// Copyright 2014 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "src/base/atomicops.h" #include "testing/gtest/include/gtest/gtest.h" namespace v8 { namespace base { #define CHECK_EQU(v1, v2) \ CHECK_EQ(static_cast(v1), static_cast(v2)) #define NUM_BITS(T) (sizeof(T) * 8) template static void TestAtomicIncrement() { // For now, we just test the single-threaded execution. // Use a guard value to make sure that Relaxed_AtomicIncrement doesn't // go outside the expected address bounds. This is to test that the // 32-bit Relaxed_AtomicIncrement doesn't do the wrong thing on 64-bit // machines. struct { AtomicType prev_word; AtomicType count; AtomicType next_word; } s; AtomicType prev_word_value, next_word_value; memset(&prev_word_value, 0xFF, sizeof(AtomicType)); memset(&next_word_value, 0xEE, sizeof(AtomicType)); s.prev_word = prev_word_value; s.count = 0; s.next_word = next_word_value; CHECK_EQU(Relaxed_AtomicIncrement(&s.count, 1), 1); CHECK_EQU(s.count, 1); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, 2), 3); CHECK_EQU(s.count, 3); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, 3), 6); CHECK_EQU(s.count, 6); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, -3), 3); CHECK_EQU(s.count, 3); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, -2), 1); CHECK_EQU(s.count, 1); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, -1), 0); CHECK_EQU(s.count, 0); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, -1), -1); CHECK_EQU(s.count, -1); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, -4), -5); CHECK_EQU(s.count, -5); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); CHECK_EQU(Relaxed_AtomicIncrement(&s.count, 5), 0); CHECK_EQU(s.count, 0); CHECK_EQU(s.prev_word, prev_word_value); CHECK_EQU(s.next_word, next_word_value); } template static void TestCompareAndSwap() { AtomicType value = 0; AtomicType prev = Relaxed_CompareAndSwap(&value, 0, 1); CHECK_EQU(1, value); CHECK_EQU(0, prev); // Use a test value that has non-zero bits in both halves, for testing // the 64-bit implementation on 32-bit platforms. const AtomicType k_test_val = (static_cast(1) << (NUM_BITS(AtomicType) - 2)) + 11; value = k_test_val; prev = Relaxed_CompareAndSwap(&value, 0, 5); CHECK_EQU(k_test_val, value); CHECK_EQU(k_test_val, prev); value = k_test_val; prev = Relaxed_CompareAndSwap(&value, k_test_val, 5); CHECK_EQU(5, value); CHECK_EQU(k_test_val, prev); } template static void TestAtomicExchange() { AtomicType value = 0; AtomicType new_value = Relaxed_AtomicExchange(&value, 1); CHECK_EQU(1, value); CHECK_EQU(0, new_value); // Use a test value that has non-zero bits in both halves, for testing // the 64-bit implementation on 32-bit platforms. const AtomicType k_test_val = (static_cast(1) << (NUM_BITS(AtomicType) - 2)) + 11; value = k_test_val; new_value = Relaxed_AtomicExchange(&value, k_test_val); CHECK_EQU(k_test_val, value); CHECK_EQU(k_test_val, new_value); value = k_test_val; new_value = Relaxed_AtomicExchange(&value, 5); CHECK_EQU(5, value); CHECK_EQU(k_test_val, new_value); } template static void TestAtomicIncrementBounds() { // Test at 32-bit boundary for 64-bit atomic type. AtomicType test_val = static_cast(1) << (NUM_BITS(AtomicType) / 2); AtomicType value = test_val - 1; AtomicType new_value = Relaxed_AtomicIncrement(&value, 1); CHECK_EQU(test_val, value); CHECK_EQU(value, new_value); Relaxed_AtomicIncrement(&value, -1); CHECK_EQU(test_val - 1, value); } // Return an AtomicType with the value 0xA5A5A5.. template static AtomicType TestFillValue() { AtomicType val = 0; memset(&val, 0xA5, sizeof(AtomicType)); return val; } // This is a simple sanity check to ensure that values are correct. // Not testing atomicity. template static void TestStore() { const AtomicType kVal1 = TestFillValue(); const AtomicType kVal2 = static_cast(-1); AtomicType value; Relaxed_Store(&value, kVal1); CHECK_EQU(kVal1, value); Relaxed_Store(&value, kVal2); CHECK_EQU(kVal2, value); Release_Store(&value, kVal1); CHECK_EQU(kVal1, value); Release_Store(&value, kVal2); CHECK_EQU(kVal2, value); } // Merge this test with TestStore as soon as we have Atomic8 acquire // and release stores. static void TestStoreAtomic8() { const Atomic8 kVal1 = TestFillValue(); const Atomic8 kVal2 = static_cast(-1); Atomic8 value; Relaxed_Store(&value, kVal1); CHECK_EQU(kVal1, value); Relaxed_Store(&value, kVal2); CHECK_EQU(kVal2, value); } // This is a simple sanity check to ensure that values are correct. // Not testing atomicity. template static void TestLoad() { const AtomicType kVal1 = TestFillValue(); const AtomicType kVal2 = static_cast(-1); AtomicType value; value = kVal1; CHECK_EQU(kVal1, Relaxed_Load(&value)); value = kVal2; CHECK_EQU(kVal2, Relaxed_Load(&value)); value = kVal1; CHECK_EQU(kVal1, Acquire_Load(&value)); value = kVal2; CHECK_EQU(kVal2, Acquire_Load(&value)); } // Merge this test with TestLoad as soon as we have Atomic8 acquire // and release loads. static void TestLoadAtomic8() { const Atomic8 kVal1 = TestFillValue(); const Atomic8 kVal2 = static_cast(-1); Atomic8 value; value = kVal1; CHECK_EQU(kVal1, Relaxed_Load(&value)); value = kVal2; CHECK_EQU(kVal2, Relaxed_Load(&value)); } TEST(Atomicops, AtomicIncrement) { TestAtomicIncrement(); TestAtomicIncrement(); } TEST(Atomicops, CompareAndSwap) { TestCompareAndSwap(); TestCompareAndSwap(); } TEST(Atomicops, AtomicExchange) { TestAtomicExchange(); TestAtomicExchange(); } TEST(Atomicops, AtomicIncrementBounds) { TestAtomicIncrementBounds(); TestAtomicIncrementBounds(); } TEST(Atomicops, Store) { TestStoreAtomic8(); TestStore(); TestStore(); } TEST(Atomicops, Load) { TestLoadAtomic8(); TestLoad(); TestLoad(); } TEST(Atomicops, Relaxed_Memmove) { constexpr size_t kLen = 6; Atomic8 arr[kLen]; { for (size_t i = 0; i < kLen; ++i) arr[i] = i; Relaxed_Memmove(arr + 2, arr + 3, 2); uint8_t expected[]{0, 1, 3, 4, 4, 5}; for (size_t i = 0; i < kLen; ++i) CHECK_EQ(arr[i], expected[i]); } { for (size_t i = 0; i < kLen; ++i) arr[i] = i; Relaxed_Memmove(arr + 3, arr + 2, 2); uint8_t expected[]{0, 1, 2, 2, 3, 5}; for (size_t i = 0; i < kLen; ++i) CHECK_EQ(arr[i], expected[i]); } } TEST(Atomicops, Relaxed_Memcmp) { constexpr size_t kLen = 50; Atomic8 arr1[kLen]; Atomic8 arr1_same[kLen]; Atomic8 arr2[kLen]; for (size_t i = 0; i < kLen; ++i) { arr1[i] = arr1_same[i] = i; arr2[i] = i + 1; } for (size_t offset = 0; offset < kLen; offset++) { const Atomic8* arr1p = arr1 + offset; const Atomic8* arr1_samep = arr1_same + offset; const Atomic8* arr2p = arr2 + offset; const size_t len = kLen - offset; CHECK_EQ(0, Relaxed_Memcmp(arr1p, arr1p, len)); CHECK_EQ(0, Relaxed_Memcmp(arr1p, arr1_samep, len)); CHECK_LT(Relaxed_Memcmp(arr1p, arr2p, len), 0); CHECK_GT(Relaxed_Memcmp(arr2p, arr1p, len), 0); } } } // namespace base } // namespace v8