
openBarter

openBarter implements a barter market place organized as a central limit order book allowing
exchange of fungible values between two or more partners in a single transaction. It records orders
of owners, and provides movements changing ownership of values according to orders and market
rules.

1 The market
An order is expressed by the owner as:

I want to provide a value in exchange of an other value

The values provided and required are fungible values defined by a couple (quality,quantity)
where the quality is a name and the quantity is an integer. A ratio between quantity offered and
quantity required is used by the market instead of a price to compare competing orders.

The market does not require a central value standard to express prices.

The value provided is owned by the author of the order, and the quantity of the value required
is the minimum expected in exchange1. Two orders match when the quality provided by the first
equals the one required by the other.

The market contains the order book - a set of pending orders - scanned for each new order
inserted looking for possible matchings. The following process occurs when an order O is
submitted:

• The quantity available of O is set to the quantity provided,

• O is inserted in the order book,

• (a) If O does not form any cycle with pending orders, Stop.

• If O forms cycles with some pending orders a competition occurs to select a cycle C,

• for each order A of C the quantity available of A is used to create a movement and this
quantity available is decreased of the same amount. The set of movements produced by C
forms an agreement.

• Repeat from (a).

This process is wrapped in a single transaction that can be rolled back in case of hardware
failure. This atomicity insures that for a given quality of the order book, the sum of available
quantities of orders providing this quality added to the sum of quantities of movements providing

1 Quality provided and quality required must be different.

 MovementsopenBarterOrders

this quality is unchanged by the transaction even if it fails.

Movements define an agreement satisfying partially or entirely wants of orders of the cycle. A
single transaction can produce several agreements and an order can produce several transactions.
When the quantity available of an order becomes null, the order is removed.

This process does not differ from that implemented on a regular market except that an
agreement can contain more than two movements. The competition performed on cycles is the same
as that of a regular market when these cycles are bilateral.

Exchange agreements are formed so that the maximum limit defined by the ratio (quantity
provided/quantity required) is satisfied even if the quantity received is lower than that required by
the matching order.

1.1 Installation

1.1.1 Build from sources

Following instructions has been tested on linux 32 bits and 64 bits architecture with version 9.2
of postgreSql.

Follow instructions of postgreSql manual to install the sources of the database.

In the contrib/ directory of the sources of postgreSql, install the sources of openbarter using the
package you downloaded from github:

$ cd contrib
$ gunzip olivierch­openBarter­vx.y.z.tar.gz
$ tar xf olivierch­openBarter­vx.y.z.tar

the package is compiled with:

$ cd openBarter/src
$ make
$ make install

1.1.2 Tests

To run tests, cd to openBarter/src and:

$ make installcheck
…
============== running regression test queries ==============
test testflow_1 ... ok
test testflow_2 ... ok
test testflow_3 ... ok
test testflow_4 ... ok
test testflow_5 ... ok
test testflow_6 ... ok
============== shutting down postmaster ==============

=====================
 All 6 tests passed.
=====================

1.1.3 Install the model

When the postgreSql server is running, the model can be installed. It is defined by the file
openBarter/src/sql/model.sql. You must connect with a superuser role that is never user for market
operations. When you are in openBarter/src:

$ createdb market
$ psql market
psql (9.2.0)
Type "help" for help.

market=# \i sql/model.sql
…..

The model does not depend of any schema, and creates roles client and admin if they do not
exist yet. You quit psql by typing ctr-D.

To start operation, just connect to the database as admin, and create some clients with the
function createuser like this:

$ psql ­Uadmin market
psql (9.2.0)
Type "help" for help.

market=> SELECT fcreateuser('client1');
fcreateuser
­­­­­­­­­­­­­

(1 row)

1.1.4 execute primitives

This paragraph explains how commands behave with some examples. Connect as client1

$ psql ­Uclient1 market
psql (9.2.0)
Type "help" for help.

1.1.4.1 simple bilateral exchange

Insert an order of an owner 'own1' that provides a value ('q1',2000) in exchange of a value
('q2',1000):

market=> select * from finsertorder('own1','q1',2000,1000,'q2');
NOTICE: owner own1 created
CONTEXT: PL/pgSQL function fgetowner(text,boolean) line 10 at assignment
PL/pgSQL function finsertorder(text,text,bigint,bigint,text) line 35 at
assignment
 id | uuid | own | nr | qtt_requ | np | qtt_prov | qtt_in | qtt_out | flows
­­­­+­­­­­­+­­­­­+­­­­+­­­­­­­­­­+­­­­+­­­­­­­­­­+­­­­­­­­+­­­­­­­­­+­­­­­­­
 1 | 1­1 | 1 | 2 | 1000 | 1 | 2000 | 0 | 0 | []
(1 row)
The order is inserted with id=1 and uuid='1-1'. A new owner 'own1' and qualities 'q1' and 'q2' are
inserted with their respective id (1,1,2). qtt_in, qtt_out and flows are empty since the order book
contains only this order.

You can have a view of the order book with the command:

market=> select id,owner,qua_requ,qtt_requ,qua_prov,qtt_prov,qtt from vorder;
 id | owner | qua_requ | qtt_requ | qua_prov | qtt_prov | qtt
­­­­+­­­­­­­+­­­­­­­­­­+­­­­­­­­­­+­­­­­­­­­­+­­­­­­­­­­+­­­­­­
 1 | own1 | q2 | 1000 | q1 | 2000 | 2000
(1 row)
and of tables of owners and qualities with:

market=> select * from towner;
market=> select * from tquality;
Insert a new order :

market=> select * from finsertorder('own2','q2',1000,2000,'q1');
NOTICE: owner own2 created
CONTEXT: PL/pgSQL function fgetowner(text,boolean) line 10 at assignment
PL/pgSQL function finsertorder(text,text,bigint,bigint,text) line 35 at
assignment
 id | uuid | own | nr | qtt_requ | np | qtt_prov | qtt_in | qtt_out | flows
­­­­+­­­­­­+­­­­­+­­­­+­­­­­­­­­­+­­­­+­­­­­­­­­­+­­­­­­­­+­­­­­­­­­+­­­­­­­
 1 | 1­2 | 2 | 1 | 2000 | 2 | 1000 | 2000 | 1000 | [..]
(1 row)
This order produced a flows [..], a json object, that presented separately for clarity:

 [[
{"id":1, "own":1,"nr":2,"qtt_requ":1000,"np":1,"qtt_prov":2000,"qtt":2000,
"flowr":2000 },
{"id":2,"own":2,"nr":1,"qtt_requ":2000,"np":2,"qtt_prov":1000,"qtt":1000,
"flowr":1000 }]]

A single bilateral exchange is created, where own1 provides (q1,2000) to own2 and own2 provides
(q2,1000). Each movement presented within {} contains id, a reference to the order that produced
the movement, own the owner, np the quality provided, flowr the quantity provided, and qtt the
quantity remaining offered before this exchange. The two movements presented between []
represent the exchange. This exchange is itself presented between [] because more than one
exchange can be produced by a single order. qtt_in and qtt_out returned by finsertorder() are the
sum of quantities received and provided for all these exchanges.

Movements are recorded in a table tmvt. they can be viewed by the command:

market=> select nb,grp,provider,quality,qtt,receiver from vmvt;
 nb | grp | provider | quality | qtt | receiver
­­­­+­­­­­+­­­­­­­­­­+­­­­­­­­­+­­­­­­+­­­­­­­­­­

 2 | 1­1 | own2 | q2 | 1000 | own1
 2 | 1­1 | own1 | q1 | 2000 | own2
(2 rows)

The order book is now empty since all orders are satisfied.

1.1.4.2 bilateral exchange with competition

We consider a scenario where

• 'own1' offers ('q1',5) in exchange of ('q2',10)

• 'own2' offers ('q1',10) in exchange of ('q2',5)

• 'own3 offers ('q2',20) in exchange of ('q1',10)

The first two orders are competing, and the second is the best:

market=> select * from finsertorder('own1','q1',5,10,'q2');
...(no matching)
market=> select * from finsertorder('own2', 'q1',10,5,'q2');
...(no matching)
market=> select * from finsertorder('own3', 'q2',20,10,'q1');
 id | uuid | own | nr | qtt_requ | np | qtt_prov | qtt_in | qtt_out | flows
­­­­+­­­­­­+­­­­­+­­­­+­­­­­­­­­­+­­­­+­­­­­­­­­­+­­­­­­­­+­­­­­­­­­+­­­­­­­
 7 | 1­7 | 3 | 1 | 10 | 2 | 20 | 15 | 20 | [..]

This order produced a flows [..], a json object:

[[
{"id":6,"own":2,"nr":2,"qtt_requ":5,"np":1,"qtt_prov":10,"qtt":10,
"flowr":10 },
{" id":7,"own":3,"nr":1,"qtt_requ":10,"np":2,"qtt_prov":20,"qtt":20,
"flowr": 10 }
],[
{"id":5, "own":1, "nr":2, "qtt_requ":10, "np":1, "qtt_prov":5, "qtt":5,
"flowr":5 },
{"id ":7, "own":3, "nr":1, "qtt_requ":10, "np":2, "qtt_prov":20, "qtt":10,
"flowr":10 }
]]

representing two exchanges. The last order(id=7) exchanges with the second (id=6) , then with the
first (id=5) because the order(id=6) is better than the order(id=5). The attribute qtt of the order
(id=7) is decreased of the quantity provided by the first exchange. It is the quantity remaining
available before the exchange.

The view vmvt gives a reference to the exchange, (here grp='1-5' and grp='1-7') and the number of
partners of the exchange, (here nb=2) . oruuid is a reference to the original order:

market=> select nb,oruuid,grp,provider,quality,qtt,receiver from vmvt;
 nb | oruuid | grp | provider | quality | qtt | receiver
­­­­+­­­­­­­­+­­­­­+­­­­­­­­­­+­­­­­­­­­+­­­­­­+­­­­­­­­­­
 2 | 1­2 | 1­1 | own2 | q2 | 1000 | own1
 2 | 1­1 | 1­1 | own1 | q1 | 2000 | own2
 2 | 1­4 | 1­3 | own2 | q2 | 1100 | own1
 2 | 1­3 | 1­3 | own1 | q1 | 1100 | own2
 2 | 1­7 | 1­5 | own3 | q2 | 10 | own2
 2 | 1­6 | 1­5 | own2 | q1 | 10 | own3
 2 | 1­7 | 1­7 | own3 | q2 | 10 | own1
 2 | 1­5 | 1­7 | own1 | q1 | 5 | own3
(8 rows)

1.1.4.3 non bilateral exchange with competition

We consider a scenario where

• 'own1' offers ('q3',320) in exchange of ('q1',80)

• 'own2' offers ('q2',20) in exchange of ('q1',20)

• 'own3' offers ('q3',540) in exchange of ('q2',20)

• 'own4' offers ('q1',100) in exchange of ('q3',100)

The first two orders are competing, and the second is the best:

market=> select * from finsertorder('own1','q3',320,80,'q1');
...(no matching)
market=> select * from finsertorder('own2', 'q2',20,20,'q1');
...(no matching)
market=> select * from finsertorder('own3', 'q3',540,20,'q2');
...(no matching)
market=> select * from finsertorder('own4', 'q1',100,100,'q3');
 id | uuid | own | nr | qtt_requ | np | qtt_prov | qtt_in | qtt_out | flows
­­­­+­­­­­­+­­­­­+­­­­+­­­­­­­­­­+­­­­+­­­­­­­­­­+­­­­­­­­+­­­­­­­­­+­­­­­­­
 11 | 1­11 | 4 | 3 | 100 | 1 | 100 | 260 | 100 | [..]

This order produced a flows [..], a json object:

[[
{"id":9, "own":2, "nr":1, "qtt_requ":20, "np":2, "qtt_prov":20, "qtt":20,
"flowr":20 },
{"id":10, "own":3, "nr":2, "qtt_requ":20, "np":3, "qtt_prov":540, "qtt":540,
"flowr":180 },
{"id":11, "own":4, "nr ":3, "qtt_requ":100, "np":1, "qtt_prov":100, "qtt":100,
"flowr":60 }
],[
{"id":8, "own":1, "nr":1, "qtt_requ":80, "np":3, "qtt_prov":320, "qtt":320,
"flowr":80 },
{"id":11, "own":4, "nr":3, "qtt_requ":100, "np":1, "qtt_prov":100, "qtt":40,
"flowr":40 }
]]

representing two exchanges. The cycle with 3 partners is preferred to the bilateral cycle.

market=> select nb,oruuid,grp,provider,quality,qtt,receiver from vmvt order by
id;
 nb | oruuid | grp | provider | quality | qtt | receiver
­­­­+­­­­­­­­+­­­­­­+­­­­­­­­­­+­­­­­­­­­+­­­­­­+­­­­­­­­­­
 2 | 1­2 | 1­1 | own2 | q2 | 1000 | own1
 2 | 1­1 | 1­1 | own1 | q1 | 2000 | own2
 2 | 1­4 | 1­3 | own2 | q2 | 1100 | own1
 2 | 1­3 | 1­3 | own1 | q1 | 1100 | own2
 2 | 1­7 | 1­5 | own3 | q2 | 10 | own2
 2 | 1­6 | 1­5 | own2 | q1 | 10 | own3
 2 | 1­7 | 1­7 | own3 | q2 | 10 | own1
 2 | 1­5 | 1­7 | own1 | q1 | 5 | own3
 3 | 1­11 | 1­9 | own4 | q1 | 60 | own2
 3 | 1­9 | 1­9 | own2 | q2 | 20 | own3
 3 | 1­10 | 1­9 | own3 | q3 | 180 | own4
 2 | 1­11 | 1­12 | own4 | q1 | 40 | own1
 2 | 1­8 | 1­12 | own1 | q3 | 80 | own4
(13 rows)
The view vmvt shows that all partners received more than expected compared to what they
expected, and that the barter is fair: the ratio qtt_provided/qtt_required has been increased in the
same proportion for partners of an exchange.

2 The model
Let ω be the a ratio (quantity provided/quantity required) defined by an order. It measures the

pain to give an amount of the quality provided compared to the pleasure to receive a unit of the
quality required. The dimension of this measurement is (quality provided/quality required).

For a cycle of orders, let be Ω the product of their ω. This product is non dimensional.

When Ω equals to 1, an agreement can be formed where each partner provides some value to
an other.

When Ω≠1, ω are divided by the geometric mean of ω of the cycle. This division converts ω
to ω' in such a way that the product of ω' equals to 1 . This adjustment is a bartering. It is fair when
all partners are distinct. When it is not the case, the fairness is maintained by sharing it first between
partners, then for each partner between it's orders.

To satisfy the minimum quantity required by the order, we must have ω>ω', that is Ω>1.
Otherwise, the cycle is ignored.

When an order forms several cycles, a competition is performed between them by choosing the
one having the maximum Ω. This rule applied to cycles formed by two orders is equivalent to the
best price rule of a regular market.

Computations produce numbers that need to be rounded to be stored and later presented as
integers. These roundings are performed by minimizing a distance defined on the cycle in order to
reduce the consequence of round-off errors on the fairness of the agreement.

3 Implementation
The market is seen as a directed graph where orders define nodes, and relations between orders
define arrows. This graph is used to transform orders into exchanges when cycles appear on this
graph. This can occur each time an order is added. A competition also occurs between possible
cycles when more than one cycle is found. Quantities exchanged reduce quantities available of
orders, and produce movements between owners.

Stored procedures act on a model representing qualities, owners, orders and movements.

3.1 Database model
The database model is described by src/sql/model.sql. It consists in related tables and stored

procedures. A type yflow representing a draft agreement and a type yorder representing an order are
used to perform fast calculations in C language. They are defined by the file src/flow-1.0.sql.

Users that interact with the database have roles that can be client or admin.

Except on special circumstances, objects represented by rows are inserted or moved from a
table to an other, but never deleted. Instead, they are moved in a table with the same name suffixed
by removed. This way, periodic archiving of the database also contains all objects.

torder

own

towner

id

tquality

id

np

nr

tmvt

nat

own_src
own_dst

qtt_prov

qtt_requ

qtt

id,uuid tuser

id

idd

depository

name

name

name

tconst

torderremoved

tmvtremoved

tmarket

tquote

own

np

nr

qttprov

qtt_requ

id

qtt_in
qtt_out
flows

tquoteremoved

id,uuid,nb
oruuid
grp

qtt

spent
quota
last_in

qtt

name
value

id
created

3.1.1 Order book

A table torder represents the order book. When an order is inserted in this table and a cycle is
found with Ω≥1 movements are created in a table tmvt, decreasing the quantities available in the
order book.

When an order is empty (the provided quantity is 0) it is moved out from the book to an other table
torderremoved. This keeps the order book as small as possible for performance. The garbage
collector (§3.1.5) also removes orders in special circumstances.

3.1.2 Market opening and closing

The life cycle of the market is represented as follows:

The market session is defined as an integer incremented at each transition CLOSED->STARTING.

A client can use the market during the OPENED phase. At the transition CLOSED->STARTING
tables tquality, torder and tmvt are renumbered and market session incremented. Accounting and
technical administration tasks such as cold backup or closing balance sheet settlement can be
performed during the CLOSED phase because the database represents the final and stable state of
the ending market session. After this event VACUUM of tables must be performed by the admin
user to optimize the database before a new cycle starts.

The history of status2 is given by the view vmarkethistory:

SELECT * from vmarkethistory;
Each row gives a market session number, the market phase and the starting time of this phase.

The current state of the market, the session number, and starting time of this state are given by:

 SELECT * FROM vmarkethistory ORDER BY ID DESC LIMIT 1;

2 The market status and market phase have the same meaning.

STARTING

OPENED

STOPPING

CLOSED

Market session : n->n+1
Table renumbering

Client access with
client_opened_role

Client access with
client_stopping_role

Database DUMP
Closing balance
sheet settlement.

Database VACUUM

ADMIN TASKSSERVICEMARKET PHASE

A view vmarket gives the same result:

 SELECT * from vmarket;
The command:

SELECT * from fchangestatemarket(false);
Gives informations on the transition to the next state. This transition is performed by:

 SELECT fchangestatemarket(true);

3.1.3 Users

By user, we mean the actor connecting to the PostgreSQL database. The database implements an
extensive set of security mechanisms including authentication and access rules. openBarter uses
those mechanisms to allow write access to objects only through predefined functions. A single user
“admin” is allowed to perform administration tasks. A role “client” is that of regular users. Clients
can get a quote and set an order only during the OPENED phase. They can remove movements and
orders only during OPENED and STOPPING phase.

A role client_opened_role is granted to the client role only at the OPENED phase, while a role
client_closing_role is granted to the client role only at the CLOSING phase.

The admin can register a new client, change the state of the market, but cannot participate to the
market. He can register a new client by the command:

SELECT fcreateuser(<user_name>);

The super user that creates the database is distinct from admin and client. This super user must be
used only for this creation.

3.1.4 Objects

All objects are stored in tables.

Table Description

tmvt History of movements where the ownership of values are moved
between owners. It is the output flow of the market.

tmvtremoved Movement removed

torder Order, value provided, value required and owner

torderremoved Order removed

tquote Quote, value provided, value required, owner, and flows of value
produced

tquoteremoved Quote removed

towner Owner

tquality Quality

tuser Description of client

tmarket History of market

tconst Constants of the market

3.1.4.1 Owner

They are owners of values provided by orders and the authors of orders, while clients connect to the
database and act on the market on the behalf of owners. An owner is defined by a name. It is
recorded when the first order of this owner is recorded in the current session of the market.

3.1.4.2 Quality

A quality is a string. It's form depends on a constant CHECK_QUALITY_OWNERSHIP in the
table tconst.

When CHECK_QUALITY_OWNERSHIP=0, the name of the quality can be any non empty string.

When CHECK_QUALITY_OWNERSHIP=1, the quality belongs to a single client whose name is
client_name. The following rules are implemented:

• The quality provided by an order must belong to the client that insert it.

• A client can only remove movements whose quality belongs to him.

The form of the quality is <client_name>/<quality_name>.

A value belongs to an owner while a quality belongs to a client.

A quality is inserted into tquality the first time an order use it in a market session.

After market creation, This constant should not be changed after the market is created. It can be
changed only by a super user.

3.1.4.3 Movement and Order

An exchange is a set of movements representing a cycle where each partner provides a value he
owns to an other partner. An exchange is simply a set of record in the table tmvt, where each defines
the value, the provider, the receiver (see §3.2.9 and §3.2.11 for details).

3.1.4.4 Quote

Represents a quote made by an owner.

Column Type Meaning

id int Internal id of the quote that is used to reference the quote in
order to execute the corresponding order.

own int Internal reference to the owner.

nr int Internal reference to the quality required.

qtt_requ int8 Quantity required by the quote.

np int Internal reference to the quality provided.

qtt_in int8 Sum of quantities received by flows produced by the quote.
The couple (nr,qt_in) define the value received.

qtt_out int8 Sum of quantities provided by flows produced by the quote.
The couple (np,qtt_out) define the value provided.

flows yflow[] An array of flows representing the list of agreements

produced by the quote.

created timestamp Time when the quote is created.

removed timestamp Time when the quote is moved to the table tquoteremoved.

The id is a unique key referencing this quote. (nr,qtt_requ) is the value received while (np,qtt_prov)
is the value provided if the quote was executed.

The type yflow represents an exchange. An order is a tuple (id,own,nr,qtt_requ,np,qtt_prov,qtt)
where id is its unique key, own the owner of the value provided, (nr,qtt_requ) the value required,
(np,qtt_prov) the value initially provided, and qtt<=qtt_prov the quantity remaining available for
exchange. yflow is a list of such orders, where the quality provided by one equals the quality
required by the next one. A given yflow defines a flow of quantities provided by each partner
(owner) of yflow. The field flows is the set of exchanges that would be created if the quote was
executed.

3.1.5 Garbage collector of orders

Orders that are frequently included in refused cycles tend to slow the speed of matchings. Orders
that belong to potential cycles but are not elected to form exchanges are removed from the
searching table when they consume too much time. The time consumed by an order is accumulated
until a limit is reached. The limit is a constant tconst.MAXTRY expressed in microseconds.
Rejected orders are moved to torderremoved. The quantity available creates a single movement
from the owner to the same owner for accounting consistency reason.

3.1.6 Limits on potential exchanges

Due to the number of possible combinations, scanning required to form cycles can be huge. The
traversal of the order book is limited by the number of partners of cycles explored. This limit is
defined by a constant tconst.MAXCYCLE.

For the same reason, the exploration stops when the number of potential cycles fetched reaches a
limit tconst.MAXPATHFETCHED. Since all cycles having a given number n of partners are
explorated before those having n+1 partners; this mechanism limits the number of partners of cycles
for high workload.

3.1.7 Quotas

The time spent to execute long primitives (finsertorder,fgetquote,fgetprequote,fexecquote) is
cumulated for each client. When this time spent reaches a limit defined by the field tuser.quota,
these functions become forbidden for this client.

The time spent is cleared when the market session is opened.

The quota allocated to a client can be disabled by setting the quota of the user to 0. When set to a
non null integer, it limits the total number of microseconds allocated to this client. It can be set
individually for each client.

3.2 Application programming interface
The client role acts through stored procedures wrapped in read-commited transactions that is the
default mode of transactions of postgreSQL.

The following table lists functions and views of the model.

Function and views action Market phase Roles allowed

finsertorder Inserts an order OPENED client

fgetprequote Gets a prequote OPENED client

fgetquote Gets a quote OPENED client

fexecquote Executes a quote OPENED client

fremoveorder Removes an order OPENED client

fgetagr Describes an agreement

fremoveagreement Removes movements OPENED,
CLOSING

client

fgetstats Produces statistics admin

fgeterrs List of errors admin

fchangemarketstate Change the state of the market admin

fcreateuser Creates a user admin

vorder List of pending orders

vorderremoved List of removed orders

vorderverif List of active and removed orders

vmvt List of pending movements

vmvtremoved List of removed movements

vmvtverif List of removed movements

vmarket Market state

vmarkethistory Market history

In case of error, an exception is raised depending on it's type and current transaction is rolled back.

Error codes Type

YA001 Quantity of a given quality overflows

YA002 accounting error

YA003 internal error

YU001 abort dues to incorrect use of a primitive

In the following, int is used for 32 bit integer, and int8 for 64 bits integer.

3.2.1 finsertorder
SELECT finsertorder(
_owner text,
_qualityprovided text,
_qttprovided int8,
_qttrequired int8,
_qualityrequired text);

conditions :

• _qttprovided > 0

• _qttrequired > 0

the function inserts an order made by _owner providing the value (_qttprovided,_qualityprovided)
in exchange of a value having the quality _qualityrequired and for a minimum quantity of
_qttrequired.

Possible cycles are found and converted into movements. The remaining quantity provided that is
not used by theses exchanges is stored in the order object.

The record returned is a yresorder representing details of exchanges produced:

Column Type Meaning

id int Internal reference to the order

uuid text The reference of the order (session number - id)

own int Internal reference to the owner

nr int Internal reference to the quality required

qtt_requ int8 Quantity required

np int Internal reference to the quality provided

qtt_prov int8 Quantity provided

qtt_in int8 Sum on flows of quantities received

qtt_out int8 Sum on flows of quantities provided (qtt_out <= qtt_prov)

flows json The list of exchange produced

The ratio qtt_out/qtt_in is lower than qtt_prov/qtt_requ and qtt_out <= qtt_prov.

The json flows represents an array of exchanges produced by the order. Each order is an array of
movements described by a dictionary with the following keys:

Key Type Value

id int Internal reference to the order

own int Internal reference to the owner

nr int Internal reference to the quality required

qtt_requ int8 Quantity required by the order

np int Internal reference to the quality provided

qtt_prov int8 Quantity provided by the order

qtt int8 Quantity of the order remaining available before the
exchange

flowr int8 Quantity exchanged

3.2.2 fgetquote
SELECT fgetquote(_owner text,_qualityprovided text,_qttprovided
int8,_qttrequired int8,_qualityrequired text);

conditions :

• _quantityprovided >0,

• _quantityrequired >0,

It provides the results that would be obtained if finsertorder was executed with these arguments. It
returns a record tquote describing produced agreements. The id field can be used to reference this
quote for execution of finsertorder with the same arguments.

3.2.3 fexecquote
SELECT fexecquote(_owner text,_id int);

conditions :

• the quote has been submitted with the same owner,

It executes a finsertorder with the arguments of the referenced quote. Agreements provided by the
quote are the same as those provided by the quote is the market is unchanged between the quote and
it's execution. The quote is removed after execution. It returns a record tresorder (described in
§3.2.1).

An error is returned when the quote does'nt exist or was not created with the same owner.

3.2.4 fgetprequote
SELECT fgetprequote(_owner text,_qualityprovided text,_qttprovided
int8,_qualityrequired text);

conditions :

• _quantityprovided >0,

Gets a quote without defining the quantity required. This prequote is used to have an idea of the
quantity required by the market in order to make a quote using fgetquote.

The quote depends on the owner because fairness of the bartering depends on it (see §7). For each
cycle the quantity provided is such as no barter is required.

It returns a record yresprequote with the following fields:

Column Type Meaning

own int Internal reference to the owner

nr int Internal reference to the quality required

qtt_prov int8 Quantity provided

np int Internal reference to the quality provided

qtt_in_min int8 Quantities received and provided by the agreement having
the minimum ω

qtt_out_min int8

qtt_in_max int8 Quantities received and provided by the agreement having
the maximum ω

qtt_out_max int8

qtt_in_sum int8 Sum of quantities received and provided by flows produced

qtt_out_sum int8

flows json The list of agreements produced

3.2.5 fremoveorder
SELECT fremoveorder(_uuid text)

conditions:

• an order with the label _uuid exists

The order is removed from the order book.

Returns a row representing the order just removed, as the view vorder does.

3.2.6 fremoveagreement
SELECT fremovemvt(_uuid text)

conditions :

• a movement _uuid exists

The function is called by a client when all movements of the exchange are red from the table of
movements. It the movements _uuid into the table tmvtremoved if the movement belongs to this
client to. The function returns an integer that is the number of movements removed.

3.2.7 fcreateuser
SELECT fcreateuser(_username text)

The function creates the user and provides access to he database with the role client. It can only be
executed by admin.

3.2.8 fstats
SELECT fstats(_extra bool)

gives general informations about the database:

Column Type

 Number of qualities int

 Number of owners int

 Number of quotes int

 Number of orders int

 Number of movements int

 Number of quotes removed int

 Number of orders removed int

 Number of movements removed int

 Number of agreements int

 Number of orders rejected int

 For each agreement length, the numer of agreements int

3.2.9 vorder

Gives a description of the order.

 Column Type Meaning

id int Internal reference of the order

uuid text External reference of the order

owner text Name of the owner

qua_requ text Quality required

qtt_requ int8 Quantity required

qua_requ text Quality required

qtt_requ int8 Quantity required

qtt int8 Quantity not yet exchanged for this order

created timestamp Time when the order was inserted

updated timestamp Time when the order was last updated

examples

SELECT * FROM vorder WHERE owner='jack';

List of orders owned by the owner 'jack'.

3.2.10 vorderremoved

Same as vorder.

When the quantity left in order is 0, the order is appears in this view. When the order is removed by
a client, it also appears here with a qtt >0.

3.2.11 vmvt

It is the list of movements.

Column Type Meaning

id int Internal id of the movement

uuid text External reference of the movement (session id - id).

nb int Number of movements of the agreement

oruuid text Reference to the order that produced it

grp int id of the agreement. It is the id of the first movement of this
agreement.

provider text Owner providing the value

nat text Quality of the value moved

qtt int8 Quantity of the value moved

receiver text Owner receiving the value

created timestamp Time when the agreement was formed

examples:

SELECT * FROM vmvt WHERE quality='gold';

List of movements of the quality 'gold'.

3.2.12 vmvtremoved

Same as vmvt but for the table tmvtremoved.

3.3 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1
Berkeley-db is resides in memory instead of files in $PGDATA. This increases global

performance of searches. [Olivier Chaussavoine]

0.1.2
rights of roles of the database model are defined globally using schemas instead of granted

individually for each function. [Olivier Chaussavoine]

0.1.6
ported on postgres9.1.0

0.2.0
The use of berkeleydb is replaced by WITH .. SELECT of PostgreSQL. A new type “flow”

is defined, containing low level calculations. Tests units are functional [Olivier Chaussavoine].

0.2.1
Memory allocation and code cleaned. Tests units are functional [Olivier Chaussavoine].

0.2.2
Core algorithms optimized. Tests units are functional [Olivier Chaussavoine].

ob_fget_omegas(np,nr) provides the list of all prices found, even those not requested.
[Olivier Chaussavoine]

0.3.0
The constraint of acyclic graph is removed. Complete redesign. [Olivier Chaussavoine].

0.4.0
quote and prequote added. [Olivier Chaussavoine].

Order rejection mechanism added [Olivier Chaussavoine].

0.4.1
ported on postgreSql 9.2. [Olivier Chaussavoine].

Bug fixes [Olivier Chaussavoine].

0.4.2
Bug fixes [Olivier Chaussavoine].

0.5.0
fgeterrs() optimized, it can be run when the market is running,

index optimization in fcreate_temp()

increasing preformance of fgetprequote(),fgetquote(),fexecquote(),finsertorder()

X6 faster

MAXCYCLE was 8, it can now be up to 64 [Olivier Chaussavoine].

.

	1 The market
	1.1 Installation
	1.1.1 Build from sources
	1.1.2 Tests
	1.1.3 Install the model
	1.1.4 execute primitives
	1.1.4.1 simple bilateral exchange
	1.1.4.2 bilateral exchange with competition
	1.1.4.3 non bilateral exchange with competition

	2 The model
	3 Implementation
	3.1 Database model
	3.1.1 Order book
	3.1.2 Market opening and closing
	3.1.3 Users
	3.1.4 Objects
	3.1.4.1 Owner
	3.1.4.2 Quality
	3.1.4.3 Movement and Order
	3.1.4.4 Quote

	3.1.5 Garbage collector of orders
	3.1.6 Limits on potential exchanges
	3.1.7 Quotas

	3.2 Application programming interface
	3.2.1 finsertorder
	3.2.2 fgetquote
	3.2.3 fexecquote
	3.2.4 fgetprequote
	3.2.5 fremoveorder
	3.2.6 fremoveagreement
	3.2.7 fcreateuser
	3.2.8 fstats
	3.2.9 vorder
	3.2.10 vorderremoved
	3.2.11 vmvt
	3.2.12 vmvtremoved

	3.3 Releases

