
openBarter

openBarter implements a barter market place organized as a central limit order book allowing
exchange of fungible between two or more partners in a single transaction. It is a matching engine
accepting exchange orders of owners, and providing movements changing ownership of values
according to orders and market rules. It is an extension of postgreSQL.

1 The market rules
An order is expressed by the owner as:

I want to provide a value in exchange of an other value

By value, we mean a fungible defined by a couple (quality,quantity) where quality is a name
and quantity is an integer.

The market does not require a central value standard to express prices. A ratio between quantity
offered and quantity required is used by owners instead of a price. The same ratio is also used to
perform competition between orders.

The value provided is owned by the author of the order, and the quantity of the value required
is the minimum expected in exchange1. Two orders can be matched when the quality provided by
the first equals the one required by the other.

The market contains a set of pending orders that is scanned for each new order inserted. When
matching orders define a single cycle, two or more movements is produced in a single transaction.
Movements define an agreement satisfying partially or entirely wants of orders of the cycle. When
more than one cycle is formed by matching orders, a competition occurs and selects the best. The
process described for a single cycle is then performed.

Exchange agreements are formed so that the maximum limit defined by the ratio (quantity
provided/quantity required) is satisfied even if the quantity received is lower than that required.
When several possible exchange comply with the limit define by the ratio, the best (minimum ratio)
is chosen as agreement.

Due to the very large number of possible combinations, scanning required to form cycles can
be huge. That's why life time of orders and traversal of the order book are limited.

Traversal is limited by two parameters:

• the maximum number of partners of an agreement is MAXCYCLE.

• the number of agreements on which the competition is performed is limited to

1 The quality provided and required must be different.

 MovementsopenBarterOrders

MAXORDERFETCH.

Among all possible agreements defined by the first limit, the second limit explores agreements
having the smallest number of partners. MAXCYCLE and MAXORDERFETCH can be adjusted
when the model is installed.

Life time of orders is limited by a parameter MAXTRY. When this time comes, the order is
rejected from the order book.

2 The model
Let ω be the a ratio (quantity provided/quantity required) defined by an order. It measures the

pain to give an amount of the quality provided compared to the pleasure to receive a unit of the
quality required. The dimension of this measurement is (quality provided/quality required).

For a cycle of orders, let be Ω the product of their ω. This product is non dimensional.

When Ω equals to 1, an agreement can be formed where each partner provides some value to
an other.

When Ω≠1, ω are divided by the geometric mean of ω of the cycle. This division converts ω
to ω' in such a way that the product of ω' equals to 1 . This adjustment is a bartering. It is fair when
all partners are distinct. When it is not the case, the fairness is maintained by sharing it first between
partners, then for each partner between it's orders.

To satisfy the minimum quantity required by the order, we must have ω>ω', that is Ω>1.
Otherwise, the cycle is ignored.

When an order forms several cycles, a competition is performed between them by choosing the
one having the maximum Ω. This rule applied to cycles formed by two orders is equivalent to the
best price rule of a regular market.

3 Implementation
The market is seen as a directed graph where orders define nodes, and relations between orders
define arrows. This graph is used to transform orders into agreements when cycles appear on this
graph. This can occur each time an order is added. A competition also occurs between possible
cycles when more than one cycles is found. Quantities corresponding to an agreement reduce
quantities provided by orders, and produce movements between owners.

The transformation of orders into movement does not create or delete any quality units.

The main time consuming primitives of the server are:

• make a quote,

• make an order.

Stored procedures act on a model representing qualities, owners, orders and movements.

3.1 Database model
The database model is described by src/sql/model.sql. It consists in related tables, stored

procedures and a special type yflow representing a draft agreement defined to perform fast
calculations in C language.

3.1.1 Order book

A table torder represents the order book. When an order is inserted in this table and a cycle is
found with Ω≥1 movements are created are inserted in a table tmvt, decreasing the quantity
provided by the order.

An order is moved out from this book when it is empty (the provided quantity is 0) to an other
table torderremoved. This keeps the order book as small as possible for performance.

3.1.2 Market opening and closing

The life cycle of the market is represented as follows:

A client can use the market during the OPENED phase. Clients must remove all remaining
movements at the STOPPING phase. The CLOSED phase can start at this condition. At the
transition CLOSED->STARTING tables are renumbered and market session incremented.
Accounting and technical administration tasks such as cold backup or closing balance sheet
settlement can be performed during the CLOSED state because the database represents the final and
stable state of the ending market session. After this event VACUUM of tables must be performed to
optimize the database before a new cycle. The market session is defined by an integer incremented
at each cycle.

The state of the market and starting time are given by:

 SELECT * from vmarket;
The transition between phases is reached:

 SELECT fchangestatemarket(true);
The history of states is given by the view vmarket:

SELECT * from vmarkethistory;
The command:

SELECT fchangestatemarket(false);
Gives informations on the feasability of transition to the next state.

3.1.3 Users

PostgreSQL implements an extensive set of security mechanisms including authentication and
access rules. openBarter uses those mechanisms to allow write access to objects only through
predefined functions. A single user “admin” is allowed to perform administration tasks. A role
“client” groups the rest of the database users. Clients can get a quote and set an order only during

STARTING

OPENED

STOPPING

CLOSED

Market session : n->n+1
Table renumbering

Client access with
client_opened_role

Client access with
client_stopping_role

Database DUMP
Closing balance
sheet settlement.

Database VACUUM

ADMIN TASKSSERVICEMARKET PHASE

the OPENED phase. They can remove movements and orders only during OPENED and
STOPPING phase.

The role client_opened_role is granted to the client role only at the OPENED phase, while the role
client_closing_role is granted to the client role only at the CLOSING phase.

The admin can register a new client, change the state of the market, but cannot participate to the
market. He can register a new client by the command:

SELECT fcreateuser(<user_name>);

The super user that creates the database is distinct from admin and clients. This super user must be
used only for this purpose.

3.1.4 Objects

All objects are stored in tables.

Table Description

tmvt History of movements where the ownership of values are moved
between owners. It is the output flow of the market.

tmvtremoved Movement removed

torder Order, value provided, value required and owner

tquote Quote, value provided, value required, owner, and flows of value
produced

towner Owners

tquality Qualities

torderremoved Orders removed

tuser Description of clients

tmarket History of market

tconst Constants of the market

3.1.4.1 Owner

Owners are owners of values provided by orders and the authors of orders, while users connect to
the database and act on the market on the behalf of owners. An owner is defined by a name. It is
recorded when the first order of this owner is recorded in the current session of the market.

3.1.4.2 Quality

A quality is a string. It's form depend on a constant CHECK_QUALITY_OWNERSHIP in the table
tconst.

When CHECK_QUALITY_OWNERSHIP=0 (not set), the name of the quality can be any string.

Otherwise, it's form is <client_name>/<quality_name>. Then, the quality belongs to a single client
whose name is client_name. The following rules are implemented:

• The quality provided by an order must belong to the client that insert it.

• A client can only remove movements whose quality belongs to him.

A value belongs to an owner while a quality belongs to a client when
CHECK_QUALITY_OWNERSHIP is set.

A quality is inserted into tquality the first time an order use it in a market session.

3.1.4.3 Movement

Agreement is formed by a set of movements where each partner provides a value he owns to an
other partner. An agreement is simply a set of record in the table tmvt, where each defines the value,
the provider, the receiver (see §3.2.11 for details).

3.1.4.4 Order

Agreement is formed by a set of movements where each partner provides a value he owns to an
other partner. An agreement is simply a set of record in the table tmvt, where each defines the value,
the provider, the receiver (see §3.2.11 for details).

3.1.4.5 Quote

Represents a quote made by an owner.

Column Type Meaning

id int8 Internal id of the quote that is used to reference the quote in
order to execute the corresponding order.

own int Internal reference to the owner

nr int Internal reference to the quality required

qtt_requ int8 Quantity required by the quote

np int Internal reference to the quality provided

qtt_in int8 Sum of quantities received by flows produced by the quote

qtt_out int8 Sum of quantities provided by flows produced by the quote

flows yflow[] An array of flows representing the list of agreements
produced by the quote

created timestamp Time when the quote is creteated

removed timestamp Time when the quote is moved to the table tquoteremoved

The id is a unique key referencing this quote. (nr,qtt_requ) is the value required while (np,qtt_prov)
is the value provided by the quote.

The type yflow represents an agreement. An order is a tuple (id,own,nr,qtt_requ,np,qtt_prov,qtt)
where id is its unique key, own the owner of the value provided, (nr,qtt_requ) the value required,
(np,qtt_prov) the value initially provided, and qtt<=qtt_prov the quantity remaining available for
exchange. yflow is a list of such orders, where the quality provided by one equals the quality
required by the next one. A given yflow defines a flow of quantities provided by each partner
(owner) of yflow.

3.1.5 Order rejection

Orders that are frequently included in refused cycles tend to slow the performance of matchings.
The order rejection mechanism removes these orders from the order book. It is implemented in such
a way that rare couples (quality provided,quality required) are also rarely removed. More precisely
let (np,nr) be the quality provided and required by an order. It implements the following algorithm:

1 - When a movement nr→np is created, a counter Q(np,nr) is incremented

Q(np,nr).cnt +=1,

this counter is stored in the table treltried

2- When an order nr→np is created, the counter Q(np,nr) is recorded at position P

torder[.].start = P

3- orders are removed from the order book when their torder[.].start is such as P+tconst.MAXTRY
< Q,

This mechanism is enabled when tconst.MAXTRY !=0

3.1.6 Quotas

For long primitives (finsertorder,fgetquote,fgetprequote,fexecquote), the time spent to execute them
is cumulated for that user. When the time spent reaches a limit defined by the field tuser.quota,
these functions become forbidden for this user.

The time spent is cleared when the market session is opened.

The quota allocated to a user can be disabled by setting the quota of the user to 0. When set to a
non null integer, it limits the total number of microseconds allocated to this user. It can be done
globally or individually for each user.

3.2 Application programming interface
The client role acts through stored procedures that are integrated in the read-commited transactions
that is the default mode of transactions of postgreSQL.

The following list presents functions and views.

Function and views action Market phase Roles allowed

finsertorder Inserts an order OPENED client

fgetprequote Gets a prequote OPENED client

fgetquote Gets a quote OPENED client

fexecquote Executes a quote OPENED client

fremoveorder Removes an order OPENED client

fgetagr Describes an agreement

fremoveagreement Removes movements OPENED,
CLOSING

client

fgetstats Produces statistics admin

fgeterrs List of errors admin

fchangemarketstate Change the state of the market admin

fcreateuser Creates a user admin

vorder List of pending orders

vorderremoved List of removed orders

vorderverif List of active and removed orders

vmvt List of pending movements

vmvtremoved List of removed movements

vmvtverif List of pending of removed
movements

vmarket Market state

vmarkethistory Market history

In case of error, an exception is raised depending on it's type.

Error codes Type

YA001 Quantity of a given quality overflows

YA002 accounting error

YA003 internal error

YU001 abort dues to incorrect use of a primitive

In the following, int is used for 32 bit integer, and int8 for 64 bits integer.

3.2.1 finsertorder

SELECT finsertorder(
_owner text,
_qualityprovided text,
_qttprovided int8,
_qttrequired int8,
_qualityrequired text);

conditions :

• _qttprovided > 0

• _qttrequired > 0

the function inserts an order made by _owner providing the value (_qttprovided,_qualityprovided)
in exchange of a value having the _qualityrequired and for a minimum quantity of _qttrequired.

Possible cycles are found and converted in movements. The remaining quantity provided that is not
used by theses agreements is inserted in the order book.

The record returned is a tresorder representing details of agreements produced:

Column Type Meaning

id int Internal reference to the order

uuid text The reference of the order (session number - id)

own int Internal reference to the owner

nr int Internal reference to the quality required

qtt_requ int8 Quantity required

np int Internal reference to the quality provided

qtt_prov int8 Quantity provided

qtt_in int8 Sum on flows of quantities received

qtt_out int8 Sum on flows of quantities provided (qtt_out <= qtt_prov)

flows yflow[] The list of agreements produced

For each agreement the ratio between provided and received quantities comply with minimum
quantities required with respect to quantity provided. It also true for the author of the order, when
quantities of these agreements are cumulated.

3.2.2 fgetquote

SELECT fgetquote(_owner text,_qualityprovided text,_qttprovided int8,_qttrequired
int8,_qualityrequired text);

conditions :

• _quantityprovided >0,

• _quantityrequired >0,

It provides the results that would be obtained if finsertorder was executed with these arguments. It
returns a record tquote describing produced agreements. The id field can be used to reference this
quote for execution of finsertorder with the same arguments.

3.2.3 fexecquote

SELECT fexecquote(_owner text,_id int);
conditions :

• the quote has been submitted with the same owner,

It executes a finsertorder with the arguments of the referenced quote. Agreements provided by the
quote are the same as those provided by the quote is the market is unchanged between the quote and
it's execution. The quote is removed after execution. It returns a record tresorder (described in
§3.2.1).

An error is returned when the quote does'nt exist or was not created with the same owner.

3.2.4 fgetprequote

SELECT fgetprequote(_owner text,_qualityprovided text,_qttprovided
int8,_qualityrequired text);

conditions :

• _quantityprovided >0,

Gets a quote without defining the quantity required. This prequote is used to have an idea of the
quantity required by the market in order to make a quote using fgetquote.

The quote depends on the owner because fairness of the bartering depends on it (see §2). For each
cycle the quantity provided is such as no barter is required.

It returns a record yresprequote with the following fields:

Column Type Meaning

own int Internal reference to the owner

nr int Internal reference to the quality required

qtt_prov int8 Quantity provided

np int Internal reference to the quality provided

qtt_in_min int8 Quantities received and provided by the agreement having
the minimum ω

qtt_out_min int8

qtt_in_max int8 Quantities received and provided by the agreement having
the maximum ω

qtt_out_max int8

qtt_in_sum int8 Sum of quantities received and provided by flows produced

qtt_out_sum int8

flows yflow[] The list of agreements produced

3.2.5 fremoveorder

SELECT fremoveorder(_uuid text)

conditions:

• an order with the label _uuid exists

The order is removed from the order book.

Returns a row representing the order just removed, as the view vorder does.

3.2.6 fremoveagreement

SELECT fremoveagreement(_grp int)
conditions :

• an agreement _grp exists

The function is called by a client when all movements of the exchange are red from the table of
movements. It moves movements of this exchange belonging to this client to the table
tmvtremoved. The function returns an integer tha is the number of movements removed.

3.2.7 fcreateuser

SELECT fcreateuser(_username text)

The function creates the user and provides access to he database with the role client. It can only be
executed by admin.

3.2.8 fstats

SELECT fstats(_extra bool)

gives general informations about the database:

Column Type

 Number of qualities int

 Number of owners int

 Number of quotes int

 Number of orders int

 Number of movements int

 Number of quotes removed int

 Number of orders removed int

 Number of movements removed int

 Number of agreements int

 Number of orders rejected int

 For each agreement length, the numer of agreements int

3.2.9 vorder

Gives a description of the order.

 Column Type Meaning

id int Internal reference of the order

uuid text External reference of the order

owner text Name of the owner

qua_requ text Quality required

qtt_requ int8 Quantity required

qua_requ text Quality required

qtt_requ int8 Quantity required

qtt int8 Quantity not yet exchanged for this order

created timestamp Time when the order was inserted

updated timestamp Time when the order was last updated

examples

SELECT * FROM vorder WHERE owner='jack';
List of orders owned by the owner 'jack'.

3.2.10 vorderremoved

Same as vorder.

When the quantity left in order is 0, the order is appears in this view. When the order is removed by
a client, it also appears here with a qtt >0.

3.2.11 vmvt

It is the list of movements.

Column Type Meaning

id int Internal id of the movement

nb int Number of movements of the agreement

oruuid text Reference to the order that produced it

grp int id of the agreement. It is the id of the first movement of this
agreement.

provider text Owner providing the value

nat text Quality of the value moved

qtt int8 Quantity of the value moved

receiver text Owner receiving the value

created timestamp Time when the agreement was formed

examples:

SELECT * FROM vmvt WHERE quality='gold';
List of movements of the quality 'gold'.

3.2.12 vmvtremoved

Same as vmvt but for the table tmvtremoved.

3.3 Installation

3.3.1 Build from sources

Following instructions has been tested on linux 32 bits and 64 bits architecture with version 9.2
of postgreSql.

If you are in the contrib/ directory of postgres, and have unzipped the package into openBarter:

>> cd openBarter/src
>> make
>> make install

Restart postgres server, and verify test are running:

>> make check

…
============== running regression test queries ==============
test testflow_1 ... ok
test testflow_2 ... ok
test testflow_3 ... ok
test testflow_4 ... ok
test testflow_5 ... ok
test testflow_6 ... ok
============== shutting down postmaster ==============

=====================
 All 6 tests passed.
=====================

3.3.2 Install the model

The model is defined by the file openBarter/src/sql/model.sql. It is recommended to execute it
with a superuser role that is never user for market operations. When you are in openBarter/src:

>> createdb market
>> psql market
market=# \i sql/model.sql

The model does not depend of any schema, and creates roles if they do not exist yet, and
modify them otherwise.

To start operation, just connect to the database as admin, and create some clients with the
function like this:

>> psql -Uadmin market
market=> SELECT t.createuser('username')

3.4 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1
Berkeley-db is resides in memory instead of files in $PGDATA. This increases global

performance of searches. [Olivier Chaussavoine]

0.1.2
rights of roles of the database model are defined globally using schemas instead of granted

individually for each function. [Olivier Chaussavoine]

0.1.6
ported on postgres9.1.0

0.2.0
The use of berkeleydb is replaced by WITH .. SELECT of PostgreSQL. A new type “flow”

is defined, containing low level calculations. Tests units are functional [Olivier Chaussavoine].

0.2.1
Memory allocation and code cleaned. Tests units are functional [Olivier Chaussavoine].

0.2.2
Core algorithms optimized. Tests units are functional [Olivier Chaussavoine].

ob_fget_omegas(np,nr) provides the list of all prices found, even those not requested.
[Olivier Chaussavoine]

0.3.0
The constraint of acyclic graph is removed. Complete redesign. [Olivier Chaussavoine].

0.4.0
quote and prequote added. [Olivier Chaussavoine].

Order rejection mechanism added [Olivier Chaussavoine].

0.4.1
ported on postgreSql 9.2. [Olivier Chaussavoine].

Bug fixes [Olivier Chaussavoine].

	1 The market rules
	2 The model
	3 Implementation
	3.1 Database model
	3.1.1 Order book
	3.1.2 Market opening and closing
	3.1.3 Users
	3.1.4 Objects
	3.1.4.1 Owner
	3.1.4.2 Quality
	3.1.4.3 Movement
	3.1.4.4 Order
	3.1.4.5 Quote

	3.1.5 Order rejection
	3.1.6 Quotas

	3.2 Application programming interface
	3.2.1 finsertorder
	3.2.2 fgetquote
	3.2.3 fexecquote
	3.2.4 fgetprequote
	3.2.5 fremoveorder
	3.2.6 fremoveagreement
	3.2.7 fcreateuser
	3.2.8 fstats
	3.2.9 vorder
	3.2.10 vorderremoved
	3.2.11 vmvt
	3.2.12 vmvtremoved

	3.3 Installation
	3.3.1 Build from sources
	3.3.2 Install the model

	3.4 Releases

