
openBarter

openBarter is an extension of postgreSQL

1 Objects of the model

1.1 Value
A value is a couple (quantity,quality), where quality is a name, and quantity is

an integer. It can be used to define an amount of mineral, of pollution, or of money.
The owner of such a value can use the market to exchange it for an other quality.

1.2 Exchange
This market allows exchanges between two partners or more in

a single transaction. An exchange forms a cycle of partners where
each provides a value and receives an other value of different
quality. An exchange with more than two partners is called non-
bilateral.

1.3 Price
The price is defined for a couple (quality provided,quality
required). It is the ratio ω between provided quantity and received
quantity. It measures how much we accept to provide of the
quality provided when we receive a unit of the quality required.
On a regular market, the expression of price is the same for the
buyer and the seller and are equal when they agree on the price. In this model, the price of parters
are different even when they agree on their prices.

1.4 Agreement on price
When a set of bids form an exchange cycle, a draft agreement

can be formed when there is an agreement on prices. It occurs when
the product of prices ω of bids of the exchange cycle equals to 1.
When this condition is not met a barter is required. The agreement is
obtained on the example.

1.5 Bid
It is an unilateral commitment of the owner to exchange a value

he owns for another quality at a given price. A bid is defined by a
value provided, the quality of the value required, and a price ω. Two
bids match when the quality provided by one is the quality required
by the other. When some bid matchings form a cycle, an exchange
can be formed from this cycle.

1.6 Best price rule
It is used to select the best among possible exchange cycles. The best cycle is the one having the
maximum product of prices ω.

1.7 Barter
When there is no agreement on price, an automatic barter is performed where prices ω are divided
by the geometric mean of ω of the cycle.

This division converts ω to ω' in such a way that the product of ω' equals to 1.

This rule is fair when all partners are distinct. When it is not the case Ω is first shared between
partners, then shared between bids of each partner.

2 Implementation
The market is seen as a directed graph where bids define nodes, and matchings between bids define
arrows. This graph is maintained acyclic by transforming cycles into draft agreements as soon as
they appear. This occurs each time a bid is added. A competition occurs between possible cycles
when more than one cycles are found. Draft agreements are produced from these cycles. Values
corresponding to these agreements reduce values of bids in such a way that cycles disappear.

Due to limits of computational resources on time and memory, a limit of 8 has been defined for the
maximum number of partners of a draft agreement.

openBarter is an extension of postgreSql. Stored procedures act on a model representing qualities,
owners, values, and draft exchange agreements.

The main time consuming primitives of the server are:

• read the best price for a couple of qualities requested and provided,

• make an bid.

2.1 Users
Users of openBarter is a role “market” defined are clients of the database.

2.2 Database model
The database is described by src/sql/model.sql. It consists in related tables, stored procedures

and a special type called “flow”.

2.2.1 Vocabulary

quality The name of a quality.

owner The name of the owner of a value.

value It is a tuple (quality, quantity,owner).

account is a position at a given time, with history, for a given (owner,quality)

2.2.2 Schema

Table Description

 ob_tdraft, ob_tcommit Description of draft agreements. An agreement is a ob_tdraft row.
A ob_tcommit row refers to it and describes the commitment of a
single owner for this agreement.

 ob_tmvt History of movements on ob_tstock, when the ownership of
values are modified.

 ob_tnoeud Description of bids, refers to a quality provided, and a value in
ob_tstock. Contains a couple (qtt_prov,qtt_requ) of integers such
as ω=qtt_prov/qtt_requ

 ob_towner Description of owners

 ob_tquality Description of qualities

 ob_tstock Description of values

A row of the table ob_tstock describes a value – a tuple (quantity, quality, owner of the
value,type). A type that can be A,D or S.

It is a stock_A when the value is moved to the database.

It is a stock_S when the value is referred by a bid.

It is a stock_D when the value is referred by a draft agreement.

2.3 Application programming interface
The “market” role acts through stored procedures that must be integrated in transactions in the read-
commited mode.

The following list presents functions written in PG_PLSQL and views. Some low level routines are
written in C language, integrated in a special type “flow”.

Function and views action

ob_fadd_account moves a value to owner's account

ob_fsub_account moves a value from owner's account

ob_finsert_bid inserts a bid

ob_finsert_sbid insert a bid based on an other

ob_fdelete_bid removes a bid

ob_faccept_draft accepts a draft

ob_frefuse_draft refuse a draft

ob_fstats gives global stats

ob_vowned Gives quantity owned for each couple (quality,owner).

ob_valance List of values owned by user group by quality name.

ob_vdraft List of drafts where the owner is partner.

ob_vbid List of bids

ob_vmvt List of movements

In case of error, an exception is raised, with the code “38000”, with comments about the error. In
the following, int is used form 32 bit integer, and int8 for 64 bits integer.

2.3.1 ob_fadd_account

Int ob_fadd_account(_owner text,_quality text,_qtt int8);
conditions :

• qtt >=0.

moves the value to owner's account defined by a couple [owner,quality]

quality and owner are created when they do not exist. The movement is recorded.

Returns:

• 0 when the account is credited,

• <0 on error.

2.3.2 ob_fsub_account

int ob_fsub_account(_owner text,_quality text,_qtt int8);
conditions :

• owner and quality exist,

• qtt >=0,

• qtt <= the quantity of the account(_owner,_quality)

Moves the value to owner's account defined by the couple (_owner,_quality)

Account is deleted when empty. The movement is recorded.

Returns:
• 0 when the account is debited,

• <0 on error.

2.3.3 ob_finsert_bid

int8 ob_finsert_bid(
_owner text,
_qualityprovided text,
_qttprovided int8,
_qttrequired int8,
_qualityrequired text

)

inserts a new bid based on a new stock_D. Several Drafts can be created by this function that
returns the number of draft created.

conditions :

• owner has an account (_owner,_qualityprovided) with a quantity >= qttprovided,

• qualityprovided and qualityrequired are defined,

• qttprovided >0,

• qttrequired >0.

Returns:

• >=0 the number of drafts created,

• <0 on error.

2.3.4 ob_finsert_sbid

 int8 ob_finsert_sbid(
bid_id int8,

qttprovided int8,
qttrequired int8,
qualityrequired text

)

Inserts a bid based on an other bid. The value proposed by this new bid is the same as the one
referred by the bid bid_id.

• bid_id exists,

• qttprovided >0,

• qttrequired >0,

• qualityrequired is defined.

Returns an int8:

• the number of drafts created (>=0),

• < 0 error.

2.3.5 ob_fdelete_bid

ob_fdelete_bid(bid_id int8)
conditions :

• the bid exists

Delete bid and related drafts.

Delete related stock_S if it is not related to an other bid. The quantity of this stock_S is moved
back to the account of the owner.

A given stock_S is deleted by the ob_fdelete_bid() when it is only referenced by this deleted bid it.

2.3.6 ob_faccept_draft

int ob_faccept_draft(draft_id int8,owner text)

conditions :

• draft_id exists with status Draft

• owner is partner of this draft

returns:

• 0 the draft is not yet accepted by all partners,

• 1 the draft is executed,

• < 0 error.

2.3.7 ob_frefuse_draft

int ob_frefuse_draft(draft_id int8,owner text)
conditions :

• draft_id exists with status Draft

• owner is partner of this draft

the draft is cancelled.

Values of stock_D booked for this draft are moved back to stock_S of bids.

returns:

• 0 the draft is cancelled,

• < 0 error.

2.3.8 ob_get_omegas

Set of int8[] ob_get_omegas(_nr int8,_np int8)
conditions :

• _nr and _np are quality.id

returns a list of couples [qtt_prov,qtt_requ] ordered by qtt_prov/qtt_requ representing the maximum
flow that could be producted by existing paths if a bid was made requesting _nr and providing _np.

2.3.9 ob_fstats

ob_yret_stats ob_fstats()

gives general informations about the model:

Column Type Meaning

 mean_time_drafts int8 mean of delay of drafts

 nb_drafts int8 number of drafts

 nb_noeuds int8 number of bids

 nb_stocks int8 number of stocks

 nb_stocks_s int8 number of stocks type=S

 nb_stocks_d int8 number of stocks type=D

 nb_stocks_a int8 number of stocks type=A

 nb_qualities int8 number of qualities

 nb_owners int8 number of owners

all following columns should be zero

Column Type Meaning

unbalanced_qualities int8 number of qualities with accounting
problems

corrupted_draft int8 number of inconsistent drafts

corrupted_stock_s int8 number of stocks_S not related to a
bid

corrupted_stock_a int8 number of couples (quality,owner)
where stocks_A is not unique

Example:

select * from ob_fstats()

2.3.10 ob_vowned

Gives quantity owned for each couple (quality,owner).

 Column Type Meaning

qname text quality name

owner text Name of the depositary owner of this quality

qtt int8 sum(qtt) for couples (quality,owner)

created timestamp min(created)

updated timestamp max(updated?updated:created)

examples

SELECT * FROM ob_vowned WHERE owner='jack';
total values owned by the owner 'jack'

2.3.11 ob_vbalance

List of values owned by user group by quality name.

Column Type Meaning

qname text quality name

qtt int8 sum(qtt) for this quality

created timestamp min(created)

updated timestamp max(updated?updated:created)

examples:

SELECT * FROM ob_vbalance WHERE qname='gold';
Total values owned for the quality 'gold'

SELECT count(*) FROM ob_vbalance WHERE qtt!=0 AND qname='gold'
Returns 0 if accounting is correct for this user.

2.3.12 ob_vdraft

list of commits of draft grouped by owner.

Column Type Meaning

did int8 id of draft

status char always Draft

owner text owner providing the value

cntcommit int number of bids of the draft owned by this owner

flags int4 bit 0 set when accepted by owner; bit 1 set when refuse by
owner

created timestamp

usage:

SELECT * FROM ob_vdraft WHERE owner='paul'
list of drafts for the owner 'paul' ,

SELECT owner,flags&1 as accepted,flags&2 as refused FROM market.vdraft
WHERE did=100

list of partners of the draft 100 with their decisions.

2.3.13 ob_vbid

List of bids.

Column Type Meaning

 id int8 id of bid

 owner text name of author of the bid, owner of the value offered

 required_quality text

 required_quantity int8

 omega float the ratio provided_quantity/required quantity

 provided_quality text Quantity of the value offered at the time the bid was created

provided_quantity int8

sid int8 tstock.id f the value offered by the bid

qtt int8 Quantity of the value offered

created timestamp

usage:

SELECT * FROM ob_vbid WHERE owner='luc'
 list of bids of 'luc'

2.3.14 ob_vcommit

List of commits.

Column Type Meaning

 draft int8 Draft id

bid int8 Bid id

commit int8 Commit id

 owner text name of author , owner of the value offered

provides text Quality provided

qtt int8 Quantity provided

usage:

SELECT * FROM ob_vcommit WHERE owner='luc'
 list of draft commits of 'luc'

2.3.15 ob_vmvt

returns a list of movements related to the owner.

Column Type Meaning

 id int8 id of the movement.

did int8 Movements related to a given draft are referenced by a single. This is
not the ob_tdraft.id, but the id of the first movement related to this
draft. It is not NULL for a draft executed even if this draft where
deleted. It is NULL when the movement is not created by the execution
of an agreement.

provider text name of provider

nat text quality of moved value

qtt int8 quantity moved value

receiver text name of receiver

created text timestamp
usage:

SELECT * from ob_vmvt where 'luc' in (provider,receiver)
list of movements for this owner.

2.4 Installation

2.4.1 Build from sources

Following instructions has been experimented on linux 32 bits and 64 bits architecture.

If you are in the contrib/ directory of postgres, and have unzipped the package into openBarter:

>> cd openBarter/src
>> make
>> make install

Restart postgres server, and verify test are running:

>> make installcheck
…
============== running regression test queries ==============
test flow_1 ... ok
test flow_2 ... ok
test flow_3 ... ok

test flow_4 ... ok

=====================
 All 4 tests passed.
=====================

2.4.2 Install the model

The model is defined by the file openBarter/src/sql/model.sql. It is recommended to execute it
with an admin role that is not “market”.

The model does not depend of any schema, and creates a role “market” if it doesn't exist
already. All functions and views described here can be accessed only with this role.

2.5 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1

Berkeley-db is resides in memory instead of files in $PGDATA. This increases global
performance of searches. [Olivier Chaussavoine]

0.1.2

rights of roles of the database model are defined globally using schemas instead of granted
individually for each function. [Olivier Chaussavoine]

0.1.6

ported on postgres9.1.0

0.2.0

The use of berkeleydb is replaced by WITH .. SELECT of postgres. A new type “flow” is
defined, containing low level calculations. Tests units are functional [Olivier Chaussavoine].

	1 Objects of the model
	1.1 Value
	1.2 Exchange
	1.3 Price
	1.4 Agreement on price
	1.5 Bid
	1.6 Best price rule
	1.7 Barter

	2 Implementation
	2.1 Users
	2.2 Database model
	2.2.1 Vocabulary
	2.2.2 Schema

	2.3 Application programming interface
	2.3.1 ob_fadd_account
	2.3.2 ob_fsub_account
	2.3.3 ob_finsert_bid
	2.3.4 ob_finsert_sbid
	2.3.5 ob_fdelete_bid
	2.3.6 ob_faccept_draft
	2.3.7 ob_frefuse_draft
	2.3.8 ob_get_omegas
	2.3.9 ob_fstats
	2.3.10 ob_vowned
	2.3.11 ob_vbalance
	2.3.12 ob_vdraft
	2.3.13 ob_vbid
	2.3.14 ob_vcommit
	2.3.15 ob_vmvt

	2.4 Installation
	2.4.1 Build from sources
	2.4.2 Install the model

	2.5 Releases

