// Copyright 2022 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file #include "src/objects/objects-inl.h" #include "test/unittests/compiler/backend/instruction-selector-unittest.h" namespace v8 { namespace internal { namespace compiler { namespace { template struct MachInst { T constructor; const char* constructor_name; ArchOpcode arch_opcode; MachineType machine_type; }; template std::ostream& operator<<(std::ostream& os, const MachInst& mi) { return os << mi.constructor_name; } using MachInst1 = MachInst; using MachInst2 = MachInst; // To avoid duplicated code IntCmp helper structure // is created. It contains MachInst2 with two nodes and expected_size // because different cmp instructions have different size. struct IntCmp { MachInst2 mi; uint32_t expected_size; }; struct FPCmp { MachInst2 mi; FlagsCondition cond; }; const FPCmp kFPCmpInstructions[] = { {{&RawMachineAssembler::Float64Equal, "Float64Equal", kRiscvCmpD, MachineType::Float64()}, kEqual}, {{&RawMachineAssembler::Float64LessThan, "Float64LessThan", kRiscvCmpD, MachineType::Float64()}, kUnsignedLessThan}, {{&RawMachineAssembler::Float64LessThanOrEqual, "Float64LessThanOrEqual", kRiscvCmpD, MachineType::Float64()}, kUnsignedLessThanOrEqual}, {{&RawMachineAssembler::Float64GreaterThan, "Float64GreaterThan", kRiscvCmpD, MachineType::Float64()}, kUnsignedLessThan}, {{&RawMachineAssembler::Float64GreaterThanOrEqual, "Float64GreaterThanOrEqual", kRiscvCmpD, MachineType::Float64()}, kUnsignedLessThanOrEqual}}; struct Conversion { // The machine_type field in MachInst1 represents the destination type. MachInst1 mi; MachineType src_machine_type; }; // ---------------------------------------------------------------------------- // Logical instructions. // ---------------------------------------------------------------------------- const MachInst2 kLogicalInstructions[] = { {&RawMachineAssembler::Word32And, "Word32And", kRiscvAnd, MachineType::Int32()}, {&RawMachineAssembler::Word32Or, "Word32Or", kRiscvOr, MachineType::Int32()}, {&RawMachineAssembler::Word32Xor, "Word32Xor", kRiscvXor, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // Shift instructions. // ---------------------------------------------------------------------------- const MachInst2 kShiftInstructions[] = { {&RawMachineAssembler::Word32Shl, "Word32Shl", kRiscvShl32, MachineType::Int32()}, {&RawMachineAssembler::Word32Shr, "Word32Shr", kRiscvShr32, MachineType::Int32()}, {&RawMachineAssembler::Word32Sar, "Word32Sar", kRiscvSar32, MachineType::Int32()}, {&RawMachineAssembler::Word32Ror, "Word32Ror", kRiscvRor32, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // MUL/DIV instructions. // ---------------------------------------------------------------------------- const MachInst2 kMulDivInstructions[] = { {&RawMachineAssembler::Int32Mul, "Int32Mul", kRiscvMul32, MachineType::Int32()}, {&RawMachineAssembler::Int32Div, "Int32Div", kRiscvDiv32, MachineType::Int32()}, {&RawMachineAssembler::Uint32Div, "Uint32Div", kRiscvDivU32, MachineType::Uint32()}, {&RawMachineAssembler::Float64Mul, "Float64Mul", kRiscvMulD, MachineType::Float64()}, {&RawMachineAssembler::Float64Div, "Float64Div", kRiscvDivD, MachineType::Float64()}}; // ---------------------------------------------------------------------------- // MOD instructions. // ---------------------------------------------------------------------------- const MachInst2 kModInstructions[] = { {&RawMachineAssembler::Int32Mod, "Int32Mod", kRiscvMod32, MachineType::Int32()}, {&RawMachineAssembler::Uint32Mod, "Uint32Mod", kRiscvModU32, MachineType::Int32()}, {&RawMachineAssembler::Float64Mod, "Float64Mod", kRiscvModD, MachineType::Float64()}}; // ---------------------------------------------------------------------------- // Arithmetic FPU instructions. // ---------------------------------------------------------------------------- const MachInst2 kFPArithInstructions[] = { {&RawMachineAssembler::Float64Add, "Float64Add", kRiscvAddD, MachineType::Float64()}, {&RawMachineAssembler::Float64Sub, "Float64Sub", kRiscvSubD, MachineType::Float64()}}; // ---------------------------------------------------------------------------- // IntArithTest instructions, two nodes. // ---------------------------------------------------------------------------- const MachInst2 kAddSubInstructions[] = { {&RawMachineAssembler::Int32Add, "Int32Add", kRiscvAdd32, MachineType::Int32()}, {&RawMachineAssembler::Int32Sub, "Int32Sub", kRiscvSub32, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // IntArithTest instructions, one node. // ---------------------------------------------------------------------------- const MachInst1 kAddSubOneInstructions[] = {{&RawMachineAssembler::Int32Neg, "Int32Neg", kRiscvSub32, MachineType::Int32()}}; // ---------------------------------------------------------------------------- // Arithmetic compare instructions. // ---------------------------------------------------------------------------- const IntCmp kCmpInstructions[] = { {{&RawMachineAssembler::WordEqual, "WordEqual", kRiscvCmp, MachineType::Int64()}, 1U}, {{&RawMachineAssembler::WordNotEqual, "WordNotEqual", kRiscvCmp, MachineType::Int64()}, 1U}, {{&RawMachineAssembler::Word32Equal, "Word32Equal", kRiscvCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Word32NotEqual, "Word32NotEqual", kRiscvCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32LessThan, "Int32LessThan", kRiscvCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32LessThanOrEqual, "Int32LessThanOrEqual", kRiscvCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32GreaterThan, "Int32GreaterThan", kRiscvCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Int32GreaterThanOrEqual, "Int32GreaterThanOrEqual", kRiscvCmp, MachineType::Int32()}, 1U}, {{&RawMachineAssembler::Uint32LessThan, "Uint32LessThan", kRiscvCmp, MachineType::Uint32()}, 1U}, {{&RawMachineAssembler::Uint32LessThanOrEqual, "Uint32LessThanOrEqual", kRiscvCmp, MachineType::Uint32()}, 1U}}; // ---------------------------------------------------------------------------- // Conversion instructions. // ---------------------------------------------------------------------------- const Conversion kConversionInstructions[] = { // Conversion instructions are related to machine_operator.h: // FPU conversions: // Convert representation of integers between float64 and int32/uint32. // The precise rounding mode and handling of out of range inputs are *not* // defined for these operators, since they are intended only for use with // integers. // mips instructions: // mtc1, cvt.d.w {{&RawMachineAssembler::ChangeInt32ToFloat64, "ChangeInt32ToFloat64", kRiscvCvtDW, MachineType::Float64()}, MachineType::Int32()}, // mips instructions: // cvt.d.uw {{&RawMachineAssembler::ChangeUint32ToFloat64, "ChangeUint32ToFloat64", kRiscvCvtDUw, MachineType::Float64()}, MachineType::Int32()}, // mips instructions: // mfc1, trunc double to word, for more details look at mips macro // asm and mips asm file {{&RawMachineAssembler::ChangeFloat64ToInt32, "ChangeFloat64ToInt32", kRiscvTruncWD, MachineType::Float64()}, MachineType::Int32()}, // mips instructions: // trunc double to unsigned word, for more details look at mips macro // asm and mips asm file {{&RawMachineAssembler::ChangeFloat64ToUint32, "ChangeFloat64ToUint32", kRiscvTruncUwD, MachineType::Float64()}, MachineType::Int32()}}; const Conversion kFloat32RoundInstructions[] = { {{&RawMachineAssembler::Float32RoundUp, "Float32RoundUp", kRiscvFloat32RoundUp, MachineType::Int32()}, MachineType::Float32()}, {{&RawMachineAssembler::Float32RoundDown, "Float32RoundDown", kRiscvFloat32RoundDown, MachineType::Int32()}, MachineType::Float32()}, {{&RawMachineAssembler::Float32RoundTiesEven, "Float32RoundTiesEven", kRiscvFloat32RoundTiesEven, MachineType::Int32()}, MachineType::Float32()}, {{&RawMachineAssembler::Float32RoundTruncate, "Float32RoundTruncate", kRiscvFloat32RoundTruncate, MachineType::Int32()}, MachineType::Float32()}}; } // namespace using InstructionSelectorFPCmpTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorFPCmpTest, Parameter) { const FPCmp cmp = GetParam(); StreamBuilder m(this, MachineType::Int32(), cmp.mi.machine_type, cmp.mi.machine_type); m.Return((m.*cmp.mi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kFlags_set, s[0]->flags_mode()); EXPECT_EQ(cmp.cond, s[0]->flags_condition()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorFPCmpTest, ::testing::ValuesIn(kFPCmpInstructions)); // ---------------------------------------------------------------------------- // Arithmetic compare instructions integers // ---------------------------------------------------------------------------- using InstructionSelectorCmpTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorCmpTest, Parameter) { const IntCmp cmp = GetParam(); const MachineType type = cmp.mi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*cmp.mi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); if (v8_flags.debug_code && type.representation() == MachineRepresentation::kWord32) { ASSERT_EQ(1U, s.size()); EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } else { ASSERT_EQ(cmp.expected_size, s.size()); EXPECT_EQ(cmp.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorCmpTest, ::testing::ValuesIn(kCmpInstructions)); // ---------------------------------------------------------------------------- // Shift instructions. // ---------------------------------------------------------------------------- using InstructionSelectorShiftTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorShiftTest, Immediate) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; TRACED_FORRANGE(int32_t, imm, 0, ((1 << ElementSizeLog2Of(type.representation())) * 8) - 1) { StreamBuilder m(this, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Int32Constant(imm))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_TRUE(s[0]->InputAt(1)->IsImmediate()); EXPECT_EQ(imm, s.ToInt32(s[0]->InputAt(1))); EXPECT_EQ(1U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorShiftTest, ::testing::ValuesIn(kShiftInstructions)); // ---------------------------------------------------------------------------- // Logical instructions. // ---------------------------------------------------------------------------- using InstructionSelectorLogicalTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorLogicalTest, Parameter) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorLogicalTest, ::testing::ValuesIn(kLogicalInstructions)); TEST_F(InstructionSelectorTest, Word32XorMinusOneWithParameter) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Parameter(0), m.Int32Constant(-1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Int32Constant(-1), m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, Word32XorMinusOneWithWord32Or) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Word32Or(m.Parameter(0), m.Parameter(0)), m.Int32Constant(-1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Xor(m.Int32Constant(-1), m.Word32Or(m.Parameter(0), m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvNor, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, Word32ShlWithWord32And) { TRACED_FORRANGE(int32_t, shift, 0, 30) { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Shl(m.Word32And(p0, m.Int32Constant((1 << (31 - shift)) - 1)), m.Int32Constant(shift + 1)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvShl32, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } } // TEST_F(InstructionSelectorTest, Word64ShlWithWord64And) { // TRACED_FORRANGE(int32_t, shift, 0, 62) { // StreamBuilder m(this, MachineType::Int64(), MachineType::Int64()); // Node* const p0 = m.Parameter(0); // Node* const r = // m.Word64Shl(m.Word64And(p0, m.Int64Constant((1L << (63 - shift)) - // 1)), // m.Int64Constant(shift + 1)); // m.Return(r); // Stream s = m.Build(); // ASSERT_EQ(1U, s.size()); // EXPECT_EQ(kRiscvShl64, s[0]->arch_opcode()); // ASSERT_EQ(2U, s[0]->InputCount()); // EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); // ASSERT_EQ(1U, s[0]->OutputCount()); // EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); // } // } TEST_F(InstructionSelectorTest, Word32SarWithWord32Shl) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(24)), m.Int32Constant(24)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvSignExtendByte, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(16)), m.Int32Constant(16)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvSignExtendShort, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); Node* const p0 = m.Parameter(0); Node* const r = m.Word32Sar(m.Word32Shl(p0, m.Int32Constant(32)), m.Int32Constant(32)); m.Return(r); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvShl32, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); EXPECT_EQ(0, s.ToInt32(s[0]->InputAt(1))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(r), s.ToVreg(s[0]->Output())); } } // ---------------------------------------------------------------------------- // MUL/DIV instructions. // ---------------------------------------------------------------------------- using InstructionSelectorMulDivTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMulDivTest, Parameter) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMulDivTest, ::testing::ValuesIn(kMulDivInstructions)); // ---------------------------------------------------------------------------- // MOD instructions. // ---------------------------------------------------------------------------- using InstructionSelectorModTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorModTest, Parameter) { const MachInst2 dpi = GetParam(); const MachineType type = dpi.machine_type; StreamBuilder m(this, type, type, type); m.Return((m.*dpi.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(dpi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorModTest, ::testing::ValuesIn(kModInstructions)); // ---------------------------------------------------------------------------- // Floating point instructions. // ---------------------------------------------------------------------------- using InstructionSelectorFPArithTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorFPArithTest, Parameter) { const MachInst2 fpa = GetParam(); StreamBuilder m(this, fpa.machine_type, fpa.machine_type, fpa.machine_type); m.Return((m.*fpa.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(fpa.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorFPArithTest, ::testing::ValuesIn(kFPArithInstructions)); // ---------------------------------------------------------------------------- // Integer arithmetic // ---------------------------------------------------------------------------- using InstructionSelectorIntArithTwoTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorIntArithTwoTest, Parameter) { const MachInst2 intpa = GetParam(); StreamBuilder m(this, intpa.machine_type, intpa.machine_type, intpa.machine_type); m.Return((m.*intpa.constructor)(m.Parameter(0), m.Parameter(1))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(intpa.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorIntArithTwoTest, ::testing::ValuesIn(kAddSubInstructions)); // ---------------------------------------------------------------------------- // One node. // ---------------------------------------------------------------------------- using InstructionSelectorIntArithOneTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorIntArithOneTest, Parameter) { const MachInst1 intpa = GetParam(); StreamBuilder m(this, intpa.machine_type, intpa.machine_type, intpa.machine_type); m.Return((m.*intpa.constructor)(m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(intpa.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorIntArithOneTest, ::testing::ValuesIn(kAddSubOneInstructions)); // ---------------------------------------------------------------------------- // Conversions. // ---------------------------------------------------------------------------- using InstructionSelectorConversionTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorConversionTest, Parameter) { const Conversion conv = GetParam(); StreamBuilder m(this, conv.mi.machine_type, conv.src_machine_type); m.Return((m.*conv.mi.constructor)(m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(conv.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorConversionTest, ::testing::ValuesIn(kConversionInstructions)); using CombineChangeFloat32ToInt32WithRoundFloat32 = InstructionSelectorTestWithParam; TEST_P(CombineChangeFloat32ToInt32WithRoundFloat32, Parameter) { { const Conversion conv = GetParam(); StreamBuilder m(this, conv.mi.machine_type, conv.src_machine_type); m.Return(m.ChangeFloat64ToInt32( m.ChangeFloat32ToFloat64((m.*conv.mi.constructor)(m.Parameter(0))))); Stream s = m.Build(); ASSERT_EQ(2U, s.size()); EXPECT_EQ(conv.mi.arch_opcode, s[0]->arch_opcode()); EXPECT_EQ(kRiscvTruncWS, s[1]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, CombineChangeFloat32ToInt32WithRoundFloat32, ::testing::ValuesIn(kFloat32RoundInstructions)); TEST_F(InstructionSelectorTest, ChangeFloat64ToInt32OfChangeFloat32ToFloat64) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Float32()); m.Return(m.ChangeFloat64ToInt32(m.ChangeFloat32ToFloat64(m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvTruncWS, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, TruncateFloat64ToFloat32OfChangeInt32ToFloat64) { { StreamBuilder m(this, MachineType::Float32(), MachineType::Int32()); m.Return( m.TruncateFloat64ToFloat32(m.ChangeInt32ToFloat64(m.Parameter(0)))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvCvtSW, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } // ---------------------------------------------------------------------------- // Loads and stores. // ---------------------------------------------------------------------------- namespace { struct MemoryAccess { MachineType type; ArchOpcode load_opcode; ArchOpcode store_opcode; }; static const MemoryAccess kMemoryAccesses[] = { {MachineType::Int8(), kRiscvLb, kRiscvSb}, {MachineType::Uint8(), kRiscvLbu, kRiscvSb}, {MachineType::Int16(), kRiscvLh, kRiscvSh}, {MachineType::Uint16(), kRiscvLhu, kRiscvSh}, {MachineType::Int32(), kRiscvLw, kRiscvSw}, {MachineType::Float32(), kRiscvLoadFloat, kRiscvStoreFloat}, {MachineType::Float64(), kRiscvLoadDouble, kRiscvStoreDouble}}; struct MemoryAccessImm { MachineType type; ArchOpcode load_opcode; ArchOpcode store_opcode; bool (InstructionSelectorTest::Stream::*val_predicate)( const InstructionOperand*) const; const int32_t immediates[40]; }; std::ostream& operator<<(std::ostream& os, const MemoryAccessImm& acc) { return os << acc.type; } struct MemoryAccessImm1 { MachineType type; ArchOpcode load_opcode; ArchOpcode store_opcode; bool (InstructionSelectorTest::Stream::*val_predicate)( const InstructionOperand*) const; const int32_t immediates[5]; }; std::ostream& operator<<(std::ostream& os, const MemoryAccessImm1& acc) { return os << acc.type; } // ---------------------------------------------------------------------------- // Loads and stores immediate values // ---------------------------------------------------------------------------- const MemoryAccessImm kMemoryAccessesImm[] = { {MachineType::Int8(), kRiscvLb, kRiscvSb, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Uint8(), kRiscvLbu, kRiscvSb, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int16(), kRiscvLh, kRiscvSh, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Uint16(), kRiscvLhu, kRiscvSh, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int32(), kRiscvLw, kRiscvSw, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float32(), kRiscvLoadFloat, kRiscvStoreFloat, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float64(), kRiscvLoadDouble, kRiscvStoreDouble, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}}; const MemoryAccessImm1 kMemoryAccessImmMoreThan16bit[] = { {MachineType::Int8(), kRiscvLb, kRiscvSb, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Uint8(), kRiscvLbu, kRiscvSb, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Int16(), kRiscvLh, kRiscvSh, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Uint16(), kRiscvLhu, kRiscvSh, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Int32(), kRiscvLw, kRiscvSw, &InstructionSelectorTest::Stream::IsInteger, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Float32(), kRiscvLoadFloat, kRiscvStoreFloat, &InstructionSelectorTest::Stream::IsDouble, {-65000, -55000, 32777, 55000, 65000}}, {MachineType::Float64(), kRiscvLoadDouble, kRiscvStoreDouble, &InstructionSelectorTest::Stream::IsDouble, {-65000, -55000, 32777, 55000, 65000}}}; #ifdef RISCV_HAS_NO_UNALIGNED struct MemoryAccessImm2 { MachineType type; ArchOpcode store_opcode; ArchOpcode store_opcode_unaligned; bool (InstructionSelectorTest::Stream::*val_predicate)( const InstructionOperand*) const; const int32_t immediates[40]; }; std::ostream& operator<<(std::ostream& os, const MemoryAccessImm2& acc) { return os << acc.type; } const MemoryAccessImm2 kMemoryAccessesImmUnaligned[] = { {MachineType::Int16(), kRiscvUsh, kRiscvSh, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int32(), kRiscvUsw, kRiscvSw, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Int64(), kRiscvUsd, kRiscvSd, &InstructionSelectorTest::Stream::IsInteger, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float32(), kRiscvUStoreFloat, kRiscvStoreFloat, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}, {MachineType::Float64(), kRiscvUStoreDouble, kRiscvStoreDouble, &InstructionSelectorTest::Stream::IsDouble, {-4095, -3340, -3231, -3224, -3088, -1758, -1203, -123, -117, -91, -89, -87, -86, -82, -44, -23, -3, 0, 7, 10, 39, 52, 69, 71, 91, 92, 107, 109, 115, 124, 286, 655, 1362, 1569, 2587, 3067, 3096, 3462, 3510, 4095}}}; #endif } // namespace using InstructionSelectorMemoryAccessTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessTest, LoadWithParameters) { const MemoryAccess memacc = GetParam(); StreamBuilder m(this, memacc.type, MachineType::Pointer(), MachineType::Int32()); m.Return(m.Load(memacc.type, m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); } TEST_P(InstructionSelectorMemoryAccessTest, StoreWithParameters) { const MemoryAccess memacc = GetParam(); StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(), MachineType::Int32(), memacc.type); m.Store(memacc.type.representation(), m.Parameter(0), m.Parameter(1), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessTest, ::testing::ValuesIn(kMemoryAccesses)); // ---------------------------------------------------------------------------- // Load immediate. // ---------------------------------------------------------------------------- using InstructionSelectorMemoryAccessImmTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessImmTest, LoadWithImmediateIndex) { const MemoryAccessImm memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, memacc.type, MachineType::Pointer()); m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(2U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(1)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(1))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_TRUE((s.*memacc.val_predicate)(s[0]->Output())); } } // ---------------------------------------------------------------------------- // Store immediate. // ---------------------------------------------------------------------------- TEST_P(InstructionSelectorMemoryAccessImmTest, StoreWithImmediateIndex) { const MemoryAccessImm memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(), memacc.type); m.Store(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Parameter(1), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(3U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(2)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(2))); EXPECT_EQ(0U, s[0]->OutputCount()); } } TEST_P(InstructionSelectorMemoryAccessImmTest, StoreZero) { const MemoryAccessImm memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer()); m.Store(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Int32Constant(0), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); ASSERT_EQ(3U, s[0]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(2)->kind()); EXPECT_EQ(index, s.ToInt32(s[0]->InputAt(2))); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[0]->InputAt(0)->kind()); EXPECT_EQ(0, s.ToInt64(s[0]->InputAt(0))); EXPECT_EQ(0U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessImmTest, ::testing::ValuesIn(kMemoryAccessesImm)); #ifdef RISCV_HAS_NO_UNALIGNED using InstructionSelectorMemoryAccessUnalignedImmTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessUnalignedImmTest, StoreZero) { const MemoryAccessImm2 memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer()); bool unaligned_store_supported = m.machine()->UnalignedStoreSupported(memacc.type.representation()); m.UnalignedStore(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Int32Constant(0)); m.Return(m.Int32Constant(0)); Stream s = m.Build(); uint32_t i = is_int12(index) ? 0 : 1; ASSERT_EQ(i + 1, s.size()); EXPECT_EQ(unaligned_store_supported ? memacc.store_opcode_unaligned : memacc.store_opcode, s[i]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[i]->addressing_mode()); ASSERT_EQ(3U, s[i]->InputCount()); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[i]->InputAt(1)->kind()); EXPECT_EQ(i == 0 ? index : 0, s.ToInt32(s[i]->InputAt(1))); ASSERT_EQ(InstructionOperand::IMMEDIATE, s[i]->InputAt(2)->kind()); EXPECT_EQ(0, s.ToInt64(s[i]->InputAt(2))); EXPECT_EQ(0U, s[i]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessUnalignedImmTest, ::testing::ValuesIn(kMemoryAccessesImmUnaligned)); #endif // ---------------------------------------------------------------------------- // Load/store offsets more than 16 bits. // ---------------------------------------------------------------------------- using InstructionSelectorMemoryAccessImmMoreThan16bitTest = InstructionSelectorTestWithParam; TEST_P(InstructionSelectorMemoryAccessImmMoreThan16bitTest, LoadWithImmediateIndex) { const MemoryAccessImm1 memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, memacc.type, MachineType::Pointer()); m.Return(m.Load(memacc.type, m.Parameter(0), m.Int32Constant(index))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.load_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); EXPECT_EQ(2U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_P(InstructionSelectorMemoryAccessImmMoreThan16bitTest, StoreWithImmediateIndex) { const MemoryAccessImm1 memacc = GetParam(); TRACED_FOREACH(int32_t, index, memacc.immediates) { StreamBuilder m(this, MachineType::Int32(), MachineType::Pointer(), memacc.type); m.Store(memacc.type.representation(), m.Parameter(0), m.Int32Constant(index), m.Parameter(1), kNoWriteBarrier); m.Return(m.Int32Constant(0)); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(memacc.store_opcode, s[0]->arch_opcode()); EXPECT_EQ(kMode_MRI, s[0]->addressing_mode()); EXPECT_EQ(3U, s[0]->InputCount()); EXPECT_EQ(0U, s[0]->OutputCount()); } } INSTANTIATE_TEST_SUITE_P(InstructionSelectorTest, InstructionSelectorMemoryAccessImmMoreThan16bitTest, ::testing::ValuesIn(kMemoryAccessImmMoreThan16bit)); // ---------------------------------------------------------------------------- // kRiscvCmp with zero testing. // ---------------------------------------------------------------------------- TEST_F(InstructionSelectorTest, Word32EqualWithZero) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Equal(m.Parameter(0), m.Int32Constant(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvCmpZero, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kFlags_set, s[0]->flags_mode()); EXPECT_EQ(kEqual, s[0]->flags_condition()); } { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32Equal(m.Int32Constant(0), m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvCmpZero, s[0]->arch_opcode()); EXPECT_EQ(kMode_None, s[0]->addressing_mode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(kFlags_set, s[0]->flags_mode()); EXPECT_EQ(kEqual, s[0]->flags_condition()); } } TEST_F(InstructionSelectorTest, Word32Clz) { StreamBuilder m(this, MachineType::Uint32(), MachineType::Uint32()); Node* const p0 = m.Parameter(0); Node* const n = m.Word32Clz(p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvClz32, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float32Abs) { StreamBuilder m(this, MachineType::Float32(), MachineType::Float32()); Node* const p0 = m.Parameter(0); Node* const n = m.Float32Abs(p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvAbsS, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float64Abs) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const n = m.Float64Abs(p0); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvAbsD, s[0]->arch_opcode()); ASSERT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToVreg(p0), s.ToVreg(s[0]->InputAt(0))); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float64Max) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const n = m.Float64Max(p0, p1); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvFloat64Max, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Float64Min) { StreamBuilder m(this, MachineType::Float64(), MachineType::Float64(), MachineType::Float64()); Node* const p0 = m.Parameter(0); Node* const p1 = m.Parameter(1); Node* const n = m.Float64Min(p0, p1); m.Return(n); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvFloat64Min, s[0]->arch_opcode()); ASSERT_EQ(2U, s[0]->InputCount()); ASSERT_EQ(1U, s[0]->OutputCount()); EXPECT_EQ(s.ToVreg(n), s.ToVreg(s[0]->Output())); } TEST_F(InstructionSelectorTest, Word32ReverseBytes) { { StreamBuilder m(this, MachineType::Int32(), MachineType::Int32()); m.Return(m.Word32ReverseBytes(m.Parameter(0))); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); // EXPECT_EQ(kRiscvByteSwap32, s[0]->arch_opcode()); EXPECT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(1U, s[0]->OutputCount()); } } TEST_F(InstructionSelectorTest, ExternalReferenceLoad1) { // Test offsets we can use kMode_Root for. const int32_t kOffsets[] = {0, 1, 4, INT32_MIN, INT32_MAX}; TRACED_FOREACH(int64_t, offset, kOffsets) { StreamBuilder m(this, MachineType::Int32()); ExternalReference reference = base::bit_cast( (int32_t)(isolate()->isolate_root() + offset)); Node* const value = m.Load(MachineType::Int32(), m.ExternalConstant(reference)); m.Return(value); Stream s = m.Build(); ASSERT_EQ(1U, s.size()); EXPECT_EQ(kRiscvLw, s[0]->arch_opcode()); EXPECT_EQ(kMode_Root, s[0]->addressing_mode()); EXPECT_EQ(1U, s[0]->InputCount()); EXPECT_EQ(s.ToInt64(s[0]->InputAt(0)), offset); EXPECT_EQ(1U, s[0]->OutputCount()); } } } // namespace compiler } // namespace internal } // namespace v8