
OpenBarter

openBarter is a database defining a barter market. It implements the economic mechanisms of a
regular market and allows exchange between more than two partners (the buyer and the seller) in a
single transaction. It does not require any central monetary standard to quantify the value
exchanged and to express prices to be compared.
The low liquidity of barter is the historical reason why money expended while barter decreased. By
allowing exchanges with more than two partners the barter market becomes nearly as liquid as a
regular market using money. The competition between groups of more than two partners fosters
cooperation inside groups, as well as economic performance.

Clients of the database are external organisations called depositories. A depository delegates to the
database the ownership management of values. It sends to the database orders of owners: exchange
proposals called bids, or movements of values from and to the database on which these bids are
based on. The database finds possible relations between bids and proposes draft agreements for
approval by owners. A depository is accountable of the relation between the physical value and the
information that describe it.

1 Economics
We propose to define a bid as a statement of an owner to provide a value defined by a couple
(quantity,quality) in exchange of an other quality for a given ω ratio between provided and received
qualities.

1.1 Draft agreement formation
From bids submitted by depositories, the database finds possible relations between them. This

search is done each time a new bid is submitted, and consists in the following steps:

A) Find sets of bids where matchings between quality provided and required form an exchange
cycle,

B) Select the best among these cycles, using a best price rule generalized to multilateral
agreements,

C) Finds a compromise between the bids of the selected cycle, and records the resulting
agreement as a draft to be submitted to owners.

1.2 Multilateral exchange
Let's consider a set of n such bids where the quality offered by one equals the quality required by
the other. ωi are prices of these n bids, with i∈[0,n−1] .

Let's also suppose an agreement exists between partners, and that each partner provides a given
quantity qi to an other partner. We should have:

If we make the product of those n expression,

we obtain:

We see that if an agreement exists, we have:

[1]

1.3 Bilateral case
Using the regular definition of price for an exchange between a seller providing 10 Kg of apples in
exchange of 20 pounds, the price is 2 pounds/Kg.

If a seller provides a quantity g of goods to a buyer in exchange of a quantity m of money, the

regular definition of price is: p=
m
g

.

Buyer and seller have usually different ideas of prices, We note the buyer price pb and the seller
price ps . Agreement is the result of a compromise between these prices.

Using the definition of price ω given earlier (a ratio between provided and received quantities) the

buyer price is ωb such as ωb=
m
g

 and the seller price is ωs such as ωs=
g
m

.

We see that ωb=pb and ωs=
1
ps

Agreement

Agreement on price between the buyer and the seller exists when pb= ps . An equivalent
statement using expressions ωb and ωs of price is:

ωb=
1
ωs

⇒ωb∗ωs=1

It is the definition of agreement given earlier [1] applied to the bilateral case.

Competition

Using the traditional definition of price, the best price rule is for the buyer the minimum ps, and for
the seller the maximum pb.

Using the new definition of price; since ωs=
1
ps

and ωb=pb , it is the maximum ωs and the

maximum ωb, the best price rule is the selection of the best:

[2]

Compromise

Barter is required when buyer and seller do not agree on their prices pb and ps. We propose to define
it as the geometric mean of pb and ps: p '=√ pb∗ ps . This represents for each partner the same
ratio between initial and final price. It is also a simple way to balance offers of partners.

ωi=
q i
qi−1

for i∈[1,n−1]

ω0=
q0

qn−1

∏
i=0

n−1

ωi=
q0

qn−1

∗∏
j=1

n−1 q i
qi−1

=1

∏
i=0

n−1

ωi=1

ωs∗ωb

Expressed using expressions ω of prices, we obtain new values ω's and ω'b such as their product is
1:

or more simply:

[3]

1.4 Extension to the multilateral case

We note the product Ω=∏
i=0

n−1

ωi .

The best price rule [2] is extended to the multilateral case by choosing the cycle of bids
maximizing:

[4]

Likewise for [3], a compromise can be obtained for a cycle of bids with:

[5]

[4] is the simplest expression of [2] to the multilateral case . However it is not the unique
solution.

2 Model
We describe here objects and functions of the model.

2.1 Value
A value is a couple (quantity,quality), where quality is a name, and quantity is

an integer. It can be used to define an amount of mineral, of pollution, or of money.
The owner of such a value can use the market to exchange it for an other quality.

2.2 Exchange
This market allows exchanges between two partners or more in

a single transaction. An exchange forms a cycle of partners where
each provides a value and receives an other value of different
quality. An exchange with more than two partners is called non-
bilateral.

2.3 Price
The price is defined for a couple (quality provided,quality
required). It is the ratio ω between provided quantity and received
quantity. It measures how much we accept to provide of the

ωs '=
ωs

2√ωs∗ωb

ωb '=
ωb

2
√ωs∗ωb

Ω

ω '= ω
2√ωs∗ωb

ω '= ω
n
√Ω

quality provided when we receive a unit of the quality required.
On a regular market, the expression of price is the same for the buyer and the seller and are equal
when they agree on the price. In this model, the price of parters are different even when they agree
on their prices.

2.4 Agreement on price
When a set of bids form an exchange cycle, a draft agreement

can be formed when there is an agreement on prices. It occurs when
the product of prices ω of bids of the exchange cycle equals to 1.
When this condition is not met a barter is required. The agreement is
obtained on the example.

2.5 Bid
It is an unilateral commitment of the owner to exchange a value

he owns for another quality at a given price. A bid is defined by a
value provided, the quality of the value required, and a price ω. Two
bids match when the quality provided by one is the quality required
by the other. When some bid matchings form a cycle, an exchange
can be formed from this cycle.

2.6 Best price rule
It is used to select the best among possible exchange cycles. The best cycle is the one having the
maximum product of prices ω.

2.7 Barter
When there is no agreement on price, an automatic barter is performed where prices ω are divided
by the geometric mean of ω of the cycle.

This division converts ω to ω' in such a way that the product of ω' equals to 1.

Draft agreement creation also needs adjustments on quantities that need to be integers. The
agreement on price is used to obtain quantities qi' by computing the maximum flow of value along
the cycle of bids using ω' and the quantity provided by each bid. This maximum flow is a tuple of
real numbers qi' rounded to integers Qi' . We consider the vector q⃗ of coordinates qi' , and
Q⃗ of coordinates Qi', and minimize the rounding error represented by the angle ε between the

two vectors. It is done by maximizing:

However, the solutions Q⃗ such as some Qi' are null should be excluded, because a draft
agreement where some partners don't provide anything would be unfair.

ω ' j=
ω j

n√∏
i=1

n

ωi

cos(α)=
q⃗∗Q⃗

∥q⃗∥∗∥Q⃗∥

3 Implementation
The market is seen as a directed graph where bids define nodes, and matchings between bids define
arrows. This graph is maintained acyclic by transforming cycles into draft agreements as soon as
they appear. This occurs each time a bid is added. A competition occurs between possible cycles
when more than one cycles are found. Draft agreements are produced from these cycles. Values
corresponding to these agreements reduce values of bids in such a way that cycles disappear.

Due to limits of computational resources on time and memory, limits are defined on the graph
traversal that should be tuned.

3.1 Technical overview
openBarter is an extension of postgreSql. Stored procedures act on a model representing qualities,
owners, values, and draft exchange agreements.

The main time consuming primitives of the server are:

• read the best price for a couple of qualities requested and provided,

• make an bid.

A single simplifying hypothesis is used to limit computation load: the number of partners of
contracts is limited to openbarter.maxarrow. This is why the liquidity of this barter market is not
strictly the same as on a bilateral stock market.

3.2 Limits
openbarter.cachesize (memory size >= 1M, default 4M)

Limits memory used by berkeleydb. The memory is allocated on the server for each backend
process. The number of mega should be openbarter.maxarrow/395 when page size is 8192 bytes.

openbarter.maxarrow (int >= 128, default 1580)

When bid relations are explored, a graph is produced. It is the maximum number of arrows of this
graph.

openbarter.maxcommit (int in [3,8], default 8)

Limits the number of commits of agreements. Consequently, it also limits the number of partners.
This value should not be modified after the database is created.

The following is added at the end of postgresql.conf:

custom_variable_classes = 'openbarter' # list of custom variable class

#---

OPENBARTER

#---

openbarter.cachesize = 4MB

openbarter.maxarrow = 1580 # 395*4

openbarter.maxcommit = 8

3.3 Users
Users of openBarter are clients of the database. It uses ssl authentication capabilities of postgreSql
to enforce security of openBarter. Refer to postgreSql documentation to set up a client and server ssl
certificate. Roles are the followings:

• public, it is a depositary acting on behalf of owners. It can move values from and to the
database only for qualities he owns, make bids on them, and accept or refuse drafts using
these qualities.

• admin, executes actions of registration, provides accounting reports and all other necessary
tasks.

3.4 Database model
The database is described by pg/openbarter.sql. It consists in two schemas: ob is the internal

state of the market, and market is the public representation of the market.

3.4.1 Vocabulary

depositary user of the database with the role depositary, for example depos_com

quality The name of a quality, for example depos_com>sand. This quality is a value
standard precisely defined by the depositary depos_com. This quality is owned by a
single depository.

owner The owner of a value, for example luc@depos_com

value It is a tuple (quality, quantity,owner) for example (
depos_com>sand,124,luc@depos_com). It means the ownership management of
this value has been delegated by the depository to the market.

account is a position at a given time, with history, for a given (owner,quality)

3.4.2 Schema ob

Table Description

 ob.tdraft, ob.tcommit Description of draft agreements. An agreement is a ob.tdraft row.
A ob.tcommit row refers to it and describes the commitment of a
single owner for this agreement.
 openbarter.maxcommit is the maximum number of commits
related to a given draft.

ob.tomega, ob.tlomega History of prices. A couple (quality provided,quality required)
refers to a single row of ob.tomega, while rows of ob.tlomega
refer to a row of ob.tomega.

 ob.tmvt History of movements on ob.tstock, when the ownership of
values are modified.

 ob.tnoeud Description of bids, refers to a quality provided, and a value in
ob.tstock

 ob.towner Description of owners

 ob.tquality Description of qualities

 ob.tstock Description of values

 ob.tuser Description of depositories

A row of the table ob.tstock describes a value – a tuple (quantity, quality, owner of the value).
The quality of this value is owned by a depository, ownership management is delegated by the
depository owner refers to a ob.tquality, an ob.towner, and has a quantity, a version, and a type that
can be A,D or S.

It is a type A when the value is moved to the database. It is a stock_A.

It is a type S when the value is referred by a bid. It is a stock_S.

It is a type D if the value is referred by a draft agreement. It is a stock_D.

3.5 Application programming interface
Clients act through stored procedures that must be integrated in transactions by the client.

A depository can just create a quality, move values of these qualities in and out of the database, and
act on behalf of owners of these values to create/remove bids and accept/refuse drafts including
these qualities.

Other procedures are used by roles market or admin.

A quality is created and used by a single depository in order to separate responsibility of ownership
management of each quality.

Even if value ownerships are exchanged, the depository that guaranties these values remains
unchanged.

Function

market.fcreate_quality records a new quality

market.fadd_account moves a value to owner's account

market.fsub_account moves a value from owner's account

market.finsert_bid inserts a bid

market.finsert_sbid insert a bid based on an other

market.fdelete_bid removes a bid

market.faccept_draft accepts a draft

market.frefuse_draft refuse a draft

market.fbatch_omega

market.fstats gives global stats

market.vowned Gives quantity owned for each couple (quality,owner).

market.bvalance List of values owned by user group by quality name.

market.vdraft List of drafts where the owner is partner.

market.vbid List of bids

market.vmvt List of movements

market.fcrt_start_renewal Start certificate renewal

market.fcrt_read_renewal Verify the new certificate

market.fcrt_accept_renewal Accept certificate renewal

market.fcrt_abort_renewal Abort certificate renewal

market.fcrt_getuser

In case of error, an exception is raised, with the code “38000”, with comments about the error. In
the following, int is used form 32 bit integer, and int8 for 64 bits integer.

3.5.1 market.fcreate_quality

int market.fcreate_quality(name text);

records a new quality with the name: user>name where user is the name of the client of the
database. Requires the role depositary.

Returns:

• 0 when the quality is created,

• <0 on error.

example:

select * from market.fcreate_quality('sand');

If the name of the depository defining the quality is depos_com, this creates a quality
depos_com>sand

3.5.2 market.fadd_account

int market.fadd_account(_owner text,_quality text,_qtt int8);

conditions :

• quality exist,

• qtt >=0.

moves the value to owner's account defined by a couple [owner,quality]

account and owner are created when they do not exist. The movement is recorded. Requires the
role depositary.

Returns:
• 0 when the account is credited,

• <0 on error.

3.5.3 market.fsub_account

int market.fsub_account(_owner text,_quality text,_qtt int8);

conditions :

• owner and quality exist,

• qtt >=0 and <= qtt of the account(_owner,_quality)

Moves the value to owner's account defined by the couple (owner,quality)

Account is deleted when empty. The movement is recorded. Requires the role depositary.

Returns:
• 0 when the account is debited,

• <0 on error.

3.5.4 market.finsert_bid

int8 market.finsert_bid(
_owner text,
_qualityprovided text,
_qttprovided int8,
_qttrequired int8,
_qualityrequired text

)

inserts a new bid based on a new stock_D. Requires the role depositary.

conditions :

• owner exists,

• qualityprovided and qualityrequired are defined,

• qttprovided >0,

• qttrequired >0.

Returns:

• >=0 the number of drafts created,

• <0 on error.

3.5.5 market.finsert_sbid

 int8 market.finsert_sbid(
bid_id int8,
qttprovided int8,
qttrequired int8,
qualityrequired text

)

Inserts a bid based on an other bid. The value proposed by this new bid is the same as the one
referred by the bid bid_id. Requires the role depositary.
conditions :

• bid_id exists,

• qttprovided >0,

• qttrequired >0,

• qualityrequired is defined.

Returns an int8:

• the number of drafts created (>=0),

• < 0 error.

3.5.6 market.fdelete_bid

market.fdelete_bid(bid_id int8)

conditions :

• the bid exists

Delete bid and related drafts. Requires the role depositary.

Delete related stock_S if it is not related to an other bid.

 The quantity of this stock_S is moved back to the account.

A given stock_S is deleted by the market.fdelete_bid() of the last bid it references.

3.5.7 market.faccept_draft

int market.faccept_draft(draft_id int8,owner text)

conditions :

• draft_id exists with status D

returns:

• 0 the draft is not yet accepted by all partners,

• 1 the draft is executed,

• < 0 error.

3.5.8 market.frefuse_draft

int market.frefuse_draft(draft_id int8,owner text)

conditions :

• draft_id exists with status D

the draft D is cancelled. Requires the role depositary.

Values of stock_D booked for this draft are moved back to stock_S of bids.

returns:

• 1 the draft is cancelled,

• < 0 error.

3.5.9 market.fbatch_omega

int market.fbatch_omega()

utility calling market.fread_omega(nr,nf) for the couple (nr,nf) that needs refresh the most:

• a couple (nr,nf) such as market.tomega[nr,nf] does not exist,

• if not found, oldest couple (cflags&1=0),

• if not found, oldest couple such as (cflags&1=1)

Should be called by a cron.

3.5.10 market.fstats

market.tret_stats market.fstats()

gives general informations about the model:

Column Type Meaning

 mean_time_drafts int8 mean of delay of drafts

 nb_drafts int8 number of drafts

 nb_noeuds int8 number of bids

 nb_stocks int8 number of stocks

 nb_stocks_s int8 number of stocks type=S

 nb_stocks_d int8 number of stocks type=D

 nb_stocks_a int8 number of stocks type=A

 nb_qualities int8 number of qualities

 nb_owners int8 number of owners

all following columns should be zero

Column Type Meaning

unbananced_qualities int8 number of qualities with accounting
problems

corrupted_draft int8 number of inconsistent drafts

corrupted_stock_s int8 number of stocks_S not related to a
bid

corrupted_stock_a int8 number of couples (quality,owner)
where stocks_A is not unique

Example:

select * from market.fstats()

3.5.11 market.vowned

Gives quantity owned for each couple (quality,owner).

 Column Type Meaning

qown text owner of the quality

qname text quality name

owner text Name of the depositary owner of this quality

qtt int8 sum(qtt) for couples (quality,owner)

created timestamp min(created)

updated timestamp max(updated?updated:created)

examples

SELECT * FROM market.vowned WHERE owner='jack@depos_com';

total values owned by the owner 'jack@depos_com'

SELECT * FROM market.vowned WHERE qown='depos_com';

total values of owners for qualities of 'depos_com'

SELECT o.qname FROM market.vowned o
INNER JOIN market.tquality on q.name=o.qname
GROUP BY o.qname WHERE q.qtt != 0;

returns 0 lines when accounting is correct for each quality

3.5.12 market.bvalance

List of values owned by user group by quality name.

Column Type Meaning

qown text owner of the quality

qname text quality name

qtt int8 sum(qtt) for this quality

created timestamp min(created)

updated timestamp max(updated?updated:created)

examples:

SELECT * FROM market.vbalance WHERE qown='depos_com';

Total values owned by the user 'depos_com'

SELECT count(*) FROM market.vbalance WHERE qtt!=0 AND qown='depos_com'

Returns 0 if accounting is correct for this user.

3.5.13 market.vdraft

list of drafts by owner.

Column Type Meaning

did int8 id of draft

status char always D

owner text owner providing the value

cntcommit int number of commits of the draft

flags int4 bit 0 set when accepted by owner; bit 1 set when refuse by
owner

created timestamp

usage:

SELECT * FROM market.vdraft WHERE owner='paul@depos_com'

list of drafts for the owner 'paul@depos_com'

SELECT owner,flags&1 as accepted,flags&2 as refused FROM market.vdraft
WHERE did=100

list of partners of the draft 100 with their decisions.

3.5.14 market.vbid

List of bids.

Column Type Meaning

 id int8 id of bid

 owner text name of author , owner of the value offered

 required_quality text

 required_quantity int8

 omega float the ratio provided_quantity/required quantity

 provided_quality text Quantity of the value offered at the time the bid was created

provided_quantity int8

sid int8 tstock.id f the value offered by the bid

qtt int8 Quantity of the value offered

created timestamp

usage:

SELECT * FROM market.vbid WHERE owner='luc@depos_com'

 list of bids of the owner 'luc'

3.5.15 market.vmvt

returns a list of movements related to the owner.

Column Type Meaning

 id int8 id of the movement.

did int8 all movements produced when an agreement is executed have the same
did. It is not NULL for a draft executed even if this draft where deleted.
It is NULL when the movement is not due to the execution of an
agreement.

provider text name of provider

nat text quality of moved value

qtt int8 quantity moved value

receiver text name of receiver

created text timestamp
usage:

SELECT * from market.vmvt where 'luc@depos_com' in (provider,receiver)

list of movements for this owner.

/* subscription process

admin runs:

SELECT ob.fadduser(dn,10000);

the user connects.

3.5.16 Authentication of client

It uses potgreSql ssl authentication with a certificate on the server and client side. These
certificates have a limited live time.

To use the service of openBarter, a client need to be registered, and at to renew it's certificate
when necessary.

3.5.16.1 certificate registration

 Registration is required to use any function. We suppose here the commonName of the client
certificate is depos_com, and that no client is registered with this name.

The administrator executes:

SELECT ob.fcrt_adduser('depos_com',10000);

The first client connecting with the commonName depos_com is then registered, and the

dnIssuer and serial number of the client certificate are associated with this commonName. All future
use of this commonName will verify dnIssuer and serial number match with the recorded
informations.

3.5.16.2 certificate renewal process

When the certificate is too old, the user looks for a new certificate. The process is defined in such a
way that the client remains the owner of the commonName and associated qualities, even in case a
malicious actor would attempt to steal this ownership. The process does not need administrator's
action. The client just needs the old and new certificate.

with the old certificate:

SELECT market.fcrt_start_renewal();

with the new certificate:

SELECT market.fcrt_getuser(2);

with the old certificate:

SELECT market.fcrt_read_renewal();

returns a value dnIssuer:serialNumer of the new certificate. The client compares this value to that of
the new certificate. If the value is the same:

SELECT market.fcrt_accept_renewal(dnIssuer:serialNumer)

At any time between fcrt_start_renewal and fcrt_accept_renewal,

SELECT market.fcrt_accept_renewal();

abort the renewal process.

3.6 Installation

3.6.1 Build from sources

Following instructions apply to a linux 32 bits achitecture.

3.6.1.1 Build Berkeleydb

On most linux distributions, the library is already installed. If it is not, upload berkeleydb db-
4.8.30 to a directory,say 'sw', and uncompress sources:

>> cd sw/db-4.8.30

>> mkdir build_unix

>> cd build_unix

Choose directories where you will install include files, libraries and executable.

We suppose here you choosed /usr/include, /usr/lib and /usr/bin respectively. In the

directory sw/db-4.8.30/build_unix execute:

>> ../dist/configure --enable-smallbuild --disable-shared --libdir=/usr/lib
--includedir=/usr/include --bindir=/usr/bin

>> make

>> sudo make install

This will install the following files:

• /usr/include/db.h and db_cxx.h

• /usr/lib/libdb.a and libdb-4.8.a

• /usr/bin/db_* (11 files)

With these files, we can compile a C program with the command:

>> gcc program_to_compile -ldb-4.8 -lpthread

3.6.1.2 Build Postgres

Download postgres v9.0.4 . Copy the sources to sw/pgsql:

>> cd sw/pgsql

>> ./configure --prefix=/usr --with-openssl

>> make

Refer to the postgreSql manual for more information.

3.6.2 Installation

3.6.2.1 Database

Refer to the manual of postgres for more details. Here is a short version of the installation
procedure.

su root

gmake install

adduser postgres

mkdir /usr/local/pgsql/data

chown postgres:postgres /usr/local/pgsql/data

add PATH and PGDATA to /etc/bash.bashrc :

PATH=”/usr/bin:$PATH”

PGDATA=”/usr/local/pgsql/data”

export PGDATA

Create the database:

su - postgres

/usr/bin/initdb -D $PGDATA

start the server:

/usr/bin/pg_ctl -D $PGDATA -l logfile

exit

Verify the server is running:

/usr/bin/createdb marketdb

/usr/bin/psql marketdb

marketdb=#SHOW ALL;

marketdb=#CREATE ROLE admin;

marketdb=#\q

3.6.2.2 openbarter

In the directory contrib of postgres sources, Uncompress openbarter and move it to the
directory contrib of postgres sources,

>> mv openbarter sw/pgsql/contrib

>> cd sw/pgsql/contrib/openbarter/pg

>> make

>> make install

At the end of the file $PGDATA/postgresql.conf, change the followings:

shared_preload_libraries = 'openbarter' # (change requires restart)

custom_variable_classes = 'openbarter' # list of custom variable class

#---

OPENBARTER

#---

openbarter.cachesize = 4MB

openbarter.maxarrow = 1580 # 4* 395

openbarter.maxcommit = 8

And elsewhere in the same file change the following:

shared_preload_libraries = 'openbarter' # (change requires restart)

in order to load openbarter library into the client process as soon as it is started.

3.6.2.3 ssl_info

Install the module sslinfo of postgres. The installation procedure is given in the postgres
manual.

cd sw/pgsql/contrib/sslinfo

make

make install

pg_ctl restart

psql marketdb < sslinfo.sql

3.6.3 tests

Tests must be run with the user postgres.

>> cd sw/pgsql/contrib/openbarter/pg

>> make installcheck

These tests should provide positive results.

3.6.4 Production site

3.6.4.1 Install database

The database is installed with the user postgres with the following command:

>> cd sw/pgsql/contrib/openbarter/pg

>> psql -dmarketdb < openbarter.sql

A user admin should be created:

CREATE ROLE admin LOGIN;

3.6.4.2 Restrict access

Except the super user postgres that was used to install the model, all users of postgres are
authentified using ssl protocol. Refer to the manual of postgres to install the necessary files into the
directory $PGDATA on the server side, and into the directory ~/.postgres of the client side.

The file postgres.conf should be modified to activate ssl:

ssl = on

ssl_ciphers = 'ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH' # allowed SSL ciphers

And pg_hba.conf should be modified as followings. Here is an example:

TYPE DATABASE USER CIDR-ADDRESS METHOD

local marketdb postgres 127.0.0.1/32 trust

hostssl marketdb all 127.0.0.1/32 cert clientcert= 1

hostssl marketdb all ::1/128 cert clientcert= 1

Certificate should be provided to the special user admin.

3.7 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1

Berkeley-db is resides in memory instead of files in $PGDATA. This increases global
performance of searches. [Olivier Chaussavoine]

0.1.2

rights of roles of the database model are defined globally using schemas instead of granted
individually for each function. [Olivier Chaussavoine]

0.1.6

ported on postgres9.1.0

	1 Economics
	1.1 Draft agreement formation
	1.2 Multilateral exchange
	1.3 Bilateral case
	1.4 Extension to the multilateral case

	2 Model
	2.1 Value
	2.2 Exchange
	2.3 Price
	2.4 Agreement on price
	2.5 Bid
	2.6 Best price rule
	2.7 Barter

	3 Implementation
	3.1 Technical overview
	3.2 Limits
	3.3 Users
	3.4 Database model
	3.4.1 Vocabulary
	3.4.2 Schema ob

	3.5 Application programming interface
	3.5.1 market.fcreate_quality
	3.5.2 market.fadd_account
	3.5.3 market.fsub_account
	3.5.4 market.finsert_bid
	3.5.5 market.finsert_sbid
	3.5.6 market.fdelete_bid
	3.5.7 market.faccept_draft
	3.5.8 market.frefuse_draft
	3.5.9 market.fbatch_omega
	3.5.10 market.fstats
	3.5.11 market.vowned
	3.5.12 market.bvalance
	3.5.13 market.vdraft
	3.5.14 market.vbid
	3.5.15 market.vmvt
	3.5.16 Authentication of client
	3.5.16.1 certificate registration
	3.5.16.2 certificate renewal process

	3.6 Installation
	3.6.1 Build from sources
	3.6.1.1 Build Berkeleydb
	3.6.1.2 Build Postgres

	3.6.2 Installation
	3.6.2.1 Database
	3.6.2.2 openbarter
	3.6.2.3 ssl_info

	3.6.3 tests
	3.6.4 Production site
	3.6.4.1 Install database
	3.6.4.2 Restrict access

	3.7 Releases

