// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/regexp/regexp.h" #include #include #include #include "include/v8-context.h" #include "include/v8-initialization.h" #include "include/v8-isolate.h" #include "include/v8-local-handle.h" #include "src/api/api-inl.h" #include "src/ast/ast.h" #include "src/base/strings.h" #include "src/codegen/assembler-arch.h" #include "src/codegen/macro-assembler.h" #include "src/init/v8.h" #include "src/objects/js-regexp-inl.h" #include "src/objects/objects-inl.h" #include "src/regexp/regexp-bytecode-generator.h" #include "src/regexp/regexp-bytecodes.h" #include "src/regexp/regexp-compiler.h" #include "src/regexp/regexp-interpreter.h" #include "src/regexp/regexp-macro-assembler-arch.h" #include "src/regexp/regexp-parser.h" #include "src/strings/char-predicates-inl.h" #include "src/strings/string-stream.h" #include "src/strings/unicode-inl.h" #include "src/utils/ostreams.h" #include "src/zone/zone-list-inl.h" #include "test/common/flag-utils.h" #include "test/unittests/test-utils.h" namespace v8 { namespace internal { TEST_F(TestWithNativeContext, ConvertRegExpFlagsToString) { RunJS("let regexp = new RegExp(/ab+c/ig);"); Handle regexp = RunJS("regexp"); Handle flags = RunJS("regexp.flags"); Handle converted_flags = JSRegExp::StringFromFlags(isolate(), regexp->flags()); EXPECT_TRUE(String::Equals(isolate(), flags, converted_flags)); } TEST_F(TestWithNativeContext, ConvertRegExpFlagsToStringNoFlags) { RunJS("let regexp = new RegExp(/ab+c/);"); Handle regexp = RunJS("regexp"); Handle flags = RunJS("regexp.flags"); Handle converted_flags = JSRegExp::StringFromFlags(isolate(), regexp->flags()); EXPECT_TRUE(String::Equals(isolate(), flags, converted_flags)); } TEST_F(TestWithNativeContext, ConvertRegExpFlagsToStringAllFlags) { RunJS("let regexp = new RegExp(/ab+c/dgimsuy);"); Handle regexp = RunJS("regexp"); Handle flags = RunJS("regexp.flags"); Handle converted_flags = JSRegExp::StringFromFlags(isolate(), regexp->flags()); EXPECT_TRUE(String::Equals(isolate(), flags, converted_flags)); } using RegExpTest = TestWithIsolate; static bool CheckParse(const char* input) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); v8::HandleScope scope(v8::Isolate::GetCurrent()); Zone zone(isolate->allocator(), ZONE_NAME); Handle str = isolate->factory()->NewStringFromAsciiChecked(input); RegExpCompileData result; return RegExpParser::ParseRegExpFromHeapString(isolate, &zone, str, {}, &result); } static void CheckParseEq(const char* input, const char* expected, bool unicode = false) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); v8::HandleScope scope(v8::Isolate::GetCurrent()); Zone zone(isolate->allocator(), ZONE_NAME); Handle str = isolate->factory()->NewStringFromAsciiChecked(input); RegExpCompileData result; RegExpFlags flags; if (unicode) flags |= RegExpFlag::kUnicode; CHECK(RegExpParser::ParseRegExpFromHeapString(isolate, &zone, str, flags, &result)); CHECK_NOT_NULL(result.tree); CHECK(result.error == RegExpError::kNone); std::ostringstream os; result.tree->Print(os, &zone); if (strcmp(expected, os.str().c_str()) != 0) { printf("%s | %s\n", expected, os.str().c_str()); } CHECK_EQ(0, strcmp(expected, os.str().c_str())); } static bool CheckSimple(const char* input) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); v8::HandleScope scope(v8::Isolate::GetCurrent()); Zone zone(isolate->allocator(), ZONE_NAME); Handle str = isolate->factory()->NewStringFromAsciiChecked(input); RegExpCompileData result; CHECK(RegExpParser::ParseRegExpFromHeapString(isolate, &zone, str, {}, &result)); CHECK_NOT_NULL(result.tree); CHECK(result.error == RegExpError::kNone); return result.simple; } struct MinMaxPair { int min_match; int max_match; }; static MinMaxPair CheckMinMaxMatch(const char* input) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); v8::HandleScope scope(v8::Isolate::GetCurrent()); Zone zone(isolate->allocator(), ZONE_NAME); Handle str = isolate->factory()->NewStringFromAsciiChecked(input); RegExpCompileData result; CHECK(RegExpParser::ParseRegExpFromHeapString(isolate, &zone, str, {}, &result)); CHECK_NOT_NULL(result.tree); CHECK(result.error == RegExpError::kNone); int min_match = result.tree->min_match(); int max_match = result.tree->max_match(); MinMaxPair pair = {min_match, max_match}; return pair; } #define CHECK_PARSE_ERROR(input) CHECK(!CheckParse(input)) #define CHECK_SIMPLE(input, simple) CHECK_EQ(simple, CheckSimple(input)); #define CHECK_MIN_MAX(input, min, max) \ { \ MinMaxPair min_max = CheckMinMaxMatch(input); \ CHECK_EQ(min, min_max.min_match); \ CHECK_EQ(max, min_max.max_match); \ } TEST_F(RegExpTest, RegExpParser) { CHECK_PARSE_ERROR("?"); CheckParseEq("abc", "'abc'"); CheckParseEq("", "%"); CheckParseEq("abc|def", "(| 'abc' 'def')"); CheckParseEq("abc|def|ghi", "(| 'abc' 'def' 'ghi')"); CheckParseEq("^xxx$", "(: @^i 'xxx' @$i)"); CheckParseEq("ab\\b\\d\\bcd", "(: 'ab' @b [0-9] @b 'cd')"); CheckParseEq("\\w|\\d", "(| [0-9 A-Z _ a-z] [0-9])"); CheckParseEq("a*", "(# 0 - g 'a')"); CheckParseEq("a*?", "(# 0 - n 'a')"); CheckParseEq("abc+", "(: 'ab' (# 1 - g 'c'))"); CheckParseEq("abc+?", "(: 'ab' (# 1 - n 'c'))"); CheckParseEq("xyz?", "(: 'xy' (# 0 1 g 'z'))"); CheckParseEq("xyz??", "(: 'xy' (# 0 1 n 'z'))"); CheckParseEq("xyz{0,1}", "(: 'xy' (# 0 1 g 'z'))"); CheckParseEq("xyz{0,1}?", "(: 'xy' (# 0 1 n 'z'))"); CheckParseEq("xyz{93}", "(: 'xy' (# 93 93 g 'z'))"); CheckParseEq("xyz{93}?", "(: 'xy' (# 93 93 n 'z'))"); CheckParseEq("xyz{1,32}", "(: 'xy' (# 1 32 g 'z'))"); CheckParseEq("xyz{1,32}?", "(: 'xy' (# 1 32 n 'z'))"); CheckParseEq("xyz{1,}", "(: 'xy' (# 1 - g 'z'))"); CheckParseEq("xyz{1,}?", "(: 'xy' (# 1 - n 'z'))"); CheckParseEq("a\\fb\\nc\\rd\\te\\vf", "'a\\x0cb\\x0ac\\x0dd\\x09e\\x0bf'"); CheckParseEq("a\\nb\\bc", "(: 'a\\x0ab' @b 'c')"); CheckParseEq("(?:foo)", "(?: 'foo')"); CheckParseEq("(?: foo )", "(?: ' foo ')"); CheckParseEq("(foo|bar|baz)", "(^ (| 'foo' 'bar' 'baz'))"); CheckParseEq("foo|(bar|baz)|quux", "(| 'foo' (^ (| 'bar' 'baz')) 'quux')"); CheckParseEq("foo(?=bar)baz", "(: 'foo' (-> + 'bar') 'baz')"); CheckParseEq("foo(?!bar)baz", "(: 'foo' (-> - 'bar') 'baz')"); CheckParseEq("foo(?<=bar)baz", "(: 'foo' (<- + 'bar') 'baz')"); CheckParseEq("foo(? + %)"); CheckParseEq("[]", "^[\\x00-\\u{10ffff}]"); // Doesn't compile on windows CheckParseEq("[^]", "[\\x00-\\u{10ffff}]"); // \uffff isn't in codepage 1252 CheckParseEq("[x]", "[x]"); CheckParseEq("[xyz]", "[x y z]"); CheckParseEq("[a-zA-Z0-9]", "[a-z A-Z 0-9]"); CheckParseEq("[-123]", "[- 1 2 3]"); CheckParseEq("[^123]", "^[1 2 3]"); CheckParseEq("]", "']'"); CheckParseEq("}", "'}'"); CheckParseEq("[a-b-c]", "[a-b - c]"); CheckParseEq("[\\d]", "[0-9]"); CheckParseEq("[x\\dz]", "[x 0-9 z]"); CheckParseEq("[\\d-z]", "[0-9 - z]"); CheckParseEq("[\\d-\\d]", "[0-9 0-9 -]"); CheckParseEq("[z-\\d]", "[0-9 z -]"); // Control character outside character class. CheckParseEq("\\cj\\cJ\\ci\\cI\\ck\\cK", "'\\x0a\\x0a\\x09\\x09\\x0b\\x0b'"); CheckParseEq("\\c!", "'\\c!'"); CheckParseEq("\\c_", "'\\c_'"); CheckParseEq("\\c~", "'\\c~'"); CheckParseEq("\\c1", "'\\c1'"); // Control character inside character class. CheckParseEq("[\\c!]", "[\\ c !]"); CheckParseEq("[\\c_]", "[\\x1f]"); CheckParseEq("[\\c~]", "[\\ c ~]"); CheckParseEq("[\\ca]", "[\\x01]"); CheckParseEq("[\\cz]", "[\\x1a]"); CheckParseEq("[\\cA]", "[\\x01]"); CheckParseEq("[\\cZ]", "[\\x1a]"); CheckParseEq("[\\c1]", "[\\x11]"); CheckParseEq("[a\\]c]", "[a ] c]"); CheckParseEq("\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ", "'[]{}()%^# '"); CheckParseEq("[\\[\\]\\{\\}\\(\\)\\%\\^\\#\\ ]", "[[ ] { } ( ) % ^ # ]"); CheckParseEq("\\0", "'\\x00'"); CheckParseEq("\\8", "'8'"); CheckParseEq("\\9", "'9'"); CheckParseEq("\\11", "'\\x09'"); CheckParseEq("\\11a", "'\\x09a'"); CheckParseEq("\\011", "'\\x09'"); CheckParseEq("\\00011", "'\\x0011'"); CheckParseEq("\\118", "'\\x098'"); CheckParseEq("\\111", "'I'"); CheckParseEq("\\1111", "'I1'"); CheckParseEq("(x)(x)(x)\\1", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))"); CheckParseEq("(x)(x)(x)\\2", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))"); CheckParseEq("(x)(x)(x)\\3", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))"); CheckParseEq("(x)(x)(x)\\4", "(: (^ 'x') (^ 'x') (^ 'x') '\\x04')"); CheckParseEq("(x)(x)(x)\\1*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g (<- 1)))"); CheckParseEq("(x)(x)(x)\\2*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g (<- 2)))"); CheckParseEq("(x)(x)(x)\\3*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g (<- 3)))"); CheckParseEq("(x)(x)(x)\\4*", "(: (^ 'x') (^ 'x') (^ 'x')" " (# 0 - g '\\x04'))"); CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\10", "(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')" " (^ 'x') (^ 'x') (^ 'x') (^ 'x') (<- 10))"); CheckParseEq("(x)(x)(x)(x)(x)(x)(x)(x)(x)(x)\\11", "(: (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x') (^ 'x')" " (^ 'x') (^ 'x') (^ 'x') (^ 'x') '\\x09')"); CheckParseEq("(a)\\1", "(: (^ 'a') (<- 1))"); CheckParseEq("(a\\1)", "(^ 'a')"); CheckParseEq("(\\1a)", "(^ 'a')"); CheckParseEq("(\\2)(\\1)", "(: (^ (<- 2)) (^ (<- 1)))"); CheckParseEq("(?=a)?a", "'a'"); CheckParseEq("(?=a){0,10}a", "'a'"); CheckParseEq("(?=a){1,10}a", "(: (-> + 'a') 'a')"); CheckParseEq("(?=a){9,10}a", "(: (-> + 'a') 'a')"); CheckParseEq("(?!a)?a", "'a'"); CheckParseEq("\\1(a)", "(: (<- 1) (^ 'a'))"); CheckParseEq("(?!(a))\\1", "(: (-> - (^ 'a')) (<- 1))"); CheckParseEq("(?!\\1(a\\1)\\1)\\1", "(: (-> - (: (<- 1) (^ 'a') (<- 1))) (<- 1))"); CheckParseEq("\\1\\2(a(?:\\1(b\\1\\2))\\2)\\1", "(: (<- 1) (<- 2) (^ (: 'a' (?: (^ 'b')) (<- 2))) (<- 1))"); CheckParseEq("\\1\\2(a(?<=\\1(b\\1\\2))\\2)\\1", "(: (<- 1) (<- 2) (^ (: 'a' (<- + (^ 'b')) (<- 2))) (<- 1))"); CheckParseEq("[\\0]", "[\\x00]"); CheckParseEq("[\\11]", "[\\x09]"); CheckParseEq("[\\11a]", "[\\x09 a]"); CheckParseEq("[\\011]", "[\\x09]"); CheckParseEq("[\\00011]", "[\\x00 1 1]"); CheckParseEq("[\\118]", "[\\x09 8]"); CheckParseEq("[\\111]", "[I]"); CheckParseEq("[\\1111]", "[I 1]"); CheckParseEq("\\x34", "'\x34'"); CheckParseEq("\\x60", "'\x60'"); CheckParseEq("\\x3z", "'x3z'"); CheckParseEq("\\c", "'\\c'"); CheckParseEq("\\u0034", "'\x34'"); CheckParseEq("\\u003z", "'u003z'"); CheckParseEq("foo[z]*", "(: 'foo' (# 0 - g [z]))"); CheckParseEq("^^^$$$\\b\\b\\b\\b", "(: @^i @^i @^i @$i @$i @$i @b @b @b @b)"); CheckParseEq("\\b\\b\\b\\b\\B\\B\\B\\B\\b\\b\\b\\b", "(: @b @b @b @b @B @B @B @B @b @b @b @b)"); CheckParseEq("\\b\\B\\b", "(: @b @B @b)"); // Unicode regexps CheckParseEq("\\u{12345}", "'\\ud808\\udf45'", true); CheckParseEq("\\u{12345}\\u{23456}", "(! '\\ud808\\udf45' '\\ud84d\\udc56')", true); CheckParseEq("\\u{12345}|\\u{23456}", "(| '\\ud808\\udf45' '\\ud84d\\udc56')", true); CheckParseEq("\\u{12345}{3}", "(# 3 3 g '\\ud808\\udf45')", true); CheckParseEq("\\u{12345}*", "(# 0 - g '\\ud808\\udf45')", true); CheckParseEq("\\ud808\\udf45*", "(# 0 - g '\\ud808\\udf45')", true); CheckParseEq("[\\ud808\\udf45-\\ud809\\udccc]", "[\\u{012345}-\\u{0124cc}]", true); CHECK_SIMPLE("", false); CHECK_SIMPLE("a", true); CHECK_SIMPLE("a|b", false); CHECK_SIMPLE("a\\n", false); CHECK_SIMPLE("^a", false); CHECK_SIMPLE("a$", false); CHECK_SIMPLE("a\\b!", false); CHECK_SIMPLE("a\\Bb", false); CHECK_SIMPLE("a*", false); CHECK_SIMPLE("a*?", false); CHECK_SIMPLE("a?", false); CHECK_SIMPLE("a??", false); CHECK_SIMPLE("a{0,1}?", false); CHECK_SIMPLE("a{1,1}?", false); CHECK_SIMPLE("a{1,2}?", false); CHECK_SIMPLE("a+?", false); CHECK_SIMPLE("(a)", false); CHECK_SIMPLE("(a)\\1", false); CHECK_SIMPLE("(\\1a)", false); CHECK_SIMPLE("\\1(a)", false); CHECK_SIMPLE("a\\s", false); CHECK_SIMPLE("a\\S", false); CHECK_SIMPLE("a\\d", false); CHECK_SIMPLE("a\\D", false); CHECK_SIMPLE("a\\w", false); CHECK_SIMPLE("a\\W", false); CHECK_SIMPLE("a.", false); CHECK_SIMPLE("a\\q", false); CHECK_SIMPLE("a[a]", false); CHECK_SIMPLE("a[^a]", false); CHECK_SIMPLE("a[a-z]", false); CHECK_SIMPLE("a[\\q]", false); CHECK_SIMPLE("a(?:b)", false); CHECK_SIMPLE("a(?=b)", false); CHECK_SIMPLE("a(?!b)", false); CHECK_SIMPLE("\\x60", false); CHECK_SIMPLE("\\u0060", false); CHECK_SIMPLE("\\cA", false); CHECK_SIMPLE("\\q", false); CHECK_SIMPLE("\\1112", false); CHECK_SIMPLE("\\0", false); CHECK_SIMPLE("(a)\\1", false); CHECK_SIMPLE("(?=a)?a", false); CHECK_SIMPLE("(?!a)?a\\1", false); CHECK_SIMPLE("(?:(?=a))a\\1", false); CheckParseEq("a{}", "'a{}'"); CheckParseEq("a{,}", "'a{,}'"); CheckParseEq("a{", "'a{'"); CheckParseEq("a{z}", "'a{z}'"); CheckParseEq("a{1z}", "'a{1z}'"); CheckParseEq("a{12z}", "'a{12z}'"); CheckParseEq("a{12,", "'a{12,'"); CheckParseEq("a{12,3b", "'a{12,3b'"); CheckParseEq("{}", "'{}'"); CheckParseEq("{,}", "'{,}'"); CheckParseEq("{", "'{'"); CheckParseEq("{z}", "'{z}'"); CheckParseEq("{1z}", "'{1z}'"); CheckParseEq("{12z}", "'{12z}'"); CheckParseEq("{12,", "'{12,'"); CheckParseEq("{12,3b", "'{12,3b'"); CHECK_MIN_MAX("a", 1, 1); CHECK_MIN_MAX("abc", 3, 3); CHECK_MIN_MAX("a[bc]d", 3, 3); CHECK_MIN_MAX("a|bc", 1, 2); CHECK_MIN_MAX("ab|c", 1, 2); CHECK_MIN_MAX("a||bc", 0, 2); CHECK_MIN_MAX("|", 0, 0); CHECK_MIN_MAX("(?:ab)", 2, 2); CHECK_MIN_MAX("(?:ab|cde)", 2, 3); CHECK_MIN_MAX("(?:ab)|cde", 2, 3); CHECK_MIN_MAX("(ab)", 2, 2); CHECK_MIN_MAX("(ab|cde)", 2, 3); CHECK_MIN_MAX("(ab)\\1", 2, RegExpTree::kInfinity); CHECK_MIN_MAX("(ab|cde)\\1", 2, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:ab)?", 0, 2); CHECK_MIN_MAX("(?:ab)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:ab)+", 2, RegExpTree::kInfinity); CHECK_MIN_MAX("a?", 0, 1); CHECK_MIN_MAX("a*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("a+", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("a??", 0, 1); CHECK_MIN_MAX("a*?", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("a+?", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a?)?", 0, 1); CHECK_MIN_MAX("(?:a*)?", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a+)?", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a?)+", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a*)+", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a+)+", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a?)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a*)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a+)*", 0, RegExpTree::kInfinity); CHECK_MIN_MAX("a{0}", 0, 0); CHECK_MIN_MAX("(?:a+){0}", 0, 0); CHECK_MIN_MAX("(?:a+){0,0}", 0, 0); CHECK_MIN_MAX("a*b", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("a+b", 2, RegExpTree::kInfinity); CHECK_MIN_MAX("a*b|c", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("a+b|c", 1, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:a{5,1000000}){3,1000000}", 15, RegExpTree::kInfinity); CHECK_MIN_MAX("(?:ab){4,7}", 8, 14); CHECK_MIN_MAX("a\\bc", 2, 2); CHECK_MIN_MAX("a\\Bc", 2, 2); CHECK_MIN_MAX("a\\sc", 3, 3); CHECK_MIN_MAX("a\\Sc", 3, 3); CHECK_MIN_MAX("a(?=b)c", 2, 2); CHECK_MIN_MAX("a(?=bbb|bb)c", 2, 2); CHECK_MIN_MAX("a(?!bbb|bb)c", 2, 2); CheckParseEq("(?x)(?x)(?x)\\k", "(: (^ 'x') (^ 'x') (^ 'x') (<- 1))", true); CheckParseEq("(?x)(?x)(?x)\\k", "(: (^ 'x') (^ 'x') (^ 'x') (<- 2))", true); CheckParseEq("(?x)(?x)(?x)\\k", "(: (^ 'x') (^ 'x') (^ 'x') (<- 3))", true); CheckParseEq("(?a)\\k", "(: (^ 'a') (<- 1))", true); CheckParseEq("(?a\\k)", "(^ 'a')", true); CheckParseEq("(?\\ka)", "(^ 'a')", true); CheckParseEq("(?\\k)(?\\k)", "(: (^ (<- 2)) (^ (<- 1)))", true); CheckParseEq("\\k(?a)", "(: (<- 1) (^ 'a'))", true); CheckParseEq("(?<\\u{03C0}>a)", "(^ 'a')", true); CheckParseEq("(?<\\u03C0>a)", "(^ 'a')", true); } TEST_F(RegExpTest, ParserRegression) { CheckParseEq("[A-Z$-][x]", "(! [A-Z $ -] [x])"); CheckParseEq("a{3,4*}", "(: 'a{3,' (# 0 - g '4') '}')"); CheckParseEq("{", "'{'"); CheckParseEq("a|", "(| 'a' %)"); } static void ExpectError(const char* input, const char* expected, bool unicode = false) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); v8::HandleScope scope(v8::Isolate::GetCurrent()); Zone zone(isolate->allocator(), ZONE_NAME); Handle str = isolate->factory()->NewStringFromAsciiChecked(input); RegExpCompileData result; RegExpFlags flags; if (unicode) flags |= RegExpFlag::kUnicode; CHECK(!RegExpParser::ParseRegExpFromHeapString(isolate, &zone, str, flags, &result)); CHECK_NULL(result.tree); CHECK(result.error != RegExpError::kNone); CHECK_EQ(0, strcmp(expected, RegExpErrorString(result.error))); } TEST_F(RegExpTest, Errors) { const char* kEndBackslash = "\\ at end of pattern"; ExpectError("\\", kEndBackslash); const char* kUnterminatedGroup = "Unterminated group"; ExpectError("(foo", kUnterminatedGroup); const char* kInvalidGroup = "Invalid group"; ExpectError("(?", kInvalidGroup); const char* kUnterminatedCharacterClass = "Unterminated character class"; ExpectError("[", kUnterminatedCharacterClass); ExpectError("[a-", kUnterminatedCharacterClass); const char* kNothingToRepeat = "Nothing to repeat"; ExpectError("*", kNothingToRepeat); ExpectError("?", kNothingToRepeat); ExpectError("+", kNothingToRepeat); ExpectError("{1}", kNothingToRepeat); ExpectError("{1,2}", kNothingToRepeat); ExpectError("{1,}", kNothingToRepeat); // Check that we don't allow more than kMaxCapture captures const int kMaxCaptures = 1 << 16; // Must match RegExpParser::kMaxCaptures. const char* kTooManyCaptures = "Too many captures"; std::ostringstream os; for (int i = 0; i <= kMaxCaptures; i++) { os << "()"; } ExpectError(os.str().c_str(), kTooManyCaptures); const char* kInvalidCaptureName = "Invalid capture group name"; ExpectError("(?<>.)", kInvalidCaptureName, true); ExpectError("(?<1>.)", kInvalidCaptureName, true); ExpectError("(?<_%>.)", kInvalidCaptureName, true); ExpectError("\\k.)(?.)", kDuplicateCaptureName, true); const char* kInvalidUnicodeEscape = "Invalid Unicode escape"; ExpectError("(?<\\u{FISK}", kInvalidUnicodeEscape, true); const char* kInvalidCaptureReferenced = "Invalid named capture referenced"; ExpectError("\\k", kInvalidCaptureReferenced, true); ExpectError("(?)\\k", kInvalidCaptureReferenced, true); const char* kInvalidNamedReference = "Invalid named reference"; ExpectError("\\ka", kInvalidNamedReference, true); } static bool IsDigit(base::uc32 c) { return ('0' <= c && c <= '9'); } static bool NotDigit(base::uc32 c) { return !IsDigit(c); } static bool NotWhiteSpaceNorLineTermiantor(base::uc32 c) { return !IsWhiteSpaceOrLineTerminator(c); } static bool NotWord(base::uc32 c) { return !IsRegExpWord(c); } static bool NotLineTerminator(base::uc32 c) { return !unibrow::IsLineTerminator(c); } static void TestCharacterClassEscapes(StandardCharacterSet c, bool(pred)(base::uc32 c)) { Zone zone( reinterpret_cast(v8::Isolate::GetCurrent())->allocator(), ZONE_NAME); ZoneList* ranges = zone.New>(2, &zone); CharacterRange::AddClassEscape(c, ranges, false, &zone); for (base::uc32 i = 0; i < (1 << 16); i++) { bool in_class = false; for (int j = 0; !in_class && j < ranges->length(); j++) { CharacterRange& range = ranges->at(j); in_class = (range.from() <= i && i <= range.to()); } CHECK_EQ(pred(i), in_class); } } TEST_F(RegExpTest, CharacterClassEscapes) { TestCharacterClassEscapes(StandardCharacterSet::kNotLineTerminator, NotLineTerminator); TestCharacterClassEscapes(StandardCharacterSet::kDigit, IsDigit); TestCharacterClassEscapes(StandardCharacterSet::kNotDigit, NotDigit); TestCharacterClassEscapes(StandardCharacterSet::kWhitespace, IsWhiteSpaceOrLineTerminator); TestCharacterClassEscapes(StandardCharacterSet::kNotWhitespace, NotWhiteSpaceNorLineTermiantor); TestCharacterClassEscapes(StandardCharacterSet::kWord, IsRegExpWord); TestCharacterClassEscapes(StandardCharacterSet::kNotWord, NotWord); } static RegExpNode* Compile(const char* input, bool multiline, bool unicode, bool is_one_byte, Zone* zone) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); Handle str = isolate->factory()->NewStringFromAsciiChecked(input); RegExpCompileData compile_data; compile_data.compilation_target = RegExpCompilationTarget::kNative; RegExpFlags flags; if (multiline) flags |= RegExpFlag::kMultiline; if (unicode) flags |= RegExpFlag::kUnicode; if (!RegExpParser::ParseRegExpFromHeapString(isolate, zone, str, flags, &compile_data)) { return nullptr; } Handle pattern = isolate->factory() ->NewStringFromUtf8(base::CStrVector(input)) .ToHandleChecked(); Handle sample_subject = isolate->factory() ->NewStringFromUtf8(base::CStrVector("")) .ToHandleChecked(); RegExp::CompileForTesting(isolate, zone, &compile_data, flags, pattern, sample_subject, is_one_byte); return compile_data.node; } static void Execute(const char* input, bool multiline, bool unicode, bool is_one_byte, bool dot_output = false) { v8::HandleScope scope(v8::Isolate::GetCurrent()); Zone zone( reinterpret_cast(v8::Isolate::GetCurrent())->allocator(), ZONE_NAME); RegExpNode* node = Compile(input, multiline, unicode, is_one_byte, &zone); USE(node); #ifdef DEBUG if (dot_output) RegExp::DotPrintForTesting(input, node); #endif // DEBUG } // Test of debug-only syntax. #ifdef DEBUG TEST_F(RegExpTest, ParsePossessiveRepetition) { bool old_flag_value = v8_flags.regexp_possessive_quantifier; // Enable possessive quantifier syntax. v8_flags.regexp_possessive_quantifier = true; CheckParseEq("a*+", "(# 0 - p 'a')"); CheckParseEq("a++", "(# 1 - p 'a')"); CheckParseEq("a?+", "(# 0 1 p 'a')"); CheckParseEq("a{10,20}+", "(# 10 20 p 'a')"); CheckParseEq("za{10,20}+b", "(: 'z' (# 10 20 p 'a') 'b')"); // Disable possessive quantifier syntax. v8_flags.regexp_possessive_quantifier = false; CHECK_PARSE_ERROR("a*+"); CHECK_PARSE_ERROR("a++"); CHECK_PARSE_ERROR("a?+"); CHECK_PARSE_ERROR("a{10,20}+"); CHECK_PARSE_ERROR("a{10,20}+b"); v8_flags.regexp_possessive_quantifier = old_flag_value; } #endif // Tests of interpreter. #if V8_TARGET_ARCH_IA32 using ArchRegExpMacroAssembler = RegExpMacroAssemblerIA32; #elif V8_TARGET_ARCH_X64 using ArchRegExpMacroAssembler = RegExpMacroAssemblerX64; #elif V8_TARGET_ARCH_ARM using ArchRegExpMacroAssembler = RegExpMacroAssemblerARM; #elif V8_TARGET_ARCH_ARM64 using ArchRegExpMacroAssembler = RegExpMacroAssemblerARM64; #elif V8_TARGET_ARCH_S390 using ArchRegExpMacroAssembler = RegExpMacroAssemblerS390; #elif V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 using ArchRegExpMacroAssembler = RegExpMacroAssemblerPPC; #elif V8_TARGET_ARCH_MIPS64 using ArchRegExpMacroAssembler = RegExpMacroAssemblerMIPS; #elif V8_TARGET_ARCH_LOONG64 using ArchRegExpMacroAssembler = RegExpMacroAssemblerLOONG64; #elif V8_TARGET_ARCH_RISCV64 using ArchRegExpMacroAssembler = RegExpMacroAssemblerRISCV; #elif V8_TARGET_ARCH_RISCV32 using ArchRegExpMacroAssembler = RegExpMacroAssemblerRISCV; #endif class ContextInitializer { public: ContextInitializer() : scope_(v8::Isolate::GetCurrent()), env_(v8::Context::New(v8::Isolate::GetCurrent())) { env_->Enter(); } ~ContextInitializer() { env_->Exit(); } private: v8::HandleScope scope_; v8::Local env_; }; // Create new JSRegExp object with only necessary fields (for this tests) // initialized. static Handle CreateJSRegExp(Handle source, Handle code, bool is_unicode = false) { Isolate* isolate = reinterpret_cast(v8::Isolate::GetCurrent()); Factory* factory = isolate->factory(); Handle constructor = isolate->regexp_function(); Handle regexp = Handle::cast(factory->NewJSObject(constructor)); factory->SetRegExpIrregexpData(regexp, source, {}, 0, JSRegExp::kNoBacktrackLimit); const bool is_latin1 = !is_unicode; regexp->set_code(is_latin1, code); return regexp; } static ArchRegExpMacroAssembler::Result Execute(JSRegExp regexp, String input, int start_offset, Address input_start, Address input_end, int* captures) { return static_cast( NativeRegExpMacroAssembler::ExecuteForTesting( input, start_offset, reinterpret_cast(input_start), reinterpret_cast(input_end), captures, 0, reinterpret_cast(v8::Isolate::GetCurrent()), regexp)); } TEST_F(RegExpTest, MacroAssemblerNativeSuccess) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 4); m.Succeed(); Handle source = factory->NewStringFromStaticChars(""); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); int captures[4] = {42, 37, 87, 117}; Handle input = factory->NewStringFromStaticChars("foofoo"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + seq_input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(-1, captures[0]); CHECK_EQ(-1, captures[1]); CHECK_EQ(-1, captures[2]); CHECK_EQ(-1, captures[3]); } TEST_F(RegExpTest, MacroAssemblerNativeSimple) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 4); Label fail, backtrack; m.PushBacktrack(&fail); m.CheckNotAtStart(0, nullptr); m.LoadCurrentCharacter(2, nullptr); m.CheckNotCharacter('o', nullptr); m.LoadCurrentCharacter(1, nullptr, false); m.CheckNotCharacter('o', nullptr); m.LoadCurrentCharacter(0, nullptr, false); m.CheckNotCharacter('f', nullptr); m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(1, 3); m.AdvanceCurrentPosition(3); m.PushBacktrack(&backtrack); m.Succeed(); m.BindJumpTarget(&backtrack); m.Backtrack(); m.BindJumpTarget(&fail); m.Fail(); Handle source = factory->NewStringFromStaticChars("^foo"); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); int captures[4] = {42, 37, 87, 117}; Handle input = factory->NewStringFromStaticChars("foofoo"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, captures[0]); CHECK_EQ(3, captures[1]); CHECK_EQ(-1, captures[2]); CHECK_EQ(-1, captures[3]); input = factory->NewStringFromStaticChars("barbarbar"); seq_input = Handle::cast(input); start_adr = seq_input->GetCharsAddress(); result = Execute(*regexp, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result); } TEST_F(RegExpTest, MacroAssemblerNativeSimpleUC16) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::UC16, 4); Label fail, backtrack; m.PushBacktrack(&fail); m.CheckNotAtStart(0, nullptr); m.LoadCurrentCharacter(2, nullptr); m.CheckNotCharacter('o', nullptr); m.LoadCurrentCharacter(1, nullptr, false); m.CheckNotCharacter('o', nullptr); m.LoadCurrentCharacter(0, nullptr, false); m.CheckNotCharacter('f', nullptr); m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(1, 3); m.AdvanceCurrentPosition(3); m.PushBacktrack(&backtrack); m.Succeed(); m.BindJumpTarget(&backtrack); m.Backtrack(); m.BindJumpTarget(&fail); m.Fail(); Handle source = factory->NewStringFromStaticChars("^foo"); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code, true); int captures[4] = {42, 37, 87, 117}; const base::uc16 input_data[6] = {'f', 'o', 'o', 'f', 'o', static_cast(0x2603)}; Handle input = factory ->NewStringFromTwoByte(base::Vector(input_data, 6)) .ToHandleChecked(); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, captures[0]); CHECK_EQ(3, captures[1]); CHECK_EQ(-1, captures[2]); CHECK_EQ(-1, captures[3]); const base::uc16 input_data2[9] = { 'b', 'a', 'r', 'b', 'a', 'r', 'b', 'a', static_cast(0x2603)}; input = factory ->NewStringFromTwoByte(base::Vector(input_data2, 9)) .ToHandleChecked(); seq_input = Handle::cast(input); start_adr = seq_input->GetCharsAddress(); result = Execute(*regexp, *input, 0, start_adr, start_adr + input->length() * 2, captures); CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result); } TEST_F(RegExpTest, MacroAssemblerNativeBacktrack) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 0); Label fail; Label backtrack; m.LoadCurrentCharacter(10, &fail); m.Succeed(); m.BindJumpTarget(&fail); m.PushBacktrack(&backtrack); m.LoadCurrentCharacter(10, nullptr); m.Succeed(); m.BindJumpTarget(&backtrack); m.Fail(); Handle source = factory->NewStringFromStaticChars(".........."); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); Handle input = factory->NewStringFromStaticChars("foofoo"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), nullptr); CHECK_EQ(NativeRegExpMacroAssembler::FAILURE, result); } TEST_F(RegExpTest, MacroAssemblerNativeBackReferenceLATIN1) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 4); m.WriteCurrentPositionToRegister(0, 0); m.AdvanceCurrentPosition(2); m.WriteCurrentPositionToRegister(1, 0); Label nomatch; m.CheckNotBackReference(0, false, &nomatch); m.Fail(); m.Bind(&nomatch); m.AdvanceCurrentPosition(2); Label missing_match; m.CheckNotBackReference(0, false, &missing_match); m.WriteCurrentPositionToRegister(2, 0); m.Succeed(); m.Bind(&missing_match); m.Fail(); Handle source = factory->NewStringFromStaticChars("^(..)..\1"); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); Handle input = factory->NewStringFromStaticChars("fooofo"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[4]; NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(2, output[1]); CHECK_EQ(6, output[2]); CHECK_EQ(-1, output[3]); } TEST_F(RegExpTest, MacroAssemblerNativeBackReferenceUC16) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::UC16, 4); m.WriteCurrentPositionToRegister(0, 0); m.AdvanceCurrentPosition(2); m.WriteCurrentPositionToRegister(1, 0); Label nomatch; m.CheckNotBackReference(0, false, &nomatch); m.Fail(); m.Bind(&nomatch); m.AdvanceCurrentPosition(2); Label missing_match; m.CheckNotBackReference(0, false, &missing_match); m.WriteCurrentPositionToRegister(2, 0); m.Succeed(); m.Bind(&missing_match); m.Fail(); Handle source = factory->NewStringFromStaticChars("^(..)..\1"); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code, true); const base::uc16 input_data[6] = {'f', 0x2028, 'o', 'o', 'f', 0x2028}; Handle input = factory ->NewStringFromTwoByte(base::Vector(input_data, 6)) .ToHandleChecked(); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[4]; NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length() * 2, output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(2, output[1]); CHECK_EQ(6, output[2]); CHECK_EQ(-1, output[3]); } TEST_F(RegExpTest, MacroAssemblernativeAtStart) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 0); Label not_at_start, newline, fail; m.CheckNotAtStart(0, ¬_at_start); // Check that prevchar = '\n' and current = 'f'. m.CheckCharacter('\n', &newline); m.BindJumpTarget(&fail); m.Fail(); m.Bind(&newline); m.LoadCurrentCharacter(0, &fail); m.CheckNotCharacter('f', &fail); m.Succeed(); m.Bind(¬_at_start); // Check that prevchar = 'o' and current = 'b'. Label prevo; m.CheckCharacter('o', &prevo); m.Fail(); m.Bind(&prevo); m.LoadCurrentCharacter(0, &fail); m.CheckNotCharacter('b', &fail); m.Succeed(); Handle source = factory->NewStringFromStaticChars("(^f|ob)"); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); Handle input = factory->NewStringFromStaticChars("foobar"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), nullptr); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); result = Execute(*regexp, *input, 3, start_adr + 3, start_adr + input->length(), nullptr); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); } TEST_F(RegExpTest, MacroAssemblerNativeBackRefNoCase) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 4); Label fail, succ; m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(2, 0); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(3, 0); m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "AbC". m.CheckNotBackReferenceIgnoreCase(2, false, false, &fail); // Match "ABC". Label expected_fail; m.CheckNotBackReferenceIgnoreCase(2, false, false, &expected_fail); m.BindJumpTarget(&fail); m.Fail(); m.Bind(&expected_fail); m.AdvanceCurrentPosition(3); // Skip "xYz" m.CheckNotBackReferenceIgnoreCase(2, false, false, &succ); m.Fail(); m.Bind(&succ); m.WriteCurrentPositionToRegister(1, 0); m.Succeed(); Handle source = factory->NewStringFromStaticChars("^(abc)\1\1(?!\1)...(?!\1)"); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); Handle input = factory->NewStringFromStaticChars("aBcAbCABCxYzab"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[4]; NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(12, output[1]); CHECK_EQ(0, output[2]); CHECK_EQ(3, output[3]); } TEST_F(RegExpTest, MacroAssemblerNativeRegisters) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 6); base::uc16 foo_chars[3] = {'f', 'o', 'o'}; base::Vector foo(foo_chars, 3); enum registers { out1, out2, out3, out4, out5, out6, sp, loop_cnt }; Label fail; Label backtrack; m.WriteCurrentPositionToRegister(out1, 0); // Output: [0] m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck); m.PushBacktrack(&backtrack); m.WriteStackPointerToRegister(sp); // Fill stack and registers m.AdvanceCurrentPosition(2); m.WriteCurrentPositionToRegister(out1, 0); m.PushRegister(out1, RegExpMacroAssembler::kNoStackLimitCheck); m.PushBacktrack(&fail); // Drop backtrack stack frames. m.ReadStackPointerFromRegister(sp); // And take the first backtrack (to &backtrack) m.Backtrack(); m.PushCurrentPosition(); m.AdvanceCurrentPosition(2); m.PopCurrentPosition(); m.BindJumpTarget(&backtrack); m.PopRegister(out1); m.ReadCurrentPositionFromRegister(out1); m.AdvanceCurrentPosition(3); m.WriteCurrentPositionToRegister(out2, 0); // [0,3] Label loop; m.SetRegister(loop_cnt, 0); // loop counter m.Bind(&loop); m.AdvanceRegister(loop_cnt, 1); m.AdvanceCurrentPosition(1); m.IfRegisterLT(loop_cnt, 3, &loop); m.WriteCurrentPositionToRegister(out3, 0); // [0,3,6] Label loop2; m.SetRegister(loop_cnt, 2); // loop counter m.Bind(&loop2); m.AdvanceRegister(loop_cnt, -1); m.AdvanceCurrentPosition(1); m.IfRegisterGE(loop_cnt, 0, &loop2); m.WriteCurrentPositionToRegister(out4, 0); // [0,3,6,9] Label loop3; Label exit_loop3; m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck); m.PushRegister(out4, RegExpMacroAssembler::kNoStackLimitCheck); m.ReadCurrentPositionFromRegister(out3); m.Bind(&loop3); m.AdvanceCurrentPosition(1); m.CheckGreedyLoop(&exit_loop3); m.GoTo(&loop3); m.Bind(&exit_loop3); m.PopCurrentPosition(); m.WriteCurrentPositionToRegister(out5, 0); // [0,3,6,9,9,-1] m.Succeed(); m.BindJumpTarget(&fail); m.Fail(); Handle source = factory->NewStringFromStaticChars(""); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); // String long enough for test (content doesn't matter). Handle input = factory->NewStringFromStaticChars("foofoofoofoofoo"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); int output[6]; NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), output); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, output[0]); CHECK_EQ(3, output[1]); CHECK_EQ(6, output[2]); CHECK_EQ(9, output[3]); CHECK_EQ(9, output[4]); CHECK_EQ(-1, output[5]); } TEST_F(RegExpTest, MacroAssemblerStackOverflow) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 0); Label loop; m.Bind(&loop); m.PushBacktrack(&loop); m.GoTo(&loop); Handle source = factory->NewStringFromStaticChars(""); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); // String long enough for test (content doesn't matter). Handle input = factory->NewStringFromStaticChars("dummy"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), nullptr); CHECK_EQ(NativeRegExpMacroAssembler::EXCEPTION, result); CHECK(isolate()->has_pending_exception()); isolate()->clear_pending_exception(); } TEST_F(RegExpTest, MacroAssemblerNativeLotsOfRegisters) { ContextInitializer initializer; Factory* factory = i_isolate()->factory(); Zone zone(i_isolate()->allocator(), ZONE_NAME); ArchRegExpMacroAssembler m(i_isolate(), &zone, NativeRegExpMacroAssembler::LATIN1, 2); // At least 2048, to ensure the allocated space for registers // span one full page. const int large_number = 8000; m.WriteCurrentPositionToRegister(large_number, 42); m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(1, 1); Label done; m.CheckNotBackReference(0, false, &done); // Performs a system-stack push. m.Bind(&done); m.PushRegister(large_number, RegExpMacroAssembler::kNoStackLimitCheck); m.PopRegister(1); m.Succeed(); Handle source = factory->NewStringFromStaticChars(""); Handle code_object = m.GetCode(source); Handle code = Handle::cast(code_object); Handle regexp = CreateJSRegExp(source, code); // String long enough for test (content doesn't matter). Handle input = factory->NewStringFromStaticChars("sample text"); Handle seq_input = Handle::cast(input); Address start_adr = seq_input->GetCharsAddress(); int captures[2]; NativeRegExpMacroAssembler::Result result = Execute( *regexp, *input, 0, start_adr, start_adr + input->length(), captures); CHECK_EQ(NativeRegExpMacroAssembler::SUCCESS, result); CHECK_EQ(0, captures[0]); CHECK_EQ(42, captures[1]); isolate()->clear_pending_exception(); } TEST_F(RegExpTest, MacroAssembler) { Zone zone(i_isolate()->allocator(), ZONE_NAME); RegExpBytecodeGenerator m(i_isolate(), &zone); // ^f(o)o. Label start, fail, backtrack; m.SetRegister(4, 42); m.PushRegister(4, RegExpMacroAssembler::kNoStackLimitCheck); m.AdvanceRegister(4, 42); m.GoTo(&start); m.Fail(); m.Bind(&start); m.PushBacktrack(&fail); m.CheckNotAtStart(0, nullptr); m.LoadCurrentCharacter(0, nullptr); m.CheckNotCharacter('f', nullptr); m.LoadCurrentCharacter(1, nullptr); m.CheckNotCharacter('o', nullptr); m.LoadCurrentCharacter(2, nullptr); m.CheckNotCharacter('o', nullptr); m.WriteCurrentPositionToRegister(0, 0); m.WriteCurrentPositionToRegister(1, 3); m.WriteCurrentPositionToRegister(2, 1); m.WriteCurrentPositionToRegister(3, 2); m.AdvanceCurrentPosition(3); m.PushBacktrack(&backtrack); m.Succeed(); m.BindJumpTarget(&backtrack); m.ClearRegisters(2, 3); m.Backtrack(); m.BindJumpTarget(&fail); m.PopRegister(0); m.Fail(); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); Handle source = factory->NewStringFromStaticChars("^f(o)o"); Handle array = Handle::cast(m.GetCode(source)); int captures[5]; std::memset(captures, 0, sizeof(captures)); const base::uc16 str1[] = {'f', 'o', 'o', 'b', 'a', 'r'}; Handle f1_16 = factory->NewStringFromTwoByte(base::Vector(str1, 6)) .ToHandleChecked(); CHECK_EQ(IrregexpInterpreter::SUCCESS, IrregexpInterpreter::MatchInternal( isolate(), *array, *f1_16, captures, 5, 5, 0, RegExp::CallOrigin::kFromRuntime, JSRegExp::kNoBacktrackLimit)); CHECK_EQ(0, captures[0]); CHECK_EQ(3, captures[1]); CHECK_EQ(1, captures[2]); CHECK_EQ(2, captures[3]); CHECK_EQ(84, captures[4]); const base::uc16 str2[] = {'b', 'a', 'r', 'f', 'o', 'o'}; Handle f2_16 = factory->NewStringFromTwoByte(base::Vector(str2, 6)) .ToHandleChecked(); std::memset(captures, 0, sizeof(captures)); CHECK_EQ(IrregexpInterpreter::FAILURE, IrregexpInterpreter::MatchInternal( isolate(), *array, *f2_16, captures, 5, 5, 0, RegExp::CallOrigin::kFromRuntime, JSRegExp::kNoBacktrackLimit)); // Failed matches don't alter output registers. CHECK_EQ(0, captures[0]); CHECK_EQ(0, captures[1]); CHECK_EQ(0, captures[2]); CHECK_EQ(0, captures[3]); CHECK_EQ(0, captures[4]); } #ifndef V8_INTL_SUPPORT static base::uc32 canonicalize(base::uc32 c) { unibrow::uchar canon[unibrow::Ecma262Canonicalize::kMaxWidth]; int count = unibrow::Ecma262Canonicalize::Convert(c, '\0', canon, nullptr); if (count == 0) { return c; } else { CHECK_EQ(1, count); return canon[0]; } } TEST_F(RegExpTest, LatinCanonicalize) { unibrow::Mapping un_canonicalize; for (unibrow::uchar lower = 'a'; lower <= 'z'; lower++) { unibrow::uchar upper = lower + ('A' - 'a'); CHECK_EQ(canonicalize(lower), canonicalize(upper)); unibrow::uchar uncanon[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length = un_canonicalize.get(lower, '\0', uncanon); CHECK_EQ(2, length); CHECK_EQ(upper, uncanon[0]); CHECK_EQ(lower, uncanon[1]); } for (base::uc32 c = 128; c < (1 << 21); c++) CHECK_GE(canonicalize(c), 128); unibrow::Mapping to_upper; // Canonicalization is only defined for the Basic Multilingual Plane. for (base::uc32 c = 0; c < (1 << 16); c++) { unibrow::uchar upper[unibrow::ToUppercase::kMaxWidth]; int length = to_upper.get(c, '\0', upper); if (length == 0) { length = 1; upper[0] = c; } base::uc32 u = upper[0]; if (length > 1 || (c >= 128 && u < 128)) u = c; CHECK_EQ(u, canonicalize(c)); } } static base::uc32 CanonRangeEnd(base::uc32 c) { unibrow::uchar canon[unibrow::CanonicalizationRange::kMaxWidth]; int count = unibrow::CanonicalizationRange::Convert(c, '\0', canon, nullptr); if (count == 0) { return c; } else { CHECK_EQ(1, count); return canon[0]; } } TEST_F(RegExpTest, RangeCanonicalization) { // Check that we arrive at the same result when using the basic // range canonicalization primitives as when using immediate // canonicalization. unibrow::Mapping un_canonicalize; int block_start = 0; while (block_start <= 0xFFFF) { base::uc32 block_end = CanonRangeEnd(block_start); unsigned block_length = block_end - block_start + 1; if (block_length > 1) { unibrow::uchar first[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int first_length = un_canonicalize.get(block_start, '\0', first); for (unsigned i = 1; i < block_length; i++) { unibrow::uchar succ[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int succ_length = un_canonicalize.get(block_start + i, '\0', succ); CHECK_EQ(first_length, succ_length); for (int j = 0; j < succ_length; j++) { int calc = first[j] + i; int found = succ[j]; CHECK_EQ(calc, found); } } } block_start = block_start + block_length; } } TEST_F(RegExpTest, UncanonicalizeEquivalence) { unibrow::Mapping un_canonicalize; unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; for (int i = 0; i < (1 << 16); i++) { int length = un_canonicalize.get(i, '\0', chars); for (int j = 0; j < length; j++) { unibrow::uchar chars2[unibrow::Ecma262UnCanonicalize::kMaxWidth]; int length2 = un_canonicalize.get(chars[j], '\0', chars2); CHECK_EQ(length, length2); for (int k = 0; k < length; k++) CHECK_EQ(static_cast(chars[k]), static_cast(chars2[k])); } } } #endif static void TestRangeCaseIndependence(Isolate* isolate, CharacterRange input, base::Vector expected) { Zone zone( reinterpret_cast(v8::Isolate::GetCurrent())->allocator(), ZONE_NAME); int count = expected.length(); ZoneList* list = zone.New>(count, &zone); list->Add(input, &zone); CharacterRange::AddCaseEquivalents(isolate, &zone, list, false); list->Remove(0); // Remove the input before checking results. CHECK_EQ(count, list->length()); for (int i = 0; i < list->length(); i++) { CHECK_EQ(expected[i].from(), list->at(i).from()); CHECK_EQ(expected[i].to(), list->at(i).to()); } } static void TestSimpleRangeCaseIndependence(Isolate* isolate, CharacterRange input, CharacterRange expected) { base::EmbeddedVector vector; vector[0] = expected; TestRangeCaseIndependence(isolate, input, vector); } TEST_F(RegExpTest, CharacterRangeCaseIndependence) { TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Singleton('a'), CharacterRange::Singleton('A')); TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Singleton('z'), CharacterRange::Singleton('Z')); #ifndef V8_INTL_SUPPORT TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('a', 'z'), CharacterRange::Range('A', 'Z')); #endif // !V8_INTL_SUPPORT TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('c', 'f'), CharacterRange::Range('C', 'F')); TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('a', 'b'), CharacterRange::Range('A', 'B')); TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('y', 'z'), CharacterRange::Range('Y', 'Z')); #ifndef V8_INTL_SUPPORT TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('a' - 1, 'z' + 1), CharacterRange::Range('A', 'Z')); TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('A', 'Z'), CharacterRange::Range('a', 'z')); #endif // !V8_INTL_SUPPORT TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('C', 'F'), CharacterRange::Range('c', 'f')); #ifndef V8_INTL_SUPPORT TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('A' - 1, 'Z' + 1), CharacterRange::Range('a', 'z')); // Here we need to add [l-z] to complete the case independence of // [A-Za-z] but we expect [a-z] to be added since we always add a // whole block at a time. TestSimpleRangeCaseIndependence(i_isolate(), CharacterRange::Range('A', 'k'), CharacterRange::Range('a', 'z')); #endif // !V8_INTL_SUPPORT } static bool InClass(base::uc32 c, const UnicodeRangeSplitter::CharacterRangeVector* ranges) { if (ranges == nullptr) return false; for (size_t i = 0; i < ranges->size(); i++) { CharacterRange range = ranges->at(i); if (range.from() <= c && c <= range.to()) return true; } return false; } TEST_F(RegExpTest, UnicodeRangeSplitter) { Zone zone(i_isolate()->allocator(), ZONE_NAME); ZoneList* base = zone.New>(1, &zone); base->Add(CharacterRange::Everything(), &zone); UnicodeRangeSplitter splitter(base); // BMP for (base::uc32 c = 0; c < 0xD800; c++) { CHECK(InClass(c, splitter.bmp())); CHECK(!InClass(c, splitter.lead_surrogates())); CHECK(!InClass(c, splitter.trail_surrogates())); CHECK(!InClass(c, splitter.non_bmp())); } // Lead surrogates for (base::uc32 c = 0xD800; c < 0xDBFF; c++) { CHECK(!InClass(c, splitter.bmp())); CHECK(InClass(c, splitter.lead_surrogates())); CHECK(!InClass(c, splitter.trail_surrogates())); CHECK(!InClass(c, splitter.non_bmp())); } // Trail surrogates for (base::uc32 c = 0xDC00; c < 0xDFFF; c++) { CHECK(!InClass(c, splitter.bmp())); CHECK(!InClass(c, splitter.lead_surrogates())); CHECK(InClass(c, splitter.trail_surrogates())); CHECK(!InClass(c, splitter.non_bmp())); } // BMP for (base::uc32 c = 0xE000; c < 0xFFFF; c++) { CHECK(InClass(c, splitter.bmp())); CHECK(!InClass(c, splitter.lead_surrogates())); CHECK(!InClass(c, splitter.trail_surrogates())); CHECK(!InClass(c, splitter.non_bmp())); } // Non-BMP for (base::uc32 c = 0x10000; c < 0x10FFFF; c++) { CHECK(!InClass(c, splitter.bmp())); CHECK(!InClass(c, splitter.lead_surrogates())); CHECK(!InClass(c, splitter.trail_surrogates())); CHECK(InClass(c, splitter.non_bmp())); } } TEST_F(RegExpTest, CanonicalizeCharacterSets) { Zone zone(i_isolate()->allocator(), ZONE_NAME); ZoneList* list = zone.New>(4, &zone); CharacterSet set(list); list->Add(CharacterRange::Range(10, 20), &zone); list->Add(CharacterRange::Range(30, 40), &zone); list->Add(CharacterRange::Range(50, 60), &zone); set.Canonicalize(); CHECK_EQ(3, list->length()); CHECK_EQ(10, list->at(0).from()); CHECK_EQ(20, list->at(0).to()); CHECK_EQ(30, list->at(1).from()); CHECK_EQ(40, list->at(1).to()); CHECK_EQ(50, list->at(2).from()); CHECK_EQ(60, list->at(2).to()); list->Rewind(0); list->Add(CharacterRange::Range(10, 20), &zone); list->Add(CharacterRange::Range(50, 60), &zone); list->Add(CharacterRange::Range(30, 40), &zone); set.Canonicalize(); CHECK_EQ(3, list->length()); CHECK_EQ(10, list->at(0).from()); CHECK_EQ(20, list->at(0).to()); CHECK_EQ(30, list->at(1).from()); CHECK_EQ(40, list->at(1).to()); CHECK_EQ(50, list->at(2).from()); CHECK_EQ(60, list->at(2).to()); list->Rewind(0); list->Add(CharacterRange::Range(30, 40), &zone); list->Add(CharacterRange::Range(10, 20), &zone); list->Add(CharacterRange::Range(25, 25), &zone); list->Add(CharacterRange::Range(100, 100), &zone); list->Add(CharacterRange::Range(1, 1), &zone); set.Canonicalize(); CHECK_EQ(5, list->length()); CHECK_EQ(1, list->at(0).from()); CHECK_EQ(1, list->at(0).to()); CHECK_EQ(10, list->at(1).from()); CHECK_EQ(20, list->at(1).to()); CHECK_EQ(25, list->at(2).from()); CHECK_EQ(25, list->at(2).to()); CHECK_EQ(30, list->at(3).from()); CHECK_EQ(40, list->at(3).to()); CHECK_EQ(100, list->at(4).from()); CHECK_EQ(100, list->at(4).to()); list->Rewind(0); list->Add(CharacterRange::Range(10, 19), &zone); list->Add(CharacterRange::Range(21, 30), &zone); list->Add(CharacterRange::Range(20, 20), &zone); set.Canonicalize(); CHECK_EQ(1, list->length()); CHECK_EQ(10, list->at(0).from()); CHECK_EQ(30, list->at(0).to()); } TEST_F(RegExpTest, CharacterRangeMerge) { Zone zone(i_isolate()->allocator(), ZONE_NAME); ZoneList l1(4, &zone); ZoneList l2(4, &zone); // Create all combinations of intersections of ranges, both singletons and // longer. int offset = 0; // The five kinds of singleton intersections: // X // Y - outside before // Y - outside touching start // Y - overlap // Y - outside touching end // Y - outside after for (int i = 0; i < 5; i++) { l1.Add(CharacterRange::Singleton(offset + 2), &zone); l2.Add(CharacterRange::Singleton(offset + i), &zone); offset += 6; } // The seven kinds of singleton/non-singleton intersections: // XXX // Y - outside before // Y - outside touching start // Y - inside touching start // Y - entirely inside // Y - inside touching end // Y - outside touching end // Y - disjoint after for (int i = 0; i < 7; i++) { l1.Add(CharacterRange::Range(offset + 2, offset + 4), &zone); l2.Add(CharacterRange::Singleton(offset + i), &zone); offset += 8; } // The eleven kinds of non-singleton intersections: // // XXXXXXXX // YYYY - outside before. // YYYY - outside touching start. // YYYY - overlapping start // YYYY - inside touching start // YYYY - entirely inside // YYYY - inside touching end // YYYY - overlapping end // YYYY - outside touching end // YYYY - outside after // YYYYYYYY - identical // YYYYYYYYYYYY - containing entirely. for (int i = 0; i < 9; i++) { l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); // Length 8. l2.Add(CharacterRange::Range(offset + 2 * i, offset + 2 * i + 3), &zone); offset += 22; } l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); l2.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); offset += 22; l1.Add(CharacterRange::Range(offset + 6, offset + 15), &zone); l2.Add(CharacterRange::Range(offset + 4, offset + 17), &zone); offset += 22; // Different kinds of multi-range overlap: // XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX // YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y YYYY Y l1.Add(CharacterRange::Range(offset, offset + 21), &zone); l1.Add(CharacterRange::Range(offset + 31, offset + 52), &zone); for (int i = 0; i < 6; i++) { l2.Add(CharacterRange::Range(offset + 2, offset + 5), &zone); l2.Add(CharacterRange::Singleton(offset + 8), &zone); offset += 9; } CHECK(CharacterRange::IsCanonical(&l1)); CHECK(CharacterRange::IsCanonical(&l2)); ZoneList first_only(4, &zone); ZoneList second_only(4, &zone); ZoneList both(4, &zone); } TEST_F(RegExpTest, Graph) { Execute("\\b\\w+\\b", false, true, true); } namespace { int* global_use_counts = nullptr; void MockUseCounterCallback(v8::Isolate* isolate, v8::Isolate::UseCounterFeature feature) { ++global_use_counts[feature]; } } // namespace using RegExpTestWithContext = TestWithContext; // Test that ES2015+ RegExp compatibility fixes are in place, that they // are not overly broad, and the appropriate UseCounters are incremented TEST_F(RegExpTestWithContext, UseCountRegExp) { v8::HandleScope scope(isolate()); int use_counts[v8::Isolate::kUseCounterFeatureCount] = {}; global_use_counts = use_counts; isolate()->SetUseCounterCallback(MockUseCounterCallback); // Compat fix: RegExp.prototype.sticky == undefined; UseCounter tracks it v8::Local resultSticky = RunJS("RegExp.prototype.sticky"); CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]); CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]); CHECK(resultSticky->IsUndefined()); // re.sticky has approriate value and doesn't touch UseCounter v8::Local resultReSticky = RunJS("/a/.sticky"); CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]); CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]); CHECK(resultReSticky->IsFalse()); // When the getter is called on another object, throw an exception // and don't increment the UseCounter v8::Local resultStickyError = RunJS( "var exception;" "try { " " Object.getOwnPropertyDescriptor(RegExp.prototype, 'sticky')" " .get.call(null);" "} catch (e) {" " exception = e;" "}" "exception"); CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]); CHECK_EQ(0, use_counts[v8::Isolate::kRegExpPrototypeToString]); CHECK(resultStickyError->IsObject()); // RegExp.prototype.toString() returns '/(?:)/' as a compatibility fix; // a UseCounter is incremented to track it. v8::Local resultToString = RunJS("RegExp.prototype.toString().length"); CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]); CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]); CHECK(resultToString->IsInt32()); CHECK_EQ( 6, resultToString->Int32Value(isolate()->GetCurrentContext()).FromJust()); // .toString() works on normal RegExps v8::Local resultReToString = RunJS("/a/.toString().length"); CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]); CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]); CHECK(resultReToString->IsInt32()); CHECK_EQ( 3, resultReToString->Int32Value(isolate()->GetCurrentContext()).FromJust()); // .toString() throws on non-RegExps that aren't RegExp.prototype v8::Local resultToStringError = RunJS( "var exception;" "try { RegExp.prototype.toString.call(null) }" "catch (e) { exception = e; }" "exception"); CHECK_EQ(2, use_counts[v8::Isolate::kRegExpPrototypeStickyGetter]); CHECK_EQ(1, use_counts[v8::Isolate::kRegExpPrototypeToString]); CHECK(resultToStringError->IsObject()); } class UncachedExternalString : public v8::String::ExternalOneByteStringResource { public: const char* data() const override { return "abcdefghijklmnopqrstuvwxyz"; } size_t length() const override { return 26; } bool IsCacheable() const override { return false; } }; TEST_F(RegExpTestWithContext, UncachedExternalString) { v8::HandleScope scope(isolate()); v8::Local external = v8::String::NewExternalOneByte(isolate(), new UncachedExternalString()) .ToLocalChecked(); CHECK(v8::Utils::OpenHandle(*external)->map() == ReadOnlyRoots(i_isolate()).uncached_external_one_byte_string_map()); v8::Local global = context()->Global(); global->Set(context(), NewString("external"), external).FromJust(); RunJS("var re = /y(.)/; re.test('ab');"); // TODO(v8:12781): once IsString matcher is added in // gmock-support.h, we could replace this. Local result = RunJS("external.substring(1).match(re)[1]"); CHECK(result->IsString()); v8::String::Utf8Value utf8(isolate(), result); CHECK_EQ(0, strcmp("z", *utf8)); } // Test bytecode peephole optimization void CreatePeepholeNoChangeBytecode(RegExpMacroAssembler* m) { Label fail, backtrack; m->PushBacktrack(&fail); m->CheckNotAtStart(0, nullptr); m->LoadCurrentCharacter(2, nullptr); m->CheckNotCharacter('o', nullptr); m->LoadCurrentCharacter(1, nullptr, false); m->CheckNotCharacter('o', nullptr); m->LoadCurrentCharacter(0, nullptr, false); m->CheckNotCharacter('f', nullptr); m->WriteCurrentPositionToRegister(0, 0); m->WriteCurrentPositionToRegister(1, 3); m->AdvanceCurrentPosition(3); m->PushBacktrack(&backtrack); m->Succeed(); m->Bind(&backtrack); m->Backtrack(); m->Bind(&fail); m->Fail(); } TEST_F(RegExpTest, PeepholeNoChange) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeNoChangeBytecode(&orig); CreatePeepholeNoChangeBytecode(&opt); Handle source = factory->NewStringFromStaticChars("^foo"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); uint8_t* byte_array = array->GetDataStartAddress(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); uint8_t* byte_array_optimized = array_optimized->GetDataStartAddress(); CHECK_EQ(0, memcmp(byte_array, byte_array_optimized, length)); } void CreatePeepholeSkipUntilCharBytecode(RegExpMacroAssembler* m) { Label start; m->Bind(&start); m->LoadCurrentCharacter(0, nullptr, true); m->CheckCharacter('x', nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&start); } TEST_F(RegExpTest, PeepholeSkipUntilChar) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeSkipUntilCharBytecode(&orig); CreatePeepholeSkipUntilCharBytecode(&opt); Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); int length_optimized = array_optimized->length(); int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) + RegExpBytecodeLength(BC_CHECK_CHAR) + RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) + RegExpBytecodeLength(BC_POP_BT); int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR) + RegExpBytecodeLength(BC_POP_BT); CHECK_EQ(length, length_expected); CHECK_EQ(length_optimized, length_optimized_expected); CHECK_EQ(BC_SKIP_UNTIL_CHAR, array_optimized->get(0)); CHECK_EQ(BC_POP_BT, array_optimized->get(RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR))); } void CreatePeepholeSkipUntilBitInTableBytecode(RegExpMacroAssembler* m, Factory* factory) { Handle bit_table = factory->NewByteArray( RegExpMacroAssembler::kTableSize, AllocationType::kOld); for (uint32_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) { bit_table->set(i, 0); } Label start; m->Bind(&start); m->LoadCurrentCharacter(0, nullptr, true); m->CheckBitInTable(bit_table, nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&start); } TEST_F(RegExpTest, PeepholeSkipUntilBitInTable) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeSkipUntilBitInTableBytecode(&orig, factory); CreatePeepholeSkipUntilBitInTableBytecode(&opt, factory); Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); int length_optimized = array_optimized->length(); int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) + RegExpBytecodeLength(BC_CHECK_BIT_IN_TABLE) + RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) + RegExpBytecodeLength(BC_POP_BT); int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_BIT_IN_TABLE) + RegExpBytecodeLength(BC_POP_BT); CHECK_EQ(length, length_expected); CHECK_EQ(length_optimized, length_optimized_expected); CHECK_EQ(BC_SKIP_UNTIL_BIT_IN_TABLE, array_optimized->get(0)); CHECK_EQ(BC_POP_BT, array_optimized->get( RegExpBytecodeLength(BC_SKIP_UNTIL_BIT_IN_TABLE))); } void CreatePeepholeSkipUntilCharPosCheckedBytecode(RegExpMacroAssembler* m) { Label start; m->Bind(&start); m->LoadCurrentCharacter(0, nullptr, true, 1, 2); m->CheckCharacter('x', nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&start); } TEST_F(RegExpTest, PeepholeSkipUntilCharPosChecked) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeSkipUntilCharPosCheckedBytecode(&orig); CreatePeepholeSkipUntilCharPosCheckedBytecode(&opt); Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); int length_optimized = array_optimized->length(); int length_expected = RegExpBytecodeLength(BC_CHECK_CURRENT_POSITION) + RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR_UNCHECKED) + RegExpBytecodeLength(BC_CHECK_CHAR) + RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) + RegExpBytecodeLength(BC_POP_BT); int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_POS_CHECKED) + RegExpBytecodeLength(BC_POP_BT); CHECK_EQ(length, length_expected); CHECK_EQ(length_optimized, length_optimized_expected); CHECK_EQ(BC_SKIP_UNTIL_CHAR_POS_CHECKED, array_optimized->get(0)); CHECK_EQ(BC_POP_BT, array_optimized->get(RegExpBytecodeLength( BC_SKIP_UNTIL_CHAR_POS_CHECKED))); } void CreatePeepholeSkipUntilCharAndBytecode(RegExpMacroAssembler* m) { Label start; m->Bind(&start); m->LoadCurrentCharacter(0, nullptr, true, 1, 2); m->CheckCharacterAfterAnd('x', 0xFF, nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&start); } TEST_F(RegExpTest, PeepholeSkipUntilCharAnd) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeSkipUntilCharAndBytecode(&orig); CreatePeepholeSkipUntilCharAndBytecode(&opt); Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); int length_optimized = array_optimized->length(); int length_expected = RegExpBytecodeLength(BC_CHECK_CURRENT_POSITION) + RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR_UNCHECKED) + RegExpBytecodeLength(BC_AND_CHECK_CHAR) + RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) + RegExpBytecodeLength(BC_POP_BT); int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_AND) + RegExpBytecodeLength(BC_POP_BT); CHECK_EQ(length, length_expected); CHECK_EQ(length_optimized, length_optimized_expected); CHECK_EQ(BC_SKIP_UNTIL_CHAR_AND, array_optimized->get(0)); CHECK_EQ(BC_POP_BT, array_optimized->get(RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_AND))); } void CreatePeepholeSkipUntilCharOrCharBytecode(RegExpMacroAssembler* m) { Label start; m->Bind(&start); m->LoadCurrentCharacter(0, nullptr, true); m->CheckCharacter('x', nullptr); m->CheckCharacter('y', nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&start); } TEST_F(RegExpTest, PeepholeSkipUntilCharOrChar) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeSkipUntilCharOrCharBytecode(&orig); CreatePeepholeSkipUntilCharOrCharBytecode(&opt); Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); int length_optimized = array_optimized->length(); int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) + RegExpBytecodeLength(BC_CHECK_CHAR) + RegExpBytecodeLength(BC_CHECK_CHAR) + RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) + RegExpBytecodeLength(BC_POP_BT); int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_OR_CHAR) + RegExpBytecodeLength(BC_POP_BT); CHECK_EQ(length, length_expected); CHECK_EQ(length_optimized, length_optimized_expected); CHECK_EQ(BC_SKIP_UNTIL_CHAR_OR_CHAR, array_optimized->get(0)); CHECK_EQ(BC_POP_BT, array_optimized->get( RegExpBytecodeLength(BC_SKIP_UNTIL_CHAR_OR_CHAR))); } void CreatePeepholeSkipUntilGtOrNotBitInTableBytecode(RegExpMacroAssembler* m, Factory* factory) { Handle bit_table = factory->NewByteArray( RegExpMacroAssembler::kTableSize, AllocationType::kOld); for (uint32_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) { bit_table->set(i, 0); } Label start, end, advance; m->Bind(&start); m->LoadCurrentCharacter(0, nullptr, true); m->CheckCharacterGT('x', nullptr); m->CheckBitInTable(bit_table, &advance); m->GoTo(&end); m->Bind(&advance); m->AdvanceCurrentPosition(1); m->GoTo(&start); m->Bind(&end); } TEST_F(RegExpTest, PeepholeSkipUntilGtOrNotBitInTable) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); CreatePeepholeSkipUntilGtOrNotBitInTableBytecode(&orig, factory); CreatePeepholeSkipUntilGtOrNotBitInTableBytecode(&opt, factory); Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); int length = array->length(); v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); int length_optimized = array_optimized->length(); int length_expected = RegExpBytecodeLength(BC_LOAD_CURRENT_CHAR) + RegExpBytecodeLength(BC_CHECK_GT) + RegExpBytecodeLength(BC_CHECK_BIT_IN_TABLE) + RegExpBytecodeLength(BC_GOTO) + RegExpBytecodeLength(BC_ADVANCE_CP_AND_GOTO) + RegExpBytecodeLength(BC_POP_BT); int length_optimized_expected = RegExpBytecodeLength(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE) + RegExpBytecodeLength(BC_POP_BT); CHECK_EQ(length, length_expected); CHECK_EQ(length_optimized, length_optimized_expected); CHECK_EQ(BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE, array_optimized->get(0)); CHECK_EQ(BC_POP_BT, array_optimized->get(RegExpBytecodeLength( BC_SKIP_UNTIL_GT_OR_NOT_BIT_IN_TABLE))); } void CreatePeepholeLabelFixupsInsideBytecode(RegExpMacroAssembler* m, Label* dummy_before, Label* dummy_after, Label* dummy_inside) { Label loop; m->Bind(dummy_before); m->LoadCurrentCharacter(0, dummy_before); m->CheckCharacter('a', dummy_after); m->CheckCharacter('b', dummy_inside); m->Bind(&loop); m->LoadCurrentCharacter(0, nullptr, true); m->CheckCharacter('x', nullptr); m->Bind(dummy_inside); m->CheckCharacter('y', nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&loop); m->Bind(dummy_after); m->LoadCurrentCharacter(0, dummy_before); m->CheckCharacter('a', dummy_after); m->CheckCharacter('b', dummy_inside); } TEST_F(RegExpTest, PeepholeLabelFixupsInside) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); { Label dummy_before, dummy_after, dummy_inside; CreatePeepholeLabelFixupsInsideBytecode(&opt, &dummy_before, &dummy_after, &dummy_inside); } Label dummy_before, dummy_after, dummy_inside; CreatePeepholeLabelFixupsInsideBytecode(&orig, &dummy_before, &dummy_after, &dummy_inside); CHECK_EQ(0x00, dummy_before.pos()); CHECK_EQ(0x28, dummy_inside.pos()); CHECK_EQ(0x38, dummy_after.pos()); const Label* labels[] = {&dummy_before, &dummy_after, &dummy_inside}; const int label_positions[4][3] = { {0x04, 0x3C}, // dummy_before {0x0C, 0x44}, // dummy after {0x14, 0x4C} // dummy inside }; Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); for (int label_idx = 0; label_idx < 3; label_idx++) { for (int pos_idx = 0; pos_idx < 2; pos_idx++) { CHECK_EQ(labels[label_idx]->pos(), array->get(label_positions[label_idx][pos_idx])); } } v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); const int pos_fixups[] = { 0, // Position before optimization should be unchanged. 4, // Position after first replacement should be 4 (optimized size (20) - // original size (32) + preserve length (16)). }; const int target_fixups[] = { 0, // dummy_before should be unchanged 4, // dummy_inside should be 4 4 // dummy_after should be 4 }; for (int label_idx = 0; label_idx < 3; label_idx++) { for (int pos_idx = 0; pos_idx < 2; pos_idx++) { int label_pos = label_positions[label_idx][pos_idx] + pos_fixups[pos_idx]; int jump_address = *reinterpret_cast( array_optimized->GetDataStartAddress() + label_pos); int expected_jump_address = labels[label_idx]->pos() + target_fixups[label_idx]; CHECK_EQ(expected_jump_address, jump_address); } } } void CreatePeepholeLabelFixupsComplexBytecode(RegExpMacroAssembler* m, Label* dummy_before, Label* dummy_between, Label* dummy_after, Label* dummy_inside) { Label loop1, loop2; m->Bind(dummy_before); m->LoadCurrentCharacter(0, dummy_before); m->CheckCharacter('a', dummy_between); m->CheckCharacter('b', dummy_after); m->CheckCharacter('c', dummy_inside); m->Bind(&loop1); m->LoadCurrentCharacter(0, nullptr, true); m->CheckCharacter('x', nullptr); m->CheckCharacter('y', nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&loop1); m->Bind(dummy_between); m->LoadCurrentCharacter(0, dummy_before); m->CheckCharacter('a', dummy_between); m->CheckCharacter('b', dummy_after); m->CheckCharacter('c', dummy_inside); m->Bind(&loop2); m->LoadCurrentCharacter(0, nullptr, true); m->CheckCharacter('x', nullptr); m->Bind(dummy_inside); m->CheckCharacter('y', nullptr); m->AdvanceCurrentPosition(1); m->GoTo(&loop2); m->Bind(dummy_after); m->LoadCurrentCharacter(0, dummy_before); m->CheckCharacter('a', dummy_between); m->CheckCharacter('b', dummy_after); m->CheckCharacter('c', dummy_inside); } TEST_F(RegExpTest, PeepholeLabelFixupsComplex) { Zone zone(i_isolate()->allocator(), ZONE_NAME); Factory* factory = i_isolate()->factory(); HandleScope scope(i_isolate()); RegExpBytecodeGenerator orig(i_isolate(), &zone); RegExpBytecodeGenerator opt(i_isolate(), &zone); { Label dummy_before, dummy_between, dummy_after, dummy_inside; CreatePeepholeLabelFixupsComplexBytecode( &opt, &dummy_before, &dummy_between, &dummy_after, &dummy_inside); } Label dummy_before, dummy_between, dummy_after, dummy_inside; CreatePeepholeLabelFixupsComplexBytecode(&orig, &dummy_before, &dummy_between, &dummy_after, &dummy_inside); CHECK_EQ(0x00, dummy_before.pos()); CHECK_EQ(0x40, dummy_between.pos()); CHECK_EQ(0x70, dummy_inside.pos()); CHECK_EQ(0x80, dummy_after.pos()); const Label* labels[] = {&dummy_before, &dummy_between, &dummy_after, &dummy_inside}; const int label_positions[4][3] = { {0x04, 0x44, 0x84}, // dummy_before {0x0C, 0x4C, 0x8C}, // dummy between {0x14, 0x54, 0x94}, // dummy after {0x1C, 0x5C, 0x9C} // dummy inside }; Handle source = factory->NewStringFromStaticChars("dummy"); v8_flags.regexp_peephole_optimization = false; Handle array = Handle::cast(orig.GetCode(source)); for (int label_idx = 0; label_idx < 4; label_idx++) { for (int pos_idx = 0; pos_idx < 3; pos_idx++) { CHECK_EQ(labels[label_idx]->pos(), array->get(label_positions[label_idx][pos_idx])); } } v8_flags.regexp_peephole_optimization = true; Handle array_optimized = Handle::cast(opt.GetCode(source)); const int pos_fixups[] = { 0, // Position before optimization should be unchanged. -12, // Position after first replacement should be -12 (optimized size = // 20 - 32 = original size). -8 // Position after second replacement should be -8 (-12 from first // optimization -12 from second optimization + 16 preserved // bytecodes). }; const int target_fixups[] = { 0, // dummy_before should be unchanged -12, // dummy_between should be -12 -8, // dummy_inside should be -8 -8 // dummy_after should be -8 }; for (int label_idx = 0; label_idx < 4; label_idx++) { for (int pos_idx = 0; pos_idx < 3; pos_idx++) { int label_pos = label_positions[label_idx][pos_idx] + pos_fixups[pos_idx]; int jump_address = *reinterpret_cast( array_optimized->GetDataStartAddress() + label_pos); int expected_jump_address = labels[label_idx]->pos() + target_fixups[label_idx]; CHECK_EQ(expected_jump_address, jump_address); } } } TEST_F(RegExpTestWithContext, UnicodePropertyEscapeCodeSize) { FlagScope f(&v8_flags.regexp_tier_up, false); v8::HandleScope scope(isolate()); i::Handle re = Utils::OpenHandle( *RunJS("const r = /\\p{L}\\p{L}\\p{L}/u; r.exec('\\u200b'); r;") .As()); static constexpr int kMaxSize = 200 * KB; static constexpr bool kIsNotLatin1 = false; Object maybe_code = re->code(kIsNotLatin1); Object maybe_bytecode = re->bytecode(kIsNotLatin1); if (maybe_bytecode.IsByteArray()) { // On x64, excessive inlining produced >250KB. CHECK_LT(ByteArray::cast(maybe_bytecode).Size(), kMaxSize); } else if (maybe_code.IsCode()) { // On x64, excessive inlining produced >360KB. CHECK_LT(Code::cast(maybe_code).Size(), kMaxSize); CHECK_EQ(Code::cast(maybe_code).kind(), CodeKind::REGEXP); } else { UNREACHABLE(); } } namespace { struct RegExpExecData { i::Isolate* isolate; i::Handle regexp; i::Handle subject; }; i::Handle RegExpExec(const RegExpExecData* d) { return i::RegExp::Exec(d->isolate, d->regexp, d->subject, 0, d->isolate->regexp_last_match_info()) .ToHandleChecked(); } void ReenterRegExp(v8::Isolate* isolate, void* data) { RegExpExecData* d = static_cast(data); i::Handle result = RegExpExec(d); CHECK(result->IsNull()); } } // namespace // Tests reentrant irregexp calls. TEST_F(RegExpTestWithContext, RegExpInterruptReentrantExecution) { CHECK(!v8_flags.jitless); v8_flags.regexp_tier_up = false; // Enter irregexp, not the interpreter. v8::HandleScope scope(isolate()); RegExpExecData d; d.isolate = reinterpret_cast(isolate()); d.regexp = v8::Utils::OpenHandle( *v8::RegExp::New(context(), NewString("(a*)*x"), v8::RegExp::kNone) .ToLocalChecked()); d.subject = v8::Utils::OpenHandle(*NewString("aaaa")); isolate()->RequestInterrupt(&ReenterRegExp, &d); i::Handle result = RegExpExec(&d); CHECK(result->IsNull()); } #undef CHECK_PARSE_ERROR #undef CHECK_SIMPLE #undef CHECK_MIN_MAX } // namespace internal } // namespace v8