// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/spaces.h" #include #include "src/common/globals.h" #include "src/execution/isolate.h" #include "src/heap/heap-inl.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/heap/heap.h" #include "src/heap/large-spaces.h" #include "src/heap/memory-chunk.h" #include "src/heap/spaces-inl.h" #include "test/unittests/test-utils.h" namespace v8 { namespace internal { using SpacesTest = TestWithIsolate; TEST_F(SpacesTest, CompactionSpaceMerge) { Heap* heap = i_isolate()->heap(); OldSpace* old_space = heap->old_space(); EXPECT_TRUE(old_space != nullptr); CompactionSpace* compaction_space = new CompactionSpace(heap, OLD_SPACE, NOT_EXECUTABLE, CompactionSpaceKind::kCompactionSpaceForMarkCompact); EXPECT_TRUE(compaction_space != nullptr); for (Page* p : *old_space) { // Unlink free lists from the main space to avoid reusing the memory for // compaction spaces. old_space->UnlinkFreeListCategories(p); } // Cannot loop until "Available()" since we initially have 0 bytes available // and would thus neither grow, nor be able to allocate an object. const int kNumObjects = 10; const int kNumObjectsPerPage = compaction_space->AreaSize() / kMaxRegularHeapObjectSize; const int kExpectedPages = (kNumObjects + kNumObjectsPerPage - 1) / kNumObjectsPerPage; for (int i = 0; i < kNumObjects; i++) { HeapObject object = compaction_space->AllocateRawUnaligned(kMaxRegularHeapObjectSize) .ToObjectChecked(); heap->CreateFillerObjectAt(object.address(), kMaxRegularHeapObjectSize); } int pages_in_old_space = old_space->CountTotalPages(); int pages_in_compaction_space = compaction_space->CountTotalPages(); EXPECT_EQ(kExpectedPages, pages_in_compaction_space); old_space->MergeCompactionSpace(compaction_space); EXPECT_EQ(pages_in_old_space + pages_in_compaction_space, old_space->CountTotalPages()); delete compaction_space; } TEST_F(SpacesTest, WriteBarrierFromHeapObject) { constexpr Address address1 = Page::kPageSize; HeapObject object1 = HeapObject::unchecked_cast(Object(address1)); BasicMemoryChunk* chunk1 = BasicMemoryChunk::FromHeapObject(object1); heap_internals::MemoryChunk* slim_chunk1 = heap_internals::MemoryChunk::FromHeapObject(object1); EXPECT_EQ(static_cast(chunk1), static_cast(slim_chunk1)); constexpr Address address2 = 2 * Page::kPageSize - 1; HeapObject object2 = HeapObject::unchecked_cast(Object(address2)); BasicMemoryChunk* chunk2 = BasicMemoryChunk::FromHeapObject(object2); heap_internals::MemoryChunk* slim_chunk2 = heap_internals::MemoryChunk::FromHeapObject(object2); EXPECT_EQ(static_cast(chunk2), static_cast(slim_chunk2)); } TEST_F(SpacesTest, WriteBarrierIsMarking) { const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk); char memory[kSizeOfMemoryChunk]; memset(&memory, 0, kSizeOfMemoryChunk); MemoryChunk* chunk = reinterpret_cast(&memory); heap_internals::MemoryChunk* slim_chunk = reinterpret_cast(&memory); EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING)); EXPECT_FALSE(slim_chunk->IsMarking()); chunk->SetFlag(MemoryChunk::INCREMENTAL_MARKING); EXPECT_TRUE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING)); EXPECT_TRUE(slim_chunk->IsMarking()); chunk->ClearFlag(MemoryChunk::INCREMENTAL_MARKING); EXPECT_FALSE(chunk->IsFlagSet(MemoryChunk::INCREMENTAL_MARKING)); EXPECT_FALSE(slim_chunk->IsMarking()); } TEST_F(SpacesTest, WriteBarrierInYoungGenerationToSpace) { const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk); char memory[kSizeOfMemoryChunk]; memset(&memory, 0, kSizeOfMemoryChunk); MemoryChunk* chunk = reinterpret_cast(&memory); heap_internals::MemoryChunk* slim_chunk = reinterpret_cast(&memory); EXPECT_FALSE(chunk->InYoungGeneration()); EXPECT_FALSE(slim_chunk->InYoungGeneration()); chunk->SetFlag(MemoryChunk::TO_PAGE); EXPECT_TRUE(chunk->InYoungGeneration()); EXPECT_TRUE(slim_chunk->InYoungGeneration()); chunk->ClearFlag(MemoryChunk::TO_PAGE); EXPECT_FALSE(chunk->InYoungGeneration()); EXPECT_FALSE(slim_chunk->InYoungGeneration()); } TEST_F(SpacesTest, WriteBarrierInYoungGenerationFromSpace) { const size_t kSizeOfMemoryChunk = sizeof(MemoryChunk); char memory[kSizeOfMemoryChunk]; memset(&memory, 0, kSizeOfMemoryChunk); MemoryChunk* chunk = reinterpret_cast(&memory); heap_internals::MemoryChunk* slim_chunk = reinterpret_cast(&memory); EXPECT_FALSE(chunk->InYoungGeneration()); EXPECT_FALSE(slim_chunk->InYoungGeneration()); chunk->SetFlag(MemoryChunk::FROM_PAGE); EXPECT_TRUE(chunk->InYoungGeneration()); EXPECT_TRUE(slim_chunk->InYoungGeneration()); chunk->ClearFlag(MemoryChunk::FROM_PAGE); EXPECT_FALSE(chunk->InYoungGeneration()); EXPECT_FALSE(slim_chunk->InYoungGeneration()); } TEST_F(SpacesTest, CodeRangeAddressReuse) { CodeRangeAddressHint hint; const size_t base_alignment = MemoryChunk::kPageSize; // Create code ranges. Address code_range1 = hint.GetAddressHint(100, base_alignment); CHECK(IsAligned(code_range1, base_alignment)); Address code_range2 = hint.GetAddressHint(200, base_alignment); CHECK(IsAligned(code_range2, base_alignment)); Address code_range3 = hint.GetAddressHint(100, base_alignment); CHECK(IsAligned(code_range3, base_alignment)); // Since the addresses are random, we cannot check that they are different. // Free two code ranges. hint.NotifyFreedCodeRange(code_range1, 100); hint.NotifyFreedCodeRange(code_range2, 200); // The next two code ranges should reuse the freed addresses. Address code_range4 = hint.GetAddressHint(100, base_alignment); EXPECT_EQ(code_range4, code_range1); Address code_range5 = hint.GetAddressHint(200, base_alignment); EXPECT_EQ(code_range5, code_range2); // Free the third code range and check address reuse. hint.NotifyFreedCodeRange(code_range3, 100); Address code_range6 = hint.GetAddressHint(100, base_alignment); EXPECT_EQ(code_range6, code_range3); } // Tests that FreeListMany::SelectFreeListCategoryType returns what it should. TEST_F(SpacesTest, FreeListManySelectFreeListCategoryType) { FreeListMany free_list; // Testing that all sizes below 256 bytes get assigned the correct category for (size_t size = 0; size <= FreeListMany::kPreciseCategoryMaxSize; size++) { FreeListCategoryType cat = free_list.SelectFreeListCategoryType(size); if (cat == 0) { // If cat == 0, then we make sure that |size| doesn't fit in the 2nd // category. EXPECT_LT(size, free_list.categories_min[1]); } else { // Otherwise, size should fit in |cat|, but not in |cat+1|. EXPECT_LE(free_list.categories_min[cat], size); EXPECT_LT(size, free_list.categories_min[cat + 1]); } } // Testing every size above 256 would take long time, so test only some // "interesting cases": picking some number in the middle of the categories, // as well as at the categories' bounds. for (int cat = kFirstCategory + 1; cat <= free_list.last_category_; cat++) { std::vector sizes; // Adding size less than this category's minimum sizes.push_back(free_list.categories_min[cat] - 8); // Adding size equal to this category's minimum sizes.push_back(free_list.categories_min[cat]); // Adding size greater than this category's minimum sizes.push_back(free_list.categories_min[cat] + 8); // Adding size between this category's minimum and the next category if (cat != free_list.last_category_) { sizes.push_back( (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) / 2); } for (size_t size : sizes) { FreeListCategoryType selected = free_list.SelectFreeListCategoryType(size); if (selected == free_list.last_category_) { // If selected == last_category, then we make sure that |size| indeeds // fits in the last category. EXPECT_LE(free_list.categories_min[selected], size); } else { // Otherwise, size should fit in |selected|, but not in |selected+1|. EXPECT_LE(free_list.categories_min[selected], size); EXPECT_LT(size, free_list.categories_min[selected + 1]); } } } } // Tests that FreeListMany::GuaranteedAllocatable returns what it should. TEST_F(SpacesTest, FreeListManyGuaranteedAllocatable) { FreeListMany free_list; for (int cat = kFirstCategory; cat < free_list.last_category_; cat++) { std::vector sizes; // Adding size less than this category's minimum sizes.push_back(free_list.categories_min[cat] - 8); // Adding size equal to this category's minimum sizes.push_back(free_list.categories_min[cat]); // Adding size greater than this category's minimum sizes.push_back(free_list.categories_min[cat] + 8); if (cat != free_list.last_category_) { // Adding size between this category's minimum and the next category sizes.push_back( (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) / 2); } for (size_t size : sizes) { FreeListCategoryType cat_free = free_list.SelectFreeListCategoryType(size); size_t guaranteed_allocatable = free_list.GuaranteedAllocatable(size); if (cat_free == free_list.last_category_) { // If |cat_free| == last_category, then guaranteed_allocatable must // return the last category, because when allocating, the last category // is searched entirely. EXPECT_EQ(free_list.SelectFreeListCategoryType(guaranteed_allocatable), free_list.last_category_); } else if (size < free_list.categories_min[0]) { // If size < free_list.categories_min[0], then the bytes are wasted, and // guaranteed_allocatable should return 0. EXPECT_EQ(guaranteed_allocatable, 0ul); } else { // Otherwise, |guaranteed_allocatable| is equal to the minimum of // |size|'s category (|cat_free|); EXPECT_EQ(free_list.categories_min[cat_free], guaranteed_allocatable); } } } } // Tests that // FreeListManyCachedFastPath::SelectFastAllocationFreeListCategoryType returns // what it should. TEST_F(SpacesTest, FreeListManyCachedFastPathSelectFastAllocationFreeListCategoryType) { FreeListManyCachedFastPath free_list; for (int cat = kFirstCategory; cat <= free_list.last_category_; cat++) { std::vector sizes; // Adding size less than this category's minimum sizes.push_back(free_list.categories_min[cat] - 8); // Adding size equal to this category's minimum sizes.push_back(free_list.categories_min[cat]); // Adding size greater than this category's minimum sizes.push_back(free_list.categories_min[cat] + 8); // Adding size between this category's minimum and the next category if (cat != free_list.last_category_) { sizes.push_back( (free_list.categories_min[cat] + free_list.categories_min[cat + 1]) / 2); } for (size_t size : sizes) { FreeListCategoryType selected = free_list.SelectFastAllocationFreeListCategoryType(size); if (size <= FreeListManyCachedFastPath::kTinyObjectMaxSize) { // For tiny objects, the first category of the fast path should be // chosen. EXPECT_TRUE(selected == FreeListManyCachedFastPath::kFastPathFirstCategory); } else if (size >= free_list.categories_min[free_list.last_category_] - FreeListManyCachedFastPath::kFastPathOffset) { // For objects close to the minimum of the last category, the last // category is chosen. EXPECT_EQ(selected, free_list.last_category_); } else { // For other objects, the chosen category must satisfy that its minimum // is at least |size|+1.85k. EXPECT_GE(free_list.categories_min[selected], size + FreeListManyCachedFastPath::kFastPathOffset); // And the smaller categoriy's minimum is less than |size|+1.85k // (otherwise it would have been chosen instead). EXPECT_LT(free_list.categories_min[selected - 1], size + FreeListManyCachedFastPath::kFastPathOffset); } } } } } // namespace internal } // namespace v8