[![Build Status](https://api.travis-ci.com/michelp/pgsodium.svg?branch=master)](https://travis-ci.com/github/michelp/pgsodium)
# pgsodium pgsodium is a [PostgreSQL](https://www.postgresql.org/) extension that exposes modern [libsodium](https://download.libsodium.org/doc/) based cryptography functions to SQL. ## Installation [Travis CI](https://travis-ci.com/github/michelp/pgsodium) tested with the [official docker images](https://hub.docker.com/_/postgres) for PostgreSQL 13, 12, 11, and 10. Requires libsodium >= 1.0.18. In addition to the libsodium library and it's development headers, you may also need the PostgreSQL header files typically in the '-dev' packages to build the extension. Clone the repo and run 'sudo make install'. pgTAP tests can be run with 'sudo -u postgres pg_prove test.sql' or they can be run in a self-contained Docker image. Run `./test.sh` if you have docker installed to run all tests. Note that this will run the tests against and download docker images for four different major versions of PostgreSQL, so it takes a while and requires a lot of network bandwidth the first time you run it. # Usage pgsodium arguments and return values for content and keys are of type `bytea`. If you wish to use `text` or `varchar` values for general content, you must make sure they are encoded correctly. The [`encode() and decode()` and `convert_to()/convert_from()`](https://www.postgresql.org/docs/12/functions-binarystring.html) binary string functions can convert from `text` to `bytea`.Simple ascii `text` strings without escape or unicode characters will be cast by the database implicitly, and this is how it is done in the tests to save time, but you should really be explicitly converting your `text` content if you wish to use pgsodium without conversion errors. Most of the libsodium API is available as SQL functions. Keys that are generated in pairs are returned as a record type, for example: ``` postgres=# SELECT * FROM crypto_box_new_keypair(); public | secret --------------------------------------------------------------------+-------------------------------------------------------------------- \xa55f5d40b814ae4a5c7e170cd6dc0493305e3872290741d3be24a1b2f508ab31 | \x4a0d2036e4829b2da172fea575a568a74a9740e86a7fc4195fe34c6dcac99976 (1 row) ``` pgsodium is careful to use memory cleanup callbacks to zero out all allocated memory used by the when freed. In general it is a bad idea to store secrets in the database itself, although this can be done carefully it has a higher risk. To help with this problem, pgsodium has an optional Server Key Management function that can load a server key at boot. # Server Key Management If you add pgsodium to your [`shared_preload_libraries`](https://www.postgresql.org/docs/12/runtime-config-client.html#RUNTIME-CONFIG-CLIENT-PRELOAD) configuration and place a special script in your postgres shared extension directory, the server can preload a libsodium key on server start. This is completely optional, pgsodium can still be used without putting it in `shared_preload_libraries`, you will simply need to provide your own key management. Skip ahead to the API usage section if you choose not to use server managed keys. See the file [`pgsodium_getkey.sample`](./pgsodium_getkey.sample) for an example script that returns a libsodium key. The script must emit a hex encoded 32 byte (64 character) string on a single line. DO NOT USE THIS FILE WITHOUT SUBSTITUTING YOUR OWN KEY. Edit the file to add your own key and remove the `exit` line, remove the `.sample` suffix and make the file executable (on unixen `chmod +x pgsodium_getkey`). Next place `pgsodium` in your `shared_preload_libraries`. For docker containers, you can append this after the run: docker run -e POSTGRES_HOST_AUTH_METHOD=trust -d --name "$DB_HOST" $TAG -c 'shared_preload_libraries=pgsodium' When the server starts, it will load the secret key into memory. postgres=# show pgsodium.secret_key ; pgsodium.secret_key ------------------------------------------------------------------ **************************************************************** postgres=# select current_setting('pgsodium.secret_key'); current_setting ------------------------------------------------------------------ **************************************************************** **The secret key cannot be accessed from SQL**. The only way to use the server secret key is to *derive* other keys from it shown in the next section. It is up to you to edit the script to get or generate the key however you want. Common patterns including prompting for the key on boot, fetching it from an ssh server or managed cloud secret system, or using a command line tool to get it from a hardware security module. # Server Key Derivation New keys are derived from the master server secret key by id and an optional context using the [libsodium Key Derivation Functions](https://doc.libsodium.org/key_derivation). Key id are just `bigint` integers. If you know the key id, key length (default 32 bytes) and the context (default 'pgsodium'), you can deterministicly generate a derived key. Derived keys can be used to encrypt data or as a seed for deterministicly generating keypairs using `crypto_sign_seed_keypair()` or `crypto_box_seed_keypair()`. It is wise not to store these secrets but only store or infer the key id, length and context. If an attacker steals your database image, they cannot generate the key even if they know the key id, length and context because they will not have the server secret key. The key id, key length and context can be secret or not, if you store them then possibly logged in database users can generate the key if they have permission to call the `pgsodium_derive()` function. Keeping the key id and/or length context secret to a client avoid this possibility and make sure to set your [database security model](https://www.postgresql.org/docs/12/sql-grant.html) correctly so that only the minimum permission possible is given to users that interact with the encryption API. Key rotation is up to you, whatever strategy you want to go from one key to the next. A simple strategy is incrementing the key id and re-encrypting from N to N+1. Newer keys will have increasing ids, you can always tell the order in which keys are superceded. A derivation context is an 8 byte `bytea`. The same key id in different contexts generate different keys. The default context is the ascii encoded bytes `pgsodium`. You are free to use any 8 byte context to scope your keys, but remember it must be a valid 8 byte `bytea` which automatically cast correctly for simple ascii string. For encoding other characters, see the [`encode() and decode()` and `convert_to()/convert_from()`](https://www.postgresql.org/docs/12/functions-binarystring.html) binary string functions. The derivable keyspace is huge given one `bigint` keyspace per context and 2^64 contexts. To derive a key: # select pgsodium_derive(1); pgsodium_derive -------------------------------------------------------------------- \x84fa0487750d27386ad6235fc0c4bf3a9aa2c3ccb0e32b405b66e69d5021247b # select pgsodium_derive(1, 64); pgsodium_derive ------------------------------------------------------------------------------------------------------------------------------------ \xc58cbe0522ac4875707722251e53c0f0cfd8e8b76b133f399e2c64c9999f01cb1216d2ccfe9448ed8c225c8ba5db9b093ff5c1beb2d1fd612a38f40e362073fb # select pgsodium_derive(1, 32, '__auth__'); pgsodium_derive -------------------------------------------------------------------- \xa9aadb2331324f399fb58576c69f51727901c651c970f3ef6cff47066ea92e95 The default keysize is `32` and the default context is `'pgsodium'`. Derived keys can be used either directy in `crypto_secretbox_*` functions for "symmetric" encryption or as seeds for generating other keypairs using for example `crypto_box_seed_new_keypair()` and `crypto_sign_seed_new_keypair()`. # select * from crypto_box_seed_new_keypair(pgsodium_derive(1)); public | secret --------------------------------------------------------------------+-------------------------------------------------------------------- \x01d0e0ec4b1fa9cc8dede88e0b43083f7e9cd33be4f91f0b25aa54d70f562278 | \x066ec431741a9d39f38c909de4a143ed39b09834ca37b6dd2ba3d015206f14ca # Simple public key encryption with `crypto_box()` Here's an example usage from the test.sql that uses command-line [`psql`](https://www.postgresql.org/docs/12/app-psql.html) client commands (which begin with a backslash) to create keypairs and encrypt a message from Alice to Bob. -- Generate public and secret keypairs for bob and alice -- \gset [prefix] is a psql command that will create local -- script variables SELECT public, secret FROM crypto_box_new_keypair() \gset bob_ SELECT public, secret FROM crypto_box_new_keypair() \gset alice_ -- Create a boxnonce SELECT crypto_box_noncegen() boxnonce \gset -- Alice encrypts the box for bob using her secret key, the nonce and his public key SELECT crypto_box('bob is your uncle', :'boxnonce', :'bob_public', :'alice_secret') box \gset -- Bob decrypts the box using his secret key, the nonce, and Alice's public key SELECT crypto_box_open(:'box', :'boxnonce', :'alice_public', :'bob_secret'); Note in the above example, no secrets are *stored* in the db, but they are *interpolated* into the sql that is sent to the server, so it's possible they can show up in the database logs. # Avoid secret logging A more paranoid approach is to keep keys in an external storage and disables logging while injecting the keys into local variables with [`SET LOCAL`](https://www.postgresql.org/docs/12/sql-set.html). If the images of database are hacked or stolen, the keys will not be available to the attacker. To disable logging of the key injections, `SET LOCAL` is also used to disable [`log_statements`](https://www.postgresql.org/docs/12/runtime-config-logging.html#RUNTIME-CONFIG-LOGGING-WHAT) and then re-enable normal logging afterwards. as shown below. Setting `log_statement` requires superuser privledges: -- SET LOCAL must be done in a transaction block BEGIN; -- Generate a boxnonce, and public and secret keypairs for bob and alice -- This creates secrets that are sent back to the client but not stored -- or logged. Make sure you're using an encrypted database connection! SELECT crypto_box_noncegen() boxnonce \gset SELECT public, secret FROM crypto_box_new_keypair() \gset bob_ SELECT public, secret FROM crypto_box_new_keypair() \gset alice_ -- Turn off logging and inject secrets -- into session with set local, then resume logging. SET LOCAL log_statement = 'none'; SET LOCAL app.bob_secret = :'bob_secret'; SET LOCAL app.alice_secret = :'alice_secret'; RESET log_statement; -- Now call the `current_setting()` function to get the secrets, these are not -- stored in the db but only in session memory, when the session is closed they are no longer -- accessible. -- Alice encrypts the box for bob using her secret key and his public key SELECT crypto_box('bob is your uncle', :'boxnonce', :'bob_public', current_setting('app.alice_secret')::bytea) box \gset -- Bob decrypts the box using his secret key and Alice's public key. SELECT crypto_box_open(:'box', :'boxnonce', :'alice_public', current_setting('app.bob_secret')::bytea); COMMIT; For more paranoia you can use a function to check that the connection being used is secure or a unix domain socket. CREATE FUNCTION is_ssl_or_domain_socket() RETURNS bool LANGUAGE plpgsql AS $$ DECLARE addr text; ssl text; BEGIN SELECT inet_client_addr() INTO addr; SELECT current_setting('ssl', true) INTO ssl; IF NOT FOUND OR ((ssl IS NULL OR ssl != 'on') AND (addr IS NOT NULL OR length(addr) != 0)) THEN RETURN false; END IF; RETURN true; END; $$; This doesn't guarantee the secret won't leak out in some way of course, but it can useful if you never store secrets and send them only through secure channels back to the client, for example using the `psql` client `\gset` command shown above, or by only storing a derived key id and context. # API Reference The reference below is adapted from and uses some of the same language found at the [libsodium C API Documentation](https://doc.libsodium.org/). Refer to those documents for details on algorithms and other libsodium specific details. The libsodium documentation is Copyright (c) 2014-2018, Frank Denis and released under [The ISC License](https://github.com/jedisct1/libsodium-doc/blob/master/LICENSE). ## Generating Random Data Functions: ``` randombytes_random() -> integer randombytes_uniform(upper_bound integer) -> integer randombytes_buf(size integer) -> bytea ``` The library provides a set of functions to generate unpredictable data, suitable for creating secret keys. postgres=# select randombytes_random(); randombytes_random -------------------- 1229887405 (1 row) The `randombytes_random()` function returns an unpredictable value between 0 and 0xffffffff (included). postgres=# select randombytes_uniform(42); randombytes_uniform --------------------- 23 (1 row) The `randombytes_uniform()` function returns an unpredictable value between `0` and `upper_bound` (excluded). Unlike `randombytes_random() % upper_bound`, it guarantees a uniform distribution of the possible output values even when `upper_bound` is not a power of 2. Note that an `upper_bound < 2` leaves only a single element to be chosen, namely 0. postgres=# select randombytes_buf(42); randombytes_buf ---------------------------------------------------------------------------------------- \x27cec8d2c3de16317074b57acba2109e43b5623e1fb7cae12e8806daa21a72f058430f22ec993986fcb2 (1 row) The `randombytes_buf()` function returns a `bytea` with an unpredictable sequence of bytes. postgres=# select randombytes_new_seed() bufseed \gset postgres=# select randombytes_buf_deterministic(42, :'bufseed'); randombytes_buf_deterministic ---------------------------------------------------------------------------------------- \xa183e8d4acd68119ab2cacd9e46317ec3a00a6a8820b00339072f7c24554d496086209d7911c3744b110 (1 row) The `randombytes_buf_deterministic()` returns a `size` bytea containing bytes indistinguishable from random bytes without knowing the seed. For a given seed, this function will always output the same sequence. size can be up to 2^38 (256 GB). [C API Documentation](https://doc.libsodium.org/generating_random_data) ## Secret key cryptography [C API Documentation](https://doc.libsodium.org/secret-key_cryptography) ### Authenticated encryption Functions: ``` crypto_secretbox_keygen() -> bytea crypto_secretbox_noncegen() -> bytea crypto_secretbox(message bytea, nonce bytea, key bytea) -> bytea crypto_secretbox_open(ciphertext bytea, nonce bytea, key bytea) -> bytea ``` `crypto_secretbox_keygen()` generates a random secret key which can be used to encrypt and decrypt messages. `crypto_secretbox_noncegen()` generates a random nonce which will be used when encrypting messages. For security, each nonce must be used only once, though it is not a secret. The purpose of the nonce is to add randomness to the message so that the same message encrypted multiple times with the same key will produce different ciphertexts. `crypto_secretbox()` encrypts a message using a previously generated nonce and secret key. The encrypted message can be decrypted using `crypto_secretbox_open()` Note that in order to decrypt the message, the original nonce will be needed. `crypto_secretbox_open()` decrypts a message encrypted by `crypto_secretbox()`. [C API Documentation](https://doc.libsodium.org/secret-key_cryptography/secretbox) ### Authentication Functions: ``` crypto_auth_keygen() -> bytea crypto_auth(message bytea, key bytea) -> bytea crypto_auth_verify(mac bytea, message bytea, key bytea) -> boolean ``` `crypto_auth_keygen()` generates a message-signing key for use by `crypto_auth()`. `crypto_auth()` generates an authentication tag (mac) for a combination of message and secret key. This does not encrypt the message; it simply provides a means to prove that the message has not been tampered with. To verify a message tagged in this way, use `crypto_auth_verify()`. This function is deterministic: for a given message and key, the generated mac will always be the same. Note that this requires access to the secret key, which is not something that should normally be shared. If many users need to verify message it is usually better to use [Public Key Signatures](#user-content-public-key-signatures) rather than sharing secret keys. `crypto_auth_verify()` verifies that the given mac (authentication tag) matches the supplied message and key. This tells us that the original message has not been tampered with. [C API Documentation](https://doc.libsodium.org/secret-key_cryptography/secret-key_authentication) ## Public key cryptography [C API Documentation](https://doc.libsodium.org/public-key_cryptography) ### Authenticated encryption Functions: ``` crypto_box_new_keypair() -> crypto_box_keypair crypto_box_noncegen() -> bytea crypto_box(message bytea, nonce bytea, public bytea, secret bytea) -> bytea crypto_box_open(ciphertext bytea, nonce bytea, public bytea, secret bytea) -> bytea ``` `crypto_box_new_keypair()` returns a new, randomly generated, pair of keys for public key encryption. The public key can be shared with anyone. The secret key must never be shared. `crypto_box_noncegen()` generates a random nonce which will be used when encrypting messages. For security, each nonce must be used only once, though it is not a secret. The purpose of the nonce is to add randomness to the message so that the same message encrypted multiple times with the same key will produce different ciphertexts. `crypto_box()` encrypts a message using a nonce, the intended recipient's public key and the sender's secret key. The resulting ciphertext can only be decrypted by the intended recipient using their secret key. The nonce must be sent along with the ciphertext. `crypto_box_open()` descrypts a ciphertext encrypted using `crypto_box()`. It takes the ciphertext, nonce, the sender's public key and the recipeient's secret key as parameters, and returns the original message. Note that the recipient should ensure that the public key belongs to the sender. [C API Documentation](https://doc.libsodium.org/public-key_cryptography/authenticated_encryption) ### Public key signatures Functions: ``` crypto_sign_new_keypair() -> crypto_sign_keypair combined mode functions: crypto_sign(message bytea, key bytea) -> bytea crypto_sign_open(signed_message bytea, key bytea) -> bytea detached mode functions: crypto_sign_detached(message bytea, key bytea) -> bytea crypto_sign_verify_detached(sig bytea, message bytea, key bytea) -> boolean multi-part message functions: crypto_sign_init() -> bytea crypto_sign_update(state bytea, message bytea) -> bytea crypto_sign_final_create(state bytea, key bytea) -> bytea crypto_sign_final_verify(state bytea, signature bytea, key bytea) -> boolean ``` Aggregates: ``` crypto_sign_update_agg(message bytea) -> bytea crypto_sign_update_agg(state, bytea message bytea) -> bytea ``` These functions are used to authenticate that messages have have come from a specific originator (the holder of the secret key for which you have the public key), and have not been tampered with. `crypto_sign_new_keypair()` returns a new, randomly generated, pair of keys for public key signatures. The public key can be shared with anyone. The secret key must never be shared. `crypto_sign()` and `crypto_sign_verify()` operate in combined mode. In this mode the message that is being signed is combined with its signature as a single unit. `crypto_sign()` creates a signature, using the signer's secret key, which it prepends to the message. The result can be authenticated using `crypto_sign_open()`. `crypto_sign_open()` takes a signed message created by `crypto_sign()`, checks its validity using the sender's public key and returns the original message if it is valid, otherwise raises a data exception. `crypto_sign_detached()` and `crypto_sign_verify_detached()` operate in detached mode. In this mode the message is kept independent from its signature. This can be useful when wishing to sign objects that have already been stored, or where multiple signatures are desired for an object. `crypto_sign_detached()` generates a signature for message using the signer's secret key. The result is a signature which exists independently of the message, which can be verified using `crypto_sign_verify_detached()`. `crypto_sign_verify_detached()` is used to verify a signature generated by `crypto_sign_detached()`. It takes the generated signature, the original message, and the signer's public key and returns true if the signature matches the message and key, and false otherwise. `crypto_sign_init()`, `crypto_sign_update()`, `crypto_sign_final_create()`, `crypto_sign_final_verify()`, and the aggregates `crypto_sign_update_agg()` handle signatures for multi-part messages. To create or verify a signature for a multi-part message `crypto_sign_init()` is used to start the process, and then each message-part is passed to `crypto_sign_update()` or `crypto_sign_update_agg()`. Finally the signature is generated using `crypto_sign_final_update()` or verfified using `crypto_sign_final_verify()`. `crypto_sign_init()` creates an initial state value which will be passed to `crypto_sign_update()` or `crypto_sign_update_agg()`. `crypto_sign_update()` or `crypto_sign_update_agg()` will be used to update the state for each part of the multi-part message. `crypto_sign_update()` takes as a parameter the state returned from `crypto_sign_init()` or the preceding call to `crypto_sign_update()` or `crypto_sign_update_agg()`. `crypto_sign_update_agg()` has two variants: one takes a previous state value, allowing multiple aggregates to be processed sequentially, and one takes no state parameter, initiialising the state itself. Note that the order in which the parts of a multi-part message are processed is critical. They must be processed in the same order for signing and verifying. `crypto_sign_final_update()` takes the state returned from the last call to `crypto_sign_update()` or `crypto_sign_update_agg()` and the signer's secret key and produces the final signature. This can be checked using `crypto_sign_final_verify()`. `crypto_sign_final_verify()` is used to verify a multi-part message signature created by `crypto_sign_final_update()`. It must be preceded by the same set of calls to `crypto_sign_update()` or `crypto_sign_update_agg()` (with the same message-parts, in the same order) that were used to create the signature. It takes the state returned from the last such call, along with the signature and the signer's public key and returns true if the messages, key and signature all match. To sign or verify multi-part messages in SQL, CTE (Common Table Expression) queries are particularly effective. For example to sign a message consisting of a timestamp and several message_parts: ```.sql with init as ( select crypto_sign_init() as state ), timestamp_part as ( select crypto_sign_update(i.state, m.timestamp::bytea) as state from init i cross join messages m where m.message_id = 42 ), remaining_parts as ( select crypto_sign_update(t.state, p.message_part::bytea) as state from timestamp_part t cross join ( select message_part from message_parts where message_id = 42 order by message_part_num) p ) select crypto_sign_final_create(r.state, k.secret_key) as sig from remaining_parts r cross join keys k where k.key_name = 'xyzzy'; ``` Note that storing secret keys in a table, as is done in the example above, is a bad practice unless you have effective row-level security in place. [C API Documentation](https://doc.libsodium.org/public-key_cryptography/public-key_signatures) ### Sealed boxes [See libsodium docs](https://doc.libsodium.org/public-key_cryptography/sealed_boxes) ## Hashing [See libsodium docs](https://doc.libsodium.org/hashing) ## Password hashing [See libsodium docs](https://doc.libsodium.org/password_hashing) ## Key Derivation [See libsodium docs](https://doc.libsodium.org/key_derivation) ## Key Exchange [See libsodium docs](https://doc.libsodium.org/key_exchange) ## HMAC512 [See libsodium docs](https://doc.libsodium.org/advanced/hmac-sha2)