// Copyright 2022 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/numbers/conversions.h" #include #include "src/base/platform/platform.h" #include "src/execution/isolate.h" #include "src/heap/factory-inl.h" #include "src/init/v8.h" #include "src/objects/heap-number-inl.h" #include "src/objects/objects.h" #include "src/objects/smi.h" #include "test/unittests/test-utils.h" #include "testing/gtest/include/gtest/gtest.h" namespace v8 { namespace internal { namespace interpreter { class ConversionsTest : public TestWithIsolate { public: ConversionsTest() = default; ~ConversionsTest() override = default; SourcePosition toPos(int offset) { return SourcePosition(offset, offset % 10 - 1); } void CheckNonArrayIndex(bool expected, const char* chars) { auto isolate = i_isolate(); auto string = isolate->factory()->NewStringFromAsciiChecked(chars); CHECK_EQ(expected, IsSpecialIndex(*string)); } }; TEST_F(ConversionsTest, Hex) { CHECK_EQ(0.0, StringToDouble("0x0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0X0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("0x1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(16.0, StringToDouble("0x10", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(255.0, StringToDouble("0xFF", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(175.0, StringToDouble("0xAF", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0x0", ALLOW_HEX)); CHECK_EQ(0.0, StringToDouble("0X0", ALLOW_HEX)); CHECK_EQ(1.0, StringToDouble("0x1", ALLOW_HEX)); CHECK_EQ(16.0, StringToDouble("0x10", ALLOW_HEX)); CHECK_EQ(255.0, StringToDouble("0xFF", ALLOW_HEX)); CHECK_EQ(175.0, StringToDouble("0xAF", ALLOW_HEX)); } TEST_F(ConversionsTest, Octal) { CHECK_EQ(0.0, StringToDouble("0o0", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0O0", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("0o1", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(7.0, StringToDouble("0o7", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8.0, StringToDouble("0o10", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(63.0, StringToDouble("0o77", ALLOW_OCTAL | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0o0", ALLOW_OCTAL)); CHECK_EQ(0.0, StringToDouble("0O0", ALLOW_OCTAL)); CHECK_EQ(1.0, StringToDouble("0o1", ALLOW_OCTAL)); CHECK_EQ(7.0, StringToDouble("0o7", ALLOW_OCTAL)); CHECK_EQ(8.0, StringToDouble("0o10", ALLOW_OCTAL)); CHECK_EQ(63.0, StringToDouble("0o77", ALLOW_OCTAL)); } TEST_F(ConversionsTest, ImplicitOctal) { CHECK_EQ(0.0, StringToDouble("0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("00", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("01", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(7.0, StringToDouble("07", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8.0, StringToDouble("010", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(63.0, StringToDouble("077", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0", ALLOW_HEX)); CHECK_EQ(0.0, StringToDouble("00", ALLOW_HEX)); CHECK_EQ(1.0, StringToDouble("01", ALLOW_HEX)); CHECK_EQ(7.0, StringToDouble("07", ALLOW_HEX)); CHECK_EQ(10.0, StringToDouble("010", ALLOW_HEX)); CHECK_EQ(77.0, StringToDouble("077", ALLOW_HEX)); const double x = 010000000000; // Power of 2, no rounding errors. CHECK_EQ(x * x * x * x * x, StringToDouble("01" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000", ALLOW_IMPLICIT_OCTAL)); } TEST_F(ConversionsTest, Binary) { CHECK_EQ(0.0, StringToDouble("0b0", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0B0", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(1.0, StringToDouble("0b1", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(2.0, StringToDouble("0b10", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(3.0, StringToDouble("0b11", ALLOW_BINARY | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0b0", ALLOW_BINARY)); CHECK_EQ(0.0, StringToDouble("0B0", ALLOW_BINARY)); CHECK_EQ(1.0, StringToDouble("0b1", ALLOW_BINARY)); CHECK_EQ(2.0, StringToDouble("0b10", ALLOW_BINARY)); CHECK_EQ(3.0, StringToDouble("0b11", ALLOW_BINARY)); } TEST_F(ConversionsTest, MalformedOctal) { CHECK_EQ(8.0, StringToDouble("08", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(81.0, StringToDouble("081", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(78.0, StringToDouble("078", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK(std::isnan(StringToDouble("07.7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK(std::isnan(StringToDouble("07.8", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK(std::isnan(StringToDouble("07e8", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK(std::isnan(StringToDouble("07e7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL))); CHECK_EQ(8.7, StringToDouble("08.7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8e7, StringToDouble("08e7", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.001, StringToDouble("0.001", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.713, StringToDouble("0.713", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(8.0, StringToDouble("08", ALLOW_HEX)); CHECK_EQ(81.0, StringToDouble("081", ALLOW_HEX)); CHECK_EQ(78.0, StringToDouble("078", ALLOW_HEX)); CHECK_EQ(7.7, StringToDouble("07.7", ALLOW_HEX)); CHECK_EQ(7.8, StringToDouble("07.8", ALLOW_HEX)); CHECK_EQ(7e8, StringToDouble("07e8", ALLOW_HEX)); CHECK_EQ(7e7, StringToDouble("07e7", ALLOW_HEX)); CHECK_EQ(8.7, StringToDouble("08.7", ALLOW_HEX)); CHECK_EQ(8e7, StringToDouble("08e7", ALLOW_HEX)); CHECK_EQ(0.001, StringToDouble("0.001", ALLOW_HEX)); CHECK_EQ(0.713, StringToDouble("0.713", ALLOW_HEX)); } TEST_F(ConversionsTest, TrailingJunk) { CHECK_EQ(8.0, StringToDouble("8q", ALLOW_TRAILING_JUNK)); CHECK_EQ(63.0, StringToDouble("077qqq", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK)); CHECK_EQ(10.0, StringToDouble("10e", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK)); CHECK_EQ(10.0, StringToDouble("10e-", ALLOW_IMPLICIT_OCTAL | ALLOW_TRAILING_JUNK)); } TEST_F(ConversionsTest, NonStrDecimalLiteral) { CHECK(std::isnan(StringToDouble(" ", NO_CONVERSION_FLAGS, std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(StringToDouble("", NO_CONVERSION_FLAGS, std::numeric_limits::quiet_NaN()))); CHECK(std::isnan(StringToDouble(" ", NO_CONVERSION_FLAGS, std::numeric_limits::quiet_NaN()))); CHECK_EQ(0.0, StringToDouble("", NO_CONVERSION_FLAGS)); CHECK_EQ(0.0, StringToDouble(" ", NO_CONVERSION_FLAGS)); } TEST_F(ConversionsTest, IntegerStrLiteral) { CHECK_EQ(0.0, StringToDouble("0.0", NO_CONVERSION_FLAGS)); CHECK_EQ(0.0, StringToDouble("0", NO_CONVERSION_FLAGS)); CHECK_EQ(0.0, StringToDouble("00", NO_CONVERSION_FLAGS)); CHECK_EQ(0.0, StringToDouble("000", NO_CONVERSION_FLAGS)); CHECK_EQ(1.0, StringToDouble("1", NO_CONVERSION_FLAGS)); CHECK_EQ(-1.0, StringToDouble("-1", NO_CONVERSION_FLAGS)); CHECK_EQ(-1.0, StringToDouble(" -1 ", NO_CONVERSION_FLAGS)); CHECK_EQ(1.0, StringToDouble(" +1 ", NO_CONVERSION_FLAGS)); CHECK(std::isnan(StringToDouble(" - 1 ", NO_CONVERSION_FLAGS))); CHECK(std::isnan(StringToDouble(" + 1 ", NO_CONVERSION_FLAGS))); CHECK_EQ(0.0, StringToDouble("0e0", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e-1", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e-100000", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0e+100000", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); CHECK_EQ(0.0, StringToDouble("0.", ALLOW_HEX | ALLOW_IMPLICIT_OCTAL)); } TEST_F(ConversionsTest, LongNumberStr) { CHECK_EQ(1e10, StringToDouble("1" "0000000000", NO_CONVERSION_FLAGS)); CHECK_EQ(1e20, StringToDouble("1" "0000000000" "0000000000", NO_CONVERSION_FLAGS)); CHECK_EQ(1e60, StringToDouble("1" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-2, StringToDouble("." "0" "1", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-11, StringToDouble("." "0000000000" "1", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-21, StringToDouble("." "0000000000" "0000000000" "1", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-61, StringToDouble("." "0000000000" "0000000000" "0000000000" "0000000000" "0000000000" "0000000000" "1", NO_CONVERSION_FLAGS)); // x = 24414062505131248.0 and y = 24414062505131252.0 are representable in // double. Check chat z = (x + y) / 2 is rounded to x... CHECK_EQ(24414062505131248.0, StringToDouble("24414062505131250.0", NO_CONVERSION_FLAGS)); // ... and z = (x + y) / 2 + delta is rounded to y. CHECK_EQ(24414062505131252.0, StringToDouble("24414062505131250.000000001", NO_CONVERSION_FLAGS)); } TEST_F(ConversionsTest, MaximumSignificantDigits) { char num[] = "4.4501477170144020250819966727949918635852426585926051135169509" "122872622312493126406953054127118942431783801370080830523154578" "251545303238277269592368457430440993619708911874715081505094180" "604803751173783204118519353387964161152051487413083163272520124" "606023105869053620631175265621765214646643181420505164043632222" "668006474326056011713528291579642227455489682133472873831754840" "341397809846934151055619529382191981473003234105366170879223151" "087335413188049110555339027884856781219017754500629806224571029" "581637117459456877330110324211689177656713705497387108207822477" "584250967061891687062782163335299376138075114200886249979505279" "101870966346394401564490729731565935244123171539810221213221201" "847003580761626016356864581135848683152156368691976240370422601" "6998291015625000000000000000000000000000000000e-308"; CHECK_EQ(4.4501477170144017780491e-308, StringToDouble(num, NO_CONVERSION_FLAGS)); // Changes the result of strtod (at least in glibc implementation). num[sizeof(num) - 8] = '1'; CHECK_EQ(4.4501477170144022721148e-308, StringToDouble(num, NO_CONVERSION_FLAGS)); } TEST_F(ConversionsTest, MinimumExponent) { // Same test but with different point-position. char num[] = "445014771701440202508199667279499186358524265859260511351695091" "228726223124931264069530541271189424317838013700808305231545782" "515453032382772695923684574304409936197089118747150815050941806" "048037511737832041185193533879641611520514874130831632725201246" "060231058690536206311752656217652146466431814205051640436322226" "680064743260560117135282915796422274554896821334728738317548403" "413978098469341510556195293821919814730032341053661708792231510" "873354131880491105553390278848567812190177545006298062245710295" "816371174594568773301103242116891776567137054973871082078224775" "842509670618916870627821633352993761380751142008862499795052791" "018709663463944015644907297315659352441231715398102212132212018" "470035807616260163568645811358486831521563686919762403704226016" "998291015625000000000000000000000000000000000e-1108"; CHECK_EQ(4.4501477170144017780491e-308, StringToDouble(num, NO_CONVERSION_FLAGS)); // Changes the result of strtod (at least in glibc implementation). num[sizeof(num) - 8] = '1'; CHECK_EQ(4.4501477170144022721148e-308, StringToDouble(num, NO_CONVERSION_FLAGS)); } TEST_F(ConversionsTest, MaximumExponent) { char num[] = "0.16e309"; CHECK_EQ(1.59999999999999997765e+308, StringToDouble(num, NO_CONVERSION_FLAGS)); } TEST_F(ConversionsTest, ExponentNumberStr) { CHECK_EQ(1e1, StringToDouble("1e1", NO_CONVERSION_FLAGS)); CHECK_EQ(1e1, StringToDouble("1e+1", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-1, StringToDouble("1e-1", NO_CONVERSION_FLAGS)); CHECK_EQ(1e100, StringToDouble("1e+100", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-100, StringToDouble("1e-100", NO_CONVERSION_FLAGS)); CHECK_EQ(1e-106, StringToDouble(".000001e-100", NO_CONVERSION_FLAGS)); } using OneBit1 = base::BitField; using OneBit2 = base::BitField; using EightBit1 = base::BitField; using EightBit2 = base::BitField; TEST_F(ConversionsTest, BitField) { uint32_t x; // One bit bit field can hold values 0 and 1. CHECK(!OneBit1::is_valid(static_cast(-1))); CHECK(!OneBit2::is_valid(static_cast(-1))); for (unsigned i = 0; i < 2; i++) { CHECK(OneBit1::is_valid(i)); x = OneBit1::encode(i); CHECK_EQ(i, OneBit1::decode(x)); CHECK(OneBit2::is_valid(i)); x = OneBit2::encode(i); CHECK_EQ(i, OneBit2::decode(x)); } CHECK(!OneBit1::is_valid(2)); CHECK(!OneBit2::is_valid(2)); // Eight bit bit field can hold values from 0 tp 255. CHECK(!EightBit1::is_valid(static_cast(-1))); CHECK(!EightBit2::is_valid(static_cast(-1))); for (unsigned i = 0; i < 256; i++) { CHECK(EightBit1::is_valid(i)); x = EightBit1::encode(i); CHECK_EQ(i, EightBit1::decode(x)); CHECK(EightBit2::is_valid(i)); x = EightBit2::encode(i); CHECK_EQ(i, EightBit2::decode(x)); } CHECK(!EightBit1::is_valid(256)); CHECK(!EightBit2::is_valid(256)); } using UpperBits = base::BitField64; using MiddleBits = base::BitField64; TEST_F(ConversionsTest, BitField64) { uint64_t x; // Test most significant bits. x = 0xE000'0000'0000'0000; CHECK(x == UpperBits::encode(7)); CHECK_EQ(7, UpperBits::decode(x)); // Test the 32/64-bit boundary bits. x = 0x0000'0001'8000'0000; CHECK(x == MiddleBits::encode(3)); CHECK_EQ(3, MiddleBits::decode(x)); } TEST_F(ConversionsTest, SpecialIndexParsing) { HandleScope scope(i_isolate()); CheckNonArrayIndex(false, ""); CheckNonArrayIndex(false, "-"); CheckNonArrayIndex(true, "0"); CheckNonArrayIndex(true, "-0"); CheckNonArrayIndex(false, "01"); CheckNonArrayIndex(false, "-01"); CheckNonArrayIndex(true, "0.5"); CheckNonArrayIndex(true, "-0.5"); CheckNonArrayIndex(true, "1"); CheckNonArrayIndex(true, "-1"); CheckNonArrayIndex(true, "10"); CheckNonArrayIndex(true, "-10"); CheckNonArrayIndex(true, "NaN"); CheckNonArrayIndex(true, "Infinity"); CheckNonArrayIndex(true, "-Infinity"); CheckNonArrayIndex(true, "4294967295"); CheckNonArrayIndex(true, "429496.7295"); CheckNonArrayIndex(true, "1.3333333333333333"); CheckNonArrayIndex(false, "1.3333333333333339"); CheckNonArrayIndex(true, "1.333333333333331e+222"); CheckNonArrayIndex(true, "-1.3333333333333211e+222"); CheckNonArrayIndex(false, "-1.3333333333333311e+222"); CheckNonArrayIndex(true, "429496.7295"); CheckNonArrayIndex(false, "43s3"); CheckNonArrayIndex(true, "4294967296"); CheckNonArrayIndex(true, "-4294967296"); CheckNonArrayIndex(true, "999999999999999"); CheckNonArrayIndex(false, "9999999999999999"); CheckNonArrayIndex(true, "-999999999999999"); CheckNonArrayIndex(false, "-9999999999999999"); CheckNonArrayIndex(false, "42949672964294967296429496729694966"); } TEST_F(ConversionsTest, NoHandlesForTryNumberToSize) { size_t result = 0; { SealHandleScope no_handles(i_isolate()); Smi smi = Smi::FromInt(1); CHECK(TryNumberToSize(smi, &result)); CHECK_EQ(result, 1u); } result = 0; { HandleScope scope(i_isolate()); Handle heap_number1 = i_isolate()->factory()->NewHeapNumber(2.0); { SealHandleScope no_handles(i_isolate()); CHECK(TryNumberToSize(*heap_number1, &result)); CHECK_EQ(result, 2u); } Handle heap_number2 = i_isolate()->factory()->NewHeapNumber( static_cast(std::numeric_limits::max()) + 10000.0); { SealHandleScope no_handles(i_isolate()); CHECK(!TryNumberToSize(*heap_number2, &result)); } } } TEST_F(ConversionsTest, TryNumberToSizeWithMaxSizePlusOne) { { HandleScope scope(i_isolate()); // 1 << 64, larger than the limit of size_t. double value = 18446744073709551616.0; size_t result = 0; Handle heap_number = i_isolate()->factory()->NewHeapNumber(value); CHECK(!TryNumberToSize(*heap_number, &result)); } } TEST_F(ConversionsTest, PositiveNumberToUint32) { i::Factory* factory = i_isolate()->factory(); uint32_t max = std::numeric_limits::max(); HandleScope scope(i_isolate()); // Test Smi conversions. Handle number = handle(Smi::FromInt(0), i_isolate()); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(-1), i_isolate()); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(-1), i_isolate()); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(Smi::kMinValue), i_isolate()); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = handle(Smi::FromInt(Smi::kMaxValue), i_isolate()); CHECK_EQ(PositiveNumberToUint32(*number), static_cast(Smi::kMaxValue)); // Test Double conversions. number = factory->NewHeapNumber(0.0); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(0.999); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(1.999); CHECK_EQ(PositiveNumberToUint32(*number), 1u); number = factory->NewHeapNumber(-12.0); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(12000.0); CHECK_EQ(PositiveNumberToUint32(*number), 12000u); number = factory->NewHeapNumber(static_cast(Smi::kMaxValue) + 1); CHECK_EQ(PositiveNumberToUint32(*number), static_cast(Smi::kMaxValue) + 1); number = factory->NewHeapNumber(max); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(static_cast(max) * 1000); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(std::numeric_limits::max()); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(std::numeric_limits::infinity()); CHECK_EQ(PositiveNumberToUint32(*number), max); number = factory->NewHeapNumber(-1.0 * std::numeric_limits::infinity()); CHECK_EQ(PositiveNumberToUint32(*number), 0u); number = factory->NewHeapNumber(std::nan("")); CHECK_EQ(PositiveNumberToUint32(*number), 0u); } // Some random offsets, mostly at 'suspicious' bit boundaries. struct IntStringPair { int integer; std::string string; }; static IntStringPair int_pairs[] = {{0, "0"}, {101, "101"}, {-1, "-1"}, {1024, "1024"}, {200000, "200000"}, {-1024, "-1024"}, {-200000, "-200000"}, {kMinInt, "-2147483648"}, {kMaxInt, "2147483647"}}; TEST_F(ConversionsTest, IntToCString) { std::unique_ptr buf(new char[4096]); for (size_t i = 0; i < arraysize(int_pairs); i++) { ASSERT_STREQ(IntToCString(int_pairs[i].integer, {buf.get(), 4096}), int_pairs[i].string.c_str()); } } struct DoubleStringPair { double number; std::string string; }; static DoubleStringPair double_pairs[] = { {0.0, "0"}, {kMinInt, "-2147483648"}, {kMaxInt, "2147483647"}, // ES section 7.1.12.1 #sec-tostring-applied-to-the-number-type: // -0.0 is stringified to "0". {-0.0, "0"}, {1.1, "1.1"}, {0.1, "0.1"}}; TEST_F(ConversionsTest, DoubleToCString) { std::unique_ptr buf(new char[4096]); for (size_t i = 0; i < arraysize(double_pairs); i++) { ASSERT_STREQ(DoubleToCString(double_pairs[i].number, {buf.get(), 4096}), double_pairs[i].string.c_str()); } } struct DoubleInt32Pair { double number; int integer; }; static DoubleInt32Pair double_int32_pairs[] = { {0.0, 0}, {-0.0, 0}, {std::numeric_limits::quiet_NaN(), 0}, {std::numeric_limits::infinity(), 0}, {-std::numeric_limits::infinity(), 0}, {3.14, 3}, {1.99, 1}, {-1.99, -1}, {static_cast(kMinInt), kMinInt}, {static_cast(kMaxInt), kMaxInt}, {kMaxSafeInteger, -1}, {kMinSafeInteger, 1}, {kMaxSafeInteger + 1, 0}, {kMinSafeInteger - 1, 0}, }; TEST_F(ConversionsTest, DoubleToInt32) { for (size_t i = 0; i < arraysize(double_int32_pairs); i++) { ASSERT_EQ(DoubleToInt32(double_int32_pairs[i].number), double_int32_pairs[i].integer); } } struct DoubleInt64Pair { double number; int64_t integer; }; static DoubleInt64Pair double_int64_pairs[] = { {0.0, 0}, {-0.0, 0}, {std::numeric_limits::quiet_NaN(), 0}, {std::numeric_limits::infinity(), 0}, {-std::numeric_limits::infinity(), 0}, {3.14, 3}, {1.99, 1}, {-1.99, -1}, {kMinSafeInteger, static_cast(kMinSafeInteger)}, {kMaxSafeInteger, static_cast(kMaxSafeIntegerUint64)}, {kMinSafeInteger - 1, static_cast(kMinSafeInteger) - 1}, {kMaxSafeInteger + 1, static_cast(kMaxSafeIntegerUint64) + 1}, {static_cast(std::numeric_limits::min()), std::numeric_limits::min()}, // Max int64_t is not representable as a double, the closest is -2^63. {static_cast(std::numeric_limits::max()), std::numeric_limits::min()}, // So we test for a smaller number, representable as a double. {static_cast((1ull << 63) - 1024), (1ull << 63) - 1024}}; TEST_F(ConversionsTest, DoubleToWebIDLInt64) { for (size_t i = 0; i < arraysize(double_int64_pairs); i++) { ASSERT_EQ(DoubleToWebIDLInt64(double_int64_pairs[i].number), double_int64_pairs[i].integer); } } } // namespace interpreter } // namespace internal } // namespace v8