U32V_2(300), U32V_2(7)); CHECK_BR_TABLE_LENGTH(1, U32V_3(40000), U32V_2(8)); CHECK_BR_TABLE_LENGTH(1, U32V_4(500000), U32V_2(9)); } TEST_F(BranchTableIteratorTest, error0) { CHECK_BR_TABLE_ERROR(0); CHECK_BR_TABLE_ERROR(1, U32V_1(33)); } #undef CHECK_BR_TABLE_LENGTH #undef CHECK_BR_TABLE_ERROR struct PrintOpcodes { const uint8_t* start; const uint8_t* end; }; std::ostream& operator<<(std::ostream& out, const PrintOpcodes& range) { out << "First opcode: \"" << WasmOpcodes::OpcodeName(static_cast(*range.start)) << "\"\nall bytes: ["; for (const uint8_t* b = range.start; b < range.end; ++b) { out << (b == range.start ? "" : ", ") << uint32_t{*b} << "/" << AsHex(*b, 2, true); } return out << "]"; } class WasmOpcodeLengthTest : public TestWithZone { public: WasmOpcodeLengthTest() : TestWithZone() {} template void ExpectLength(unsigned expected, Bytes... bytes) { const uint8_t code[] = { static_cast(bytes)..., 0, 0, 0, 0, 0, 0, 0, 0}; EXPECT_EQ(expected, OpcodeLength(code, code + sizeof(code))) << PrintOpcodes{code, code + sizeof...(bytes)}; } // Helper to check for prefixed opcodes, which can have multiple bytes. void ExpectLengthPrefixed(unsigned operands, WasmOpcode opcode) { uint8_t prefix = WasmOpcodes::ExtractPrefix(opcode); DCHECK(WasmOpcodes::IsPrefixOpcode(static_cast(prefix))); uint16_t index = ExtractPrefixedOpcodeBytes(opcode); uint8_t encoded[2] = {0, 0}; uint8_t* p = encoded; unsigned len = static_cast(LEBHelper::sizeof_u32v(index)); DCHECK_GE(2, len); LEBHelper::write_u32v(&p, index); // length of index, + number of operands + prefix bye ExpectLength(len + operands + 1, prefix, encoded[0], encoded[1]); } template void ExpectFailure(Bytes... bytes) { const uint8_t code[] = { static_cast(bytes)..., 0, 0, 0, 0, 0, 0, 0, 0}; WasmFeatures no_features = WasmFeatures::None(); WasmDecoder decoder( this->zone(), nullptr, no_features, &no_features, nullptr, code, code + sizeof(code), 0); WasmDecoder::OpcodeLength(&decoder, code); EXPECT_TRUE(decoder.failed()); } void ExpectNonFailure(WasmOpcode opcode) { uint8_t maybe_prefix = WasmOpcodes::ExtractPrefix(opcode); uint8_t bytes[32]{0}; if (WasmOpcodes::IsPrefixOpcode(static_cast(maybe_prefix))) { bytes[0] = maybe_prefix; uint16_t index = ExtractPrefixedOpcodeBytes(opcode); uint8_t* p = &bytes[1]; LEBHelper::write_u32v(&p, index); } else { DCHECK_LE(static_cast(opcode), 0xFF); bytes[0] = static_cast(opcode); // Special case: select_with_type insists on a {1} immediate. if (opcode == kExprSelectWithType) { bytes[1] = 1; bytes[2] = kAnyRefCode; } } WasmFeatures detected; WasmDecoder decoder( this->zone(), nullptr, WasmFeatures::All(), &detected, nullptr, bytes, bytes + sizeof(bytes), 0); WasmDecoder::OpcodeLength(&decoder, bytes); EXPECT_TRUE(decoder.ok()) << opcode << " aka " << WasmOpcodes::OpcodeName(opcode) << ": " << decoder.error().message(); } }; TEST_F(WasmOpcodeLengthTest, AllOpcodesImplemented) { // Make sure we didn't forget to add an opcode to the switch statements // in the {OpcodeLength} function. Due to nested handling of prefixed // opcodes, and the desire to support invalid modules, we can't rely on // compiler warnings for non-exhaustive cases lists here. #define OPCODE(opcode, ...) ExpectNonFailure(kExpr##opcode); FOREACH_OPCODE(OPCODE) #undef OPCODE } TEST_F(WasmOpcodeLengthTest, Statements) { ExpectLength(1, kExprNop); ExpectLength(1, kExprElse); ExpectLength(1, kExprEnd); ExpectLength(1, kExprSelect); ExpectLength(2, kExprCatch); ExpectLength(2, kExprDelegate); ExpectLength(2, kExprRethrow); ExpectLength(2, kExprBr); ExpectLength(2, kExprBrIf); ExpectLength(2, kExprThrow); ExpectLength(2, kExprBlock, kI32Code); ExpectLength(2, kExprLoop, kI32Code); ExpectLength(2, kExprIf, kI32Code); ExpectLength(2, kExprTry, kI32Code); } TEST_F(WasmOpcodeLengthTest, MiscExpressions) { ExpectLength(5, kExprF32Const); ExpectLength(9, kExprF64Const); ExpectLength(2, kExprRefNull); ExpectLength(2, kExprLocalGet); ExpectLength(2, kExprLocalSet); ExpectLength(2, kExprGlobalGet); ExpectLength(2, kExprGlobalSet); ExpectLength(2, kExprCallFunction); ExpectLength(3, kExprCallIndirect); ExpectLength(3, kExprSelectWithType, 1, kI32Code); } TEST_F(WasmOpcodeLengthTest, I32Const) { ExpectLength(2, kExprI32Const, U32V_1(1)); ExpectLength(3, kExprI32Const, U32V_2(999)); ExpectLength(4, kExprI32Const, U32V_3(9999)); ExpectLength(5, kExprI32Const, U32V_4(999999)); ExpectLength(6, kExprI32Const, U32V_5(99999999)); } TEST_F(WasmOpcodeLengthTest, I64Const) { ExpectLength(2, kExprI64Const, U32V_1(1)); ExpectLength(3, kExprI64Const, U32V_2(99)); ExpectLength(4, kExprI64Const, U32V_3(9999)); ExpectLength(5, kExprI64Const, U32V_4(99999)); ExpectLength(6, kExprI64Const, U32V_5(9999999)); ExpectLength(7, WASM_I64V_6(777777)); ExpectLength(8, WASM_I64V_7(7777777)); ExpectLength(9, WASM_I64V_8(77777777)); ExpectLength(10, WASM_I64V_9(777777777)); } TEST_F(WasmOpcodeLengthTest, VariableLength) { ExpectLength(2, kExprGlobalGet, U32V_1(1)); ExpectLength(3, kExprGlobalGet, U32V_2(33)); ExpectLength(4, kExprGlobalGet, U32V_3(44)); ExpectLength(5, kExprGlobalGet, U32V_4(66)); ExpectLength(6, kExprGlobalGet, U32V_5(77)); ExpectLength(2, kExprRefFunc, U32V_1(1)); ExpectLength(3, kExprRefFunc, U32V_2(33)); ExpectLength(4, kExprRefFunc, U32V_3(44)); ExpectLength(5, kExprRefFunc, U32V_4(66)); ExpectLength(6, kExprRefFunc, U32V_5(77)); ExpectLength(2, kExprTableGet, U32V_1(1)); ExpectLength(3, kExprTableGet, U32V_2(33)); ExpectLength(4, kExprTableGet, U32V_3(44)); ExpectLength(5, kExprTableGet, U32V_4(66)); ExpectLength(6, kExprTableGet, U32V_5(77)); ExpectLength(2, kExprTableSet, U32V_1(1)); ExpectLength(3, kExprTableSet, U32V_2(33)); ExpectLength(4, kExprTableSet, U32V_3(44)); ExpectLength(5, kExprTableSet, U32V_4(66)); ExpectLength(6, kExprTableSet, U32V_5(77)); ExpectLength(3, kExprCallIndirect, U32V_1(1), U32V_1(1)); ExpectLength(4, kExprCallIndirect, U32V_1(1), U32V_2(33)); ExpectLength(5, kExprCallIndirect, U32V_1(1), U32V_3(44)); ExpectLength(6, kExprCallIndirect, U32V_1(1), U32V_4(66)); ExpectLength(7, kExprCallIndirect, U32V_1(1), U32V_5(77)); } TEST_F(WasmOpcodeLengthTest, LoadsAndStores) { ExpectLength(3, kExprI32LoadMem8S); ExpectLength(3, kExprI32LoadMem8U); ExpectLength(3, kExprI32LoadMem16S); ExpectLength(3, kExprI32LoadMem16U); ExpectLength(3, kExprI32LoadMem); ExpectLength(3, kExprI64LoadMem8S); ExpectLength(3, kExprI64LoadMem8U); ExpectLength(3, kExprI64LoadMem16S); ExpectLength(3, kExprI64LoadMem16U); ExpectLength(3, kExprI64LoadMem32S); ExpectLength(3, kExprI64LoadMem32U); ExpectLength(3, kExprI64LoadMem); ExpectLength(3, kExprF32LoadMem); ExpectLength(3, kExprF64LoadMem); ExpectLength(3, kExprI32StoreMem8); ExpectLength(3, kExprI32StoreMem16); ExpectLength(3, kExprI32StoreMem); ExpectLength(3, kExprI64StoreMem8); ExpectLength(3, kExprI64StoreMem16); ExpectLength(3, kExprI64StoreMem32); ExpectLength(3, kExprI64StoreMem); ExpectLength(3, kExprF32StoreMem); ExpectLength(3, kExprF64StoreMem); } TEST_F(WasmOpcodeLengthTest, MiscMemExpressions) { ExpectLength(2, kExprMemorySize); ExpectLength(2, kExprMemoryGrow); } TEST_F(WasmOpcodeLengthTest, SimpleExpressions) { #define SIMPLE_OPCODE(name, byte, ...) byte, static constexpr uint8_t kSimpleOpcodes[] = { FOREACH_SIMPLE_OPCODE(SIMPLE_OPCODE)}; #undef SIMPLE_OPCODE for (uint8_t simple_opcode : kSimpleOpcodes) { ExpectLength(1, simple_opcode); } } TEST_F(WasmOpcodeLengthTest, SimdExpressions) { #define TEST_SIMD(name, ...) ExpectLengthPrefixed(0, kExpr##name); FOREACH_SIMD_0_OPERAND_OPCODE(TEST_SIMD) #undef TEST_SIMD #define TEST_SIMD(name, ...) ExpectLengthPrefixed(1, kExpr##name); FOREACH_SIMD_1_OPERAND_OPCODE(TEST_SIMD) #undef TEST_SIMD ExpectLengthPrefixed(16, kExprI8x16Shuffle); // test for bad simd opcode, 0xFF is encoded in two bytes. ExpectLength(3, kSimdPrefix, 0xFF, 0x1); } TEST_F(WasmOpcodeLengthTest, IllegalRefIndices) { ExpectFailure(kExprBlock, kRefNullCode, U32V_3(kV8MaxWasmTypes + 1)); ExpectFailure(kExprBlock, kRefNullCode, U32V_4(0x01000000)); } TEST_F(WasmOpcodeLengthTest, GCOpcodes) { // br_on_cast{,_fail}: prefix + opcode + br_depth + type_index ExpectLength(4, 0xfb, kExprBrOnCastDeprecated & 0xFF); ExpectLength(4, 0xfb, kExprBrOnCastFail & 0xFF); // br_on_cast: prefix + opcode + flags + br_depth + source_type + target_type ExpectLength(6, 0xfb, kExprBrOnCastGeneric & 0xFF); // struct.new, with leb immediate operand. ExpectLength(3, 0xfb, 0x07, 0x42); ExpectLength(4, 0xfb, 0x07, 0x80, 0x00); // string.new_utf8 with $mem=0. ExpectLength(4, 0xfb, 0x80, 0x01, 0x00); // string.as_wtf8. ExpectLength(3, 0xfb, 0x90, 0x01); } TEST_F(WasmOpcodeLengthTest, PrefixedOpcodesLEB) { // kExprI8x16Splat with a 3-byte LEB-encoded opcode. ExpectLength(4, 0xfd, 0x8f, 0x80, 0x00); // kExprI32SConvertSatF32 with a 4-byte LEB-encoded opcode. ExpectLength(5, 0xfc, 0x80, 0x80, 0x80, 0x00); // kExprAtomicNotify with a 2-byte LEB-encoded opcode, and 2 i32 imm for // memarg. ExpectLength(5, 0xfe, 0x80, 0x00, 0x00, 0x00); } class TypeReaderTest : public TestWithZone { public: HeapType DecodeHeapType(const uint8_t* start, const uint8_t* end) { Decoder decoder(start, end); auto [heap_type, length] = value_type_reader::read_heap_type( &decoder, start, enabled_features_); return heap_type; } // This variable is modified by WASM_FEATURE_SCOPE. WasmFeatures enabled_features_; }; TEST_F(TypeReaderTest, HeapTypeDecodingTest) { WASM_FEATURE_SCOPE(gc); WASM_FEATURE_SCOPE(typed_funcref); HeapType heap_func = HeapType(HeapType::kFunc); HeapType heap_bottom = HeapType(HeapType::kBottom); // 1- to 5-byte representation of kFuncRefCode. { const uint8_t data[] = {kFuncRefCode}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_TRUE(result == heap_func); } { const uint8_t data[] = {kFuncRefCode | 0x80, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_EQ(result, heap_func); } { const uint8_t data[] = {kFuncRefCode | 0x80, 0xFF, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_EQ(result, heap_func); } { const uint8_t data[] = {kFuncRefCode | 0x80, 0xFF, 0xFF, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_EQ(result, heap_func); } { const uint8_t data[] = {kFuncRefCode | 0x80, 0xFF, 0xFF, 0xFF, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_EQ(result, heap_func); } { // Some negative number. const uint8_t data[] = {0xB4, 0x7F}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_EQ(result, heap_bottom); } { // This differs from kFuncRefCode by one bit outside the 1-byte LEB128 // range. This should therefore NOT be decoded as HeapType::kFunc and // instead fail. const uint8_t data[] = {kFuncRefCode | 0x80, 0x6F}; HeapType result = DecodeHeapType(data, data + sizeof(data)); EXPECT_EQ(result, heap_bottom); } } class LocalDeclDecoderTest : public TestWithZone { public: WasmFeatures enabled_features_; size_t ExpectRun(ValueType* local_types, size_t pos, ValueType expected, size_t count) { for (size_t i = 0; i < count; i++) { EXPECT_EQ(expected, local_types[pos++]); } return pos; } bool DecodeLocalDecls(BodyLocalDecls* decls, const uint8_t* start, const uint8_t* end) { WasmModule module; return ValidateAndDecodeLocalDeclsForTesting(enabled_features_, decls, &module, start, end, zone()); } }; TEST_F(LocalDeclDecoderTest, EmptyLocals) { BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, nullptr, nullptr); EXPECT_FALSE(result); } TEST_F(LocalDeclDecoderTest, NoLocals) { static const uint8_t data[] = {0}; BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(0u, decls.num_locals); } TEST_F(LocalDeclDecoderTest, WrongLocalDeclsCount1) { static const uint8_t data[] = {1}; BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_FALSE(result); } TEST_F(LocalDeclDecoderTest, WrongLocalDeclsCount2) { static const uint8_t data[] = { 2, 1, static_cast(kWasmI32.value_type_code())}; BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_FALSE(result); } TEST_F(LocalDeclDecoderTest, OneLocal) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; const uint8_t data[] = {1, 1, static_cast(type.value_type_code())}; BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(1u, decls.num_locals); EXPECT_EQ(type, decls.local_types[0]); } } TEST_F(LocalDeclDecoderTest, FiveLocals) { for (size_t i = 0; i < arraysize(kValueTypes); i++) { ValueType type = kValueTypes[i]; const uint8_t data[] = {1, 5, static_cast(type.value_type_code())}; BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(sizeof(data), decls.encoded_size); EXPECT_EQ(5u, decls.num_locals); ExpectRun(decls.local_types, 0, type, 5); } } TEST_F(LocalDeclDecoderTest, MixedLocals) { for (uint8_t a = 0; a < 3; a++) { for (uint8_t b = 0; b < 3; b++) { for (uint8_t c = 0; c < 3; c++) { for (uint8_t d = 0; d < 3; d++) { const uint8_t data[] = {4, a, kI32Code, b, kI64Code, c, kF32Code, d, kF64Code}; BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, data + sizeof(data)); EXPECT_TRUE(result); EXPECT_EQ(sizeof(data), decls.encoded_size); EXPECT_EQ(static_cast(a + b + c + d), decls.num_locals); size_t pos = 0; pos = ExpectRun(decls.local_types, pos, kWasmI32, a); pos = ExpectRun(decls.local_types, pos, kWasmI64, b); pos = ExpectRun(decls.local_types, pos, kWasmF32, c); pos = ExpectRun(decls.local_types, pos, kWasmF64, d); } } } } } TEST_F(LocalDeclDecoderTest, UseEncoder) { const uint8_t* data = nullptr; const uint8_t* end = nullptr; LocalDeclEncoder local_decls(zone()); local_decls.AddLocals(5, kWasmF32); local_decls.AddLocals(1337, kWasmI32); local_decls.AddLocals(212, kWasmI64); local_decls.Prepend(zone(), &data, &end); BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, end); EXPECT_TRUE(result); EXPECT_EQ(5u + 1337u + 212u, decls.num_locals); size_t pos = 0; pos = ExpectRun(decls.local_types, pos, kWasmF32, 5); pos = ExpectRun(decls.local_types, pos, kWasmI32, 1337); pos = ExpectRun(decls.local_types, pos, kWasmI64, 212); } TEST_F(LocalDeclDecoderTest, InvalidTypeIndex) { WASM_FEATURE_SCOPE(typed_funcref); const uint8_t* data = nullptr; const uint8_t* end = nullptr; LocalDeclEncoder local_decls(zone()); local_decls.AddLocals(1, ValueType::RefNull(0)); BodyLocalDecls decls; bool result = DecodeLocalDecls(&decls, data, end); EXPECT_FALSE(result); } class BytecodeIteratorTest : public TestWithZone {}; TEST_F(BytecodeIteratorTest, SimpleForeach) { uint8_t code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)}; BytecodeIterator iter(code, code + sizeof(code)); WasmOpcode expected[] = {kExprI32Const, kExprIf, kExprI32Const, kExprElse, kExprI32Const, kExprEnd}; size_t pos = 0; for (WasmOpcode opcode : iter.opcodes()) { if (pos >= arraysize(expected)) { EXPECT_TRUE(false); break; } EXPECT_EQ(expected[pos++], opcode); } EXPECT_EQ(arraysize(expected), pos); } TEST_F(BytecodeIteratorTest, ForeachTwice) { uint8_t code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)}; BytecodeIterator iter(code, code + sizeof(code)); int count = 0; count = 0; for (WasmOpcode opcode : iter.opcodes()) { USE(opcode); count++; } EXPECT_EQ(6, count); count = 0; for (WasmOpcode opcode : iter.opcodes()) { USE(opcode); count++; } EXPECT_EQ(6, count); } TEST_F(BytecodeIteratorTest, ForeachOffset) { uint8_t code[] = {WASM_IF_ELSE(WASM_ZERO, WASM_ZERO, WASM_ZERO)}; BytecodeIterator iter(code, code + sizeof(code)); int count = 0; count = 0; for (auto offset : iter.offsets()) { USE(offset); count++; } EXPECT_EQ(6, count); count = 0; for (auto offset : iter.offsets()) { USE(offset); count++; } EXPECT_EQ(6, count); } TEST_F(BytecodeIteratorTest, WithLocalDecls) { uint8_t code[] = {1, 1, kI32Code, WASM_I32V_1(9), WASM_I32V_1(11)}; BodyLocalDecls decls; BytecodeIterator iter(code, code + sizeof(code), &decls, zone()); EXPECT_EQ(3u, decls.encoded_size); EXPECT_EQ(3u, iter.pc_offset()); EXPECT_TRUE(iter.has_next()); EXPECT_EQ(kExprI32Const, iter.current()); iter.next(); EXPECT_TRUE(iter.has_next()); EXPECT_EQ(kExprI32Const, iter.current()); iter.next(); EXPECT_FALSE(iter.has_next()); } /******************************************************************************* * Memory64 tests ******************************************************************************/ class FunctionBodyDecoderTestOnBothMemoryTypes : public FunctionBodyDecoderTestBase< WithDefaultPlatformMixin<::testing::TestWithParam>> { public: FunctionBodyDecoderTestOnBothMemoryTypes() { if (is_memory64()) enabled_features_.Add(kFeature_memory64); } bool is_memory64() const { return GetParam() == kMemory64; } }; std::string PrintMemoryType(::testing::TestParamInfo info) { switch (info.param) { case kMemory32: return "kMemory32"; case kMemory64: return "kMemory64"; } UNREACHABLE(); } INSTANTIATE_TEST_SUITE_P(MemoryTypes, FunctionBodyDecoderTestOnBothMemoryTypes, ::testing::Values(kMemory32, kMemory64), PrintMemoryType); TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, IndexTypes) { builder.InitializeMemory(GetParam()); Validate(!is_memory64(), sigs.i_v(), {WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO)}); Validate(is_memory64(), sigs.i_v(), {WASM_LOAD_MEM(MachineType::Int32(), WASM_ZERO64)}); Validate(!is_memory64(), sigs.v_v(), {WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO, WASM_ZERO)}); Validate(is_memory64(), sigs.v_v(), {WASM_STORE_MEM(MachineType::Int32(), WASM_ZERO64, WASM_ZERO)}); } TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, 64BitOffsetOnMemory32) { // Check that with memory64 enabled, the offset is always decoded as u64, even // if the memory is declared as 32-bit memory. builder.InitializeMemory(kMemory32); // Offset is zero encoded in 5 bytes (always works). Validate(true, sigs.i_v(), {WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_5(0), WASM_ZERO)}); // Offset is zero encoded in 6 bytes (works if memory64 is enabled). Validate(is_memory64(), sigs.i_v(), {WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_6(0), WASM_ZERO)}); // Same with store. Validate(true, sigs.v_v(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_5(0), WASM_ZERO, WASM_ZERO)}); Validate(is_memory64(), sigs.v_v(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_6(0), WASM_ZERO, WASM_ZERO)}); } TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, 64BitOffsetOnMemory64) { // Same as above, but on a 64-bit memory. builder.InitializeMemory(kMemory64); // Offset is zero encoded in 5 bytes. Validate( true, sigs.i_v(), {WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_5(0), WASM_ZERO64)}); // Offset is zero encoded in 6 bytes (works if memory64 is enabled). Validate( is_memory64(), sigs.i_v(), {WASM_LOAD_MEM_OFFSET(MachineType::Int32(), U64V_6(0), WASM_ZERO64)}); // Same with store. Validate(true, sigs.v_v(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_5(0), WASM_ZERO64, WASM_ZERO)}); Validate(is_memory64(), sigs.v_v(), {WASM_STORE_MEM_OFFSET(MachineType::Int32(), U64V_6(0), WASM_ZERO64, WASM_ZERO)}); } TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, MemorySize) { builder.InitializeMemory(GetParam()); // memory.size returns i32 on memory32. Validate(!is_memory64(), sigs.v_v(), {WASM_MEMORY_SIZE, kExprI32Eqz, kExprDrop}); // memory.size returns i64 on memory64. Validate(is_memory64(), sigs.v_v(), {WASM_MEMORY_SIZE, kExprI64Eqz, kExprDrop}); } TEST_P(FunctionBodyDecoderTestOnBothMemoryTypes, MemoryGrow) { builder.InitializeMemory(GetParam()); // memory.grow is i32->i32 memory32. Validate(!is_memory64(), sigs.i_i(), {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))}); // memory.grow is i64->i64 memory32. Validate(is_memory64(), sigs.l_l(), {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))}); // any other combination always fails. auto sig_l_i = MakeSig::Returns(kWasmI64).Params(kWasmI32); ExpectFailure(&sig_l_i, {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))}); auto sig_i_l = MakeSig::Returns(kWasmI32).Params(kWasmI64); ExpectFailure(&sig_i_l, {WASM_MEMORY_GROW(WASM_LOCAL_GET(0))}); } #undef B1 #undef B2 #undef B3 #undef WASM_IF_OP #undef WASM_LOOP_OP #undef WASM_BRV_IF_ZERO #undef EXPECT_OK } // namespace v8::internal::wasm