
openBarter

 openBarter

“the greatest wealth for the lowest collective effort”

Abstract

openBarter is a server based on the database postgreSql implementing a barter engine that
produces movements from barter orders submitted.

Authors

Olivier Chaussavoine, Project leader of openBarter

olivier.chaussavoine@gmail.com

page 1/9

openBarter

1 Introduction
Use of money is widespread due to low liquidity of barter. This low liquidity can be explained

by the fact it is unlikely that someone finds someone else that accepts the value he provides and at
the same time has the value he requests and accepts to provide it in exchange. This is known as the
“double coincidence of wants problem” that is simply solved using money. openBarter extends
bilateral exchange between a buyer and a seller to exchange cycles with possibly more than two
partners.

Most vital resources can be represented by a couple (quality, quantity) where the quality is a
name describing a quality standard and where the quantity is an integer. All such fungible values
can be represented this way, including green house gases, radioactive pollution, surface of forest or
even money. The value of a resource is simply measured by it's quantity without any reference to a
currency standard. For a given quality, the value is proportional to the quantity. The proportionality
is limited by boundaries defining different markets such as gallon and barrel for petrol in England.
But values with distinct qualities can only be compared subjectively by the market.

A regular market implements the best price rule. It is the lowest price for the buyer and the
highest for the seller. Among possible relations between pending orders of the order book of the
market, this rule determines the bilateral cycle between a buyer and a seller chosen to form two
movements. The first is one where the buyer provides money to the seller. The second is one where
the seller provides some goods – also a value - to the buyer. Both movements makes the cycle and
the transaction. openBarter provides an other method to determine the cycle chosen to form
movements. This method does not require the expression of prices, but is equivalent to the best
price rule when it is applied to bilateral cycles where money is one of the fungible values
exchanges.

But some goods cannot be represented as fungible values. In this case, the quality cannot be
represented by a single name, but requires a text to be described. 'full text search' function of
postgreSql has been developed to store documents and retrieve them using logical combination of
keywords just like google. This function represents indexed document as tsvector objects, and
requests as tsquery. Since the value provided is a real good that can be described using a text and
keywords, openBarter use a tsquery to represent it instead of a single name. The request component
of the order is expressed as a tsquery instead of a single name. openBarter offers most 'full text
search' functions of postgreSql to determine the matching between orders.

Since transports induced by exchange can be significant, openBarter include in orders
expressed by participants the place where the value is available, the place where the value required
in exchange is expected and a distance. These geographic informations contribute to determine the
matching between two orders.

2 Architecture
openBarter use 3 tables in postgreSql. The order book stored in a table torder, a stack accepting

orders as input and a stack storing movements to be consumed.

page 2/9

openBarter

The production of orders is done by a function launched by an external script.

3 Principle
The barter market accepts exchange orders of the form:

I propose a value in exchange of a value of an other quality for a minimum quantity

submitted by the owner of the value proposed.

The market finds potential exchange cycles with two partners or more. Agreements can be formed
from them, defined by a set of movements where each partner provides a quantity to an other and
receives at the same time a value of an other quality. By allowing more than two partners the
liquidity of the market is not limited by the double coincidence of wants problem.

For an order, we define ω as a ratio between provided quantity and minimum required quantity. The
dimension of ω depends on qualities exchanges and compare such values would not make any sense
when these qualities are different. For a cycle formed by several orders where quality offered and
required match, we compute an Ω as the product of ω of orders of a cycle. Since Ω a dimensionless
quantity, compare these values could have a meaning. When Ω is lower than 1, the common will to
exchange is not sufficient to find an agreement between partners due to minimum quantities
required. When Ω is 1 it is easy to find an agreement than match minimum ratio ω required by
maximizing the flow of values through the cycle within limits defined by available quantities. When
Ω is greater than 1 the excess Ω-1 can be shared fairly for the benefit of partners in order to form
the exchange. This share changes ω to a value ω'=ω∗Ω

−1/n where n is the number of partners so
that the product of ω' is 1. The value ω' lower than or equal to ω represents a benefit for the
corresponding partner. The share is fair since the ratio ω ' /ω is the same for all partners of the
cycle.

When an owner submits an order, that's because he considers that the value expected is more useful
that the one he owns, and ω measures how much this exchange would be useful for him. For a given
cycle Ω is proportional to any ω of it's orders since Ω is their product. In other words Ω is an
aggregate common to all partners of the cycle measuring how much the exchange is useful for
them, even if usefulness depends on the view point. When a common order belongs to several
possible exchange cycles, the author of this order can use Ω as the measurement of the usefulness of
potential cycles and compare them to choose the best. It has be shown1 that the choice of the cycle
having Ω maximum is the same as what would be obtained with the best price rule when this choice

page 3/9

tstack tstack torder tmvts

openBarter

is applied to bilateral exchanges. In other words, Ω maximization extends the best price rule to
non-bilateral exchanges. By maximizing Ω the market meets the goal of utilitarians by maximizing
utility but with a definition of utility that is independent of any currency.

The extension of the best price rule to non-bilateral exchange is not unique, and could also be
obtained by maximizing individual profit1 instead of utility. The use of money maintains a
confusion between these two distinct goals with assessed social economic consequences.

This market proceeds as a regular market – a central limit order book (CLOB) - by processing
orders one after the other. We describe here what is common between these markets. The input of
the market is a flow of orders and it's output is a flow of movements. It records unmatched orders in
an order book. When a new order is submitted, a competition is performed between potential cycles
created by the new order and pending orders in the book to choose the cycle that will form the
exchange. If no matching is found, the new order is added to the book. Otherwise, movements
forming the exchange are produced from the best cycle and the values offered by matched orders
are decreased of the values exchanged. If some cycles remain the competition is repeated as long as
the new order is not exhausted.

The difference between this barter market and a regular CLOB is only that 1) exchange cycles can
be non-bilateral 2) competition is performed with Ω instead of price. CLOB algorithm used by
most important market places such as the New York Stock Exchange could be adapted to implement
barter markets.

4 Interfaces

4.1 Input
An order is be submitted with the following syntax:

=> SELECT * FROM
fsubmitorder(own,oid,quar,qttr,posr,quap,qttp,posp,dist,weight);

Where:

own text the name of the owner,

oid int NULL or id of a parent order,When not NULL fields quap, posp, weight and
dist are ignored.

quar text the quality required,

qttr int8 the quantity required,

quap text the quality provided. Ignored when oid is NULL.

1 minimize ω', that is minimizing Ω
−1 /n

or maximizing Ω
1 /n

instead of Ω .

page 4/9

openBarter

The response has the type yressubmit with the field 'id' and 'diag'. Returns diag=0 and an int in
the id field. This id is the primary key given by the market to this order that will be referred later in
other orders or movements. On error, diag contains the code of the error, and id is 0.

oid is usually NULL, but can be set to the id of a parent order to express the fact the present
order request an other value for the value proposed by the parent order. The fields quap must be the
same as parent. The fields quap is ignored. This order is then a new requirement on the value
provided by this previous order.

A parent order must not have parent.

4.2 Batch
The function that can be called to consume the input stack is the following:

=> SELECT * FROM fproducemvt();
This function unstack a single order.

=> SELECT * FROM femtystack();
This function unstack all order.

4.3 Read the order book
The order book can be red with the following select:

=> SELECT * FROM vorder o WHERE o.quap ='gold' DESC LIMIT 10
The parameters in bold give the quality required.

The columns returns are the following:

id int Serial number of the order

own text Author of the order

oid int Referenced order

qtt_requ int8 Quantity required

qua_requ text Quality required

qtt_prov int8 Quantity provided

qua_prov text Quality provided

qtt int8 Quantity remaining

created datetime When the order was submitted

Qtt is the quantity available for exchange while qtt_prov is the quantity defined by the order.
Qtt is reduced each time a movement is created from this order.

page 5/9

openBarter

When oid is not NULL, the fields qtt,qtt_prov are those of the order referenced by oid.

4.4 Output
The table of movements can be read with a SELECT statement.

id int Serial number of the movement

nbc int number of movements in the cycle

nbt int number of movements in the transactions

grp int id of the first movement of the cycle

xid int order origin of this movement

usr text database user that inserted the order

xoid int Parent of the ordrer origin of this movement

own_src text owner providing the value

own_dst text owner receiving the value

qtt int8 quantity

nat text quality

ack boolean movement acknowledged (boolean)

exhausted boolean quantity of the order exhausted (boolean)

refused int Error code when order is refused:

0 no error

-1 the parent order was not found in the order book

-2 owner of order and parent are different

-3 the parent have a parent order

When refused !=0 , then then nbc = 1 and nbt = 1)

order_created datetime date submission of the parent order if there is one or of the order
otherwise.

created datetime Date of the transaction.

The oldest movement can be accepted with the command:

=> SELECT * FROM fackmvt();

page 6/9

openBarter

A movement is accepted by the database user that submitted the corresponding order. All
movements of a cycle are removed when they are all accepted.

4.5 Roles
The users must inherit from the role role_client to submit an order, acknowledge a movement or
read tables. A super user can disabled/enabled access of users with the command:

=> REVOQUE ROLE role_co FROM role_client;
=> GRANT ROLE role_co TO role_client;

A single user role_batch is allowed to execute batch functions. A super user can disabled/enabled
access of users with the command:

=> REVOQUE ROLE role_bo FROM role_batch;
=> GRANT ROLE role_bo TO role_batch;

5 Parameters
Parameters of the model are the following:

MAXCYLE 16 maximum number of partners of a cycle. This
value can be at maximum 64.

MAXPATHFETCHED 1024 maximum number of cycles on witch competition
occurs

MAXCYCLE and MAXPATHFETCHED determine the depth of the exploration of combination of
matching between orders. The default values can be changed by a super user while the model is
running. By increasing these values, the liquidity of the market grows, and the computation time to
process orders decreases.

6 Installation

6.1 Build from sources
Following instructions has been tested on linux 32 bits and 64 bits architecture with version 9.2

of postgreSql.

Follow instructions of postgreSql manual to install the sources of the database.

In the contrib/ directory of the sources of postgreSql, install the sources of openbarter using the
package you downloaded from github:

$ cd contrib
$ gunzip olivierch­openBarter­vx.y.z.tar.gz
$ tar xf olivierch­openBarter­vx.y.z.tar

the package is compiled with:

page 7/9

openBarter

$ cd openBarter/src
$ make
$ make install

6.2 Tests
To run tests, cd to openBarter/src and:

$ make installcheck
…
============== running regression test queries ==============
test testflow_1 ... ok
...
test testflow_n ... ok
============== shutting down postmaster ==============

=====================
 All n tests passed.
=====================

6.3 Install the model
When the postgreSql server is running, the model can be installed. It is defined by the file

openBarter/src/sql/model.sql. You must connect with a superuser role that is never user for market
operations. When you are in openBarter/src:

$ createdb market
$ psql market
psql (9.2.0)
Type "help" for help.

market=# \i sql/model.sql
…..

The model does not depend of any schema, and creates roles client and admin if they do not
exist yet. You quit psql by typing ctr-D.

6.4 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1
Berkeley-db is resides in memory instead of files in $PGDATA. This increases global

performance of searches. [Olivier Chaussavoine]

0.1.2
rights of roles of the database model are defined globally using schemas instead of granted

individually for each function. [Olivier Chaussavoine]

0.1.6
ported on postgres9.1.0

page 8/9

openBarter

0.2.0
The use of berkeleydb is replaced by WITH .. SELECT of PostgreSQL. A new type “flow”

is defined, containing low level calculations. Tests units are functional [Olivier Chaussavoine].

0.2.1
Memory allocation and code cleaned. Tests units are functional [Olivier Chaussavoine].

0.2.2
Core algorithms optimized. Tests units are functional [Olivier Chaussavoine].

ob_fget_omegas(np,nr) provides the list of all prices found, even those not requested.
[Olivier Chaussavoine]

0.3.0
The constraint of acyclic graph is removed. Complete redesign. [Olivier Chaussavoine].

0.4.0
quote and prequote added. [Olivier Chaussavoine].

Order rejection mechanism added [Olivier Chaussavoine].

0.4.1
ported on postgreSql 9.2. [Olivier Chaussavoine].

Bug fixes [Olivier Chaussavoine].

0.4.2
Bug fixes [Olivier Chaussavoine].

0.5.0
fgeterrs() optimized, it can be run when the market is running,

index optimization in fcreate_temp()

increasing preformance of fgetprequote(),fgetquote(),fexecquote(),finsertorder()

X6 faster

MAXCYCLE was 8, it can now be up to 64 [Olivier Chaussavoine].

0.6.0
New model [Olivier Chaussavoine].

0.6.1
Bug fixes [Olivier Chaussavoine].

.

page 9/9

	1 Introduction
	2 Architecture
	3 Principle
	4 Interfaces
	4.1 Input
	4.2 Batch
	4.3 Read the order book
	4.4 Output
	4.5 Roles

	5 Parameters
	6 Installation
	6.1 Build from sources
	6.2 Tests
	6.3 Install the model
	6.4 Releases

