// Copyright 2006-2008 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/base/numbers/double.h" #include #include "src/base/numbers/diy-fp.h" #include "src/common/globals.h" #include "testing/gtest/include/gtest/gtest.h" namespace v8 { using DoubleTest = ::testing::Test; namespace base { TEST_F(DoubleTest, Uint64Conversions) { // Start by checking the byte-order. uint64_t ordered = 0x0123'4567'89AB'CDEF; CHECK_EQ(3512700564088504e-318, Double(ordered).value()); uint64_t min_double64 = 0x0000'0000'0000'0001; CHECK_EQ(5e-324, Double(min_double64).value()); uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; CHECK_EQ(1.7976931348623157e308, Double(max_double64).value()); } TEST_F(DoubleTest, AsDiyFp) { uint64_t ordered = 0x0123'4567'89AB'CDEF; DiyFp diy_fp = Double(ordered).AsDiyFp(); CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e()); // The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64. CHECK(0x0013'4567'89AB'CDEF == diy_fp.f()); // NOLINT uint64_t min_double64 = 0x0000'0000'0000'0001; diy_fp = Double(min_double64).AsDiyFp(); CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e()); // This is a denormal; so no hidden bit. CHECK_EQ(1, diy_fp.f()); uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; diy_fp = Double(max_double64).AsDiyFp(); CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e()); CHECK(0x001F'FFFF'FFFF'FFFF == diy_fp.f()); // NOLINT } TEST_F(DoubleTest, AsNormalizedDiyFp) { uint64_t ordered = 0x0123'4567'89AB'CDEF; DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp(); CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e()); CHECK((uint64_t{0x0013'4567'89AB'CDEF} << 11) == diy_fp.f()); // NOLINT uint64_t min_double64 = 0x0000'0000'0000'0001; diy_fp = Double(min_double64).AsNormalizedDiyFp(); CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e()); // This is a denormal; so no hidden bit. CHECK(0x8000'0000'0000'0000 == diy_fp.f()); // NOLINT uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; diy_fp = Double(max_double64).AsNormalizedDiyFp(); CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e()); CHECK((uint64_t{0x001F'FFFF'FFFF'FFFF} << 11) == diy_fp.f()); } TEST_F(DoubleTest, IsDenormal) { uint64_t min_double64 = 0x0000'0000'0000'0001; CHECK(Double(min_double64).IsDenormal()); uint64_t bits = 0x000F'FFFF'FFFF'FFFF; CHECK(Double(bits).IsDenormal()); bits = 0x0010'0000'0000'0000; CHECK(!Double(bits).IsDenormal()); } TEST_F(DoubleTest, IsSpecial) { CHECK(Double(V8_INFINITY).IsSpecial()); CHECK(Double(-V8_INFINITY).IsSpecial()); CHECK(Double(std::numeric_limits::quiet_NaN()).IsSpecial()); uint64_t bits = 0xFFF1'2345'0000'0000; CHECK(Double(bits).IsSpecial()); // Denormals are not special: CHECK(!Double(5e-324).IsSpecial()); CHECK(!Double(-5e-324).IsSpecial()); // And some random numbers: CHECK(!Double(0.0).IsSpecial()); CHECK(!Double(-0.0).IsSpecial()); CHECK(!Double(1.0).IsSpecial()); CHECK(!Double(-1.0).IsSpecial()); CHECK(!Double(1000000.0).IsSpecial()); CHECK(!Double(-1000000.0).IsSpecial()); CHECK(!Double(1e23).IsSpecial()); CHECK(!Double(-1e23).IsSpecial()); CHECK(!Double(1.7976931348623157e308).IsSpecial()); CHECK(!Double(-1.7976931348623157e308).IsSpecial()); } TEST_F(DoubleTest, IsInfinite) { CHECK(Double(V8_INFINITY).IsInfinite()); CHECK(Double(-V8_INFINITY).IsInfinite()); CHECK(!Double(std::numeric_limits::quiet_NaN()).IsInfinite()); CHECK(!Double(0.0).IsInfinite()); CHECK(!Double(-0.0).IsInfinite()); CHECK(!Double(1.0).IsInfinite()); CHECK(!Double(-1.0).IsInfinite()); uint64_t min_double64 = 0x0000'0000'0000'0001; CHECK(!Double(min_double64).IsInfinite()); } TEST_F(DoubleTest, Sign) { CHECK_EQ(1, Double(1.0).Sign()); CHECK_EQ(1, Double(V8_INFINITY).Sign()); CHECK_EQ(-1, Double(-V8_INFINITY).Sign()); CHECK_EQ(1, Double(0.0).Sign()); CHECK_EQ(-1, Double(-0.0).Sign()); uint64_t min_double64 = 0x0000'0000'0000'0001; CHECK_EQ(1, Double(min_double64).Sign()); } TEST_F(DoubleTest, NormalizedBoundaries) { DiyFp boundary_plus; DiyFp boundary_minus; DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp(); Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus); CHECK_EQ(diy_fp.e(), boundary_minus.e()); CHECK_EQ(diy_fp.e(), boundary_plus.e()); // 1.5 does not have a significand of the form 2^p (for some p). // Therefore its boundaries are at the same distance. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); diy_fp = Double(1.0).AsNormalizedDiyFp(); Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus); CHECK_EQ(diy_fp.e(), boundary_minus.e()); CHECK_EQ(diy_fp.e(), boundary_plus.e()); // 1.0 does have a significand of the form 2^p (for some p). // Therefore its lower boundary is twice as close as the upper boundary. CHECK_GT(boundary_plus.f() - diy_fp.f(), diy_fp.f() - boundary_minus.f()); CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); uint64_t min_double64 = 0x0000'0000'0000'0001; diy_fp = Double(min_double64).AsNormalizedDiyFp(); Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); CHECK_EQ(diy_fp.e(), boundary_minus.e()); CHECK_EQ(diy_fp.e(), boundary_plus.e()); // min-value does not have a significand of the form 2^p (for some p). // Therefore its boundaries are at the same distance. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); // Denormals have their boundaries much closer. CHECK((static_cast(1) << 62) == diy_fp.f() - boundary_minus.f()); uint64_t smallest_normal64 = 0x0010'0000'0000'0000; diy_fp = Double(smallest_normal64).AsNormalizedDiyFp(); Double(smallest_normal64) .NormalizedBoundaries(&boundary_minus, &boundary_plus); CHECK_EQ(diy_fp.e(), boundary_minus.e()); CHECK_EQ(diy_fp.e(), boundary_plus.e()); // Even though the significand is of the form 2^p (for some p), its boundaries // are at the same distance. (This is the only exception). CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); uint64_t largest_denormal64 = 0x000F'FFFF'FFFF'FFFF; diy_fp = Double(largest_denormal64).AsNormalizedDiyFp(); Double(largest_denormal64) .NormalizedBoundaries(&boundary_minus, &boundary_plus); CHECK_EQ(diy_fp.e(), boundary_minus.e()); CHECK_EQ(diy_fp.e(), boundary_plus.e()); CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); uint64_t max_double64 = 0x7FEF'FFFF'FFFF'FFFF; diy_fp = Double(max_double64).AsNormalizedDiyFp(); Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus); CHECK_EQ(diy_fp.e(), boundary_minus.e()); CHECK_EQ(diy_fp.e(), boundary_plus.e()); // max-value does not have a significand of the form 2^p (for some p). // Therefore its boundaries are at the same distance. CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f()); CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); } TEST_F(DoubleTest, NextDouble) { CHECK_EQ(4e-324, Double(0.0).NextDouble()); CHECK_EQ(0.0, Double(-0.0).NextDouble()); CHECK_EQ(-0.0, Double(-4e-324).NextDouble()); Double d0(-4e-324); Double d1(d0.NextDouble()); Double d2(d1.NextDouble()); CHECK_EQ(-0.0, d1.value()); CHECK_EQ(0.0, d2.value()); CHECK_EQ(4e-324, d2.NextDouble()); CHECK_EQ(-1.7976931348623157e308, Double(-V8_INFINITY).NextDouble()); CHECK_EQ(V8_INFINITY, Double(uint64_t{0x7FEF'FFFF'FFFF'FFFF}).NextDouble()); } } // namespace base } // namespace v8