
E
–

M
 a

 j

1 / 61

4.5.0 French acronym for
"Enregistrement des Mises A Jour"

i.e. "updates recording"

Let your PostgreSQL data
travel back in time

E
–

M
 a

 j

2 / 61

4.5.0

E-Maj, what is it for?

● E-Maj allows the data content to travel back in time, with a table
level granularity

● By recording updates on sets of application tables, it is possible to
– Count them (statistic function),
– Easily view them (audit function),
– Revert them ("rollback" function),
– Replay them (script generation, or revert a revert...)

● Usable with
– applications in test or in production
– databases of all sizes

E
–

M
 a

 j

3 / 61

4.5.0

The gains

● In test environment
– Helps the application tests management by providing a quick way to

● Examine updates generated by the application, for debugging
purpose

● Cancel updates generated by the application in order to easily
repeat tests

● In production environment
– Allows to cancel processings

● Without being obliged to save and restore the instance by
pg_dump/pg_restore or by physical copy

● With a finer granularity
– Avoids to loose entire batch processing nights by helping the recovery after

failure
– Very interesting with large tables and few updates

E
–

M
 a

 j

4 / 61

4.5.0

The components

● E-Maj, the heart
– A PostgreSQL extension
– Open Source, under GPL licence
– Download from pgxn.org - https://pgxn.org/dist/e-maj/
– Sources available on github.com - https://github.com/dalibo/emaj

● Emaj_web
– A web client - https://github.com/dalibo/emaj_web

● The online documentation
– In English (or French) - https://emaj.readthedocs.io/en/latest/

https://pgxn.org/dist/e-maj/
https://github.com/dalibo/emaj
https://github.com/dalibo/emaj_web
https://emaj.readthedocs.io/en/latest/

E
–

M
 a

 j

5 / 61

4.5.0

The characteristics which drove the design

● Reliability
– Absolute data integrity after updates cancellation
– Management of all usual objects (tables, sequences, contraints,...)

● Ease of use for DBAs, production people, application developpers
and testers,...

– Easy to understand and use
– Easy to integrate into an automatized production (thus scriptable)

● Performance
– Limited log overhead
– Acceptable “rollback” duration

● Security
● Maintenability

E
–

M
 a

 j

6 / 61

4.5.0

Concepts

● Tables Group = a set of tables and/or sequences belonging to
one or several schemas and having the same life cycle ; it's the
only object manipulated by users

● Mark = stable point in the life of a tables group, whose state can
be set back ; identified by a name

● E-Maj Rollback = positioning of a tables group at a previously set
mark state

– NB: this concept is different from the transaction rollbacks performed by the
RDBMS

● a “RDBMS-rollback” cancels the current transaction
● a “E-Maj rollback” cancels updates from several commited

transactions

E
–

M
 a

 j

7 / 61

4.5.0

Concepts (2)

● By default, a tables group is created as rollbackable
● A tables group may be created as audit-only

– E-Maj rollbacks are not possible
– Useful to capture data changes for tables without PRIMARY KEY

or of type UNLOGGED
● Log session = time interval when a tables group capture data

changes ; it is bounded by the tables group start and stop
actions.

E
–

M
 a

 j

8 / 61

4.5.0

An updates recording based on triggers

SQL
Log triggers

and functions

Rollback
function

Insert
Update
Delete
Truncate

Delete
Insert

Insert
Application

tables
Log

tables

E
–

M
 a

 j

9 / 61

4.5.0

Main objects

SQL
Log triggers

and functions

Rollback
function

Insert
Update
Delete
Truncate

Delete
Insert

Insert
Application

tables
Log

tables

Tables group

E-Maj
environment

emaj_viewer
role

emaj_adm
role

E
–

M
 a

 j

10 / 61

4.5.0

Management of application sequences

● Sequence increments are not individually recorded
● At set mark time

– The state of each sequence of the group is stored into an internal
table

● At E-Maj rollback time
– Each sequence is reset to its state recorded at the targeted mark

E
–

M
 a

 j

11 / 61

4.5.0

Install E-Maj

● Standart install
– pgxn install E-Maj --sudo
– Log on the target database as super-user and execute

● CREATE EXTENSION emaj CASCADE;
● Install on DBaaS cloud environment

– Download from pgxn.org and unzip the extension
– psql … -f sql/emaj-<version>.sql

● This adds to the database
– the extensions dblink et btree_gist if needed
– 1 schema, named 'emaj', with about 180 functions, 16 technical

tables, 11 types, 1 view, 1 sequence, 3 event triggers
– 2 roles

E
–

M
 a

 j

12 / 61

4.5.0

Initialization
● For each group:

– 1) Create an empty group
SELECT emaj_create_group (group, is_rollbackable);

– 2) Add tables and sequences
SELECT emaj_assign_tables (schema, inclusion regexp,
exclusion regexp, group);
SELECT emaj_assign_sequences (schema, inclusion regexp,
exclusion regexp, group);

● Ex: all tables of a schema except those suffixed by sav:
'.*', 'sav$'

● Create for each application table: 1 log table, 1 log sequence, 1 log
trigger and its function

● NB: SELECT emaj_drop_group (group)
– … drop an existing group

E
–

M
 a

 j

13 / 61

4.5.0

The 3 main functions to manage groups

● “Starting” a group
– emaj_start_group (group, mark)

activates the log triggers and sets a first mark
● Setting a mark

– emaj_set_mark_group (group, mark)
sets an intermediate mark

● “Stopping” a group
– emaj_stop_group (group [,mark])

deactivates the log triggers => a rollback is not possible anymore
● The % character in a mark name represents the current date and time

E
–

M
 a

 j

14 / 61

4.5.0

Examine logs

● Examining log tables may largely help the application debuging
● Each application table has its own log table

– emaj_<schema>.<table>_log
● A log table contains

– The same columns as its related application table
– And some technical columns

● A single row change in an application table generates
– 1 log row for an INSERT (image of the new row)
– 1 log row for a DELETE or a TRUNCATE (image of the old row)
– 2 log rows for an UPDATE (image of the old and the new rows)

● A TRUNCATE generates also a single log row

E
–

M
 a

 j

15 / 61

4.5.0

Log tables technical columns

● 6 technical columns at the end of each log row
– emaj_verb : SQL statement type - INS/UPD/DEL/TRU
– emaj_tuple : row type - OLD/NEW
– emaj_gid : internal sequence number
– emaj_changed : time of the update - clock_timestamp()
– emaj_txid : transaction identifier - txid_current()
– emaj_user : connection role of the client - session_user

● … and some others can be added
● It is possible to identify clients and transactions, and analyze the

timing of the program execution

E
–

M
 a

 j

16 / 61

4.5.0

Counting recorded data changes

● 3 statistical functions, at tables group level and for a given marks
interval

– emaj_log_stat_group (group, start_mark, end_mark)
quickly returns an estimate of recorded changes per table

– emaj_detailed_log_stat_group (group, start_mark,
end_mark)
scans log tables and returns precise statistics on their content,
per table, statement type (INSERT / UPDATE / DELETE /
TRUNCATE) and ROLE

– emaj_sequence_stat_group (group, start_mark, end_mark)
returns the number of increments per sequence

E
–

M
 a

 j

17 / 61

4.5.0

Cancel updates : the “simple” rollback

● A “rollback” function allows to reset a tables group in the state it
had at a given mark

– emaj_rollback_group (group, mark [, false [, comment]])
● How this works

– Log triggers are deactivated during the operation
– Each table is reset to its mark state using an optimised algorithm
– Application sequences are reset to their mark state
– Takes into account the foreign keys, if any
– The canceled logs and marks are deleted

=> all what is after the rollback mark is forgotten

E
–

M
 a

 j

18 / 61

4.5.0

An optimised rollback algorithm

● It processes each primary key value only once

Ins
1

Ins
1

emaj_rollback_group(M2)

Del
3

Ins
2

Ins
3

Upd
2->4

Del
1

Upd
4->5

Del
6

Ins
2

Upd
5->6

emaj
_set

_mar
k_gr

oup(M1)

emaj
_set

_mar
k_gr

oup(M2)

emaj
_set

_mar
k_gr

oup(M3)

Application updates Rollback updates

E
–

M
 a

 j

19 / 61

4.5.0

A typical E-Maj usage (production batch processing)

Log tables

Proc. 1 Proc. 2 Proc. 3

start_group set_mark rollback_group
stop_group

set_mark

App. tables

Abort !

E
–

M
 a

 j

20 / 61

4.5.0

Cancelling updates : the “logged” rollback

● emaj_logged_rollback_group (group, mark[, false [,
comment]])

● Different from the “simple” rollback
– Log triggers are NOT deactivated during the operation

=> the updates generated by the rollback are recorded
– Cancelled logs et marks are NOT deleted

● So we can revert an E-Maj rollback ! And more generally let a
tables group travel back and forth in time !

● 2 marks are automatically set before and after the rollback
– RLBK_<marque cible>_<HH.MI.SS.MS>_START
– RLBK_<marque cible>_<HH.MI.SS.MS>_DONE

● During the rollback, tables remain accessible in read mode

E
–

M
 a

 j

21 / 61

4.5.0

A typical E-Maj usage in test environment

● 4 processings to test in sequence
● After test 3, a new version of processing 2 must be re-tested
● Then perform the remaining tests

Proc. 1 Proc. 2 Proc. 3

M1 M2 M3 M4

Proc. 2’

emaj
_log

ged_
roll

back
_gro

up(M2)
Rlbk Proc. 4

emaj
_rol

lbac
k_gr

oup(M4)
Rlbk

...M2...START

...M2...DONE

E
–

M
 a

 j

22 / 61

4.5.0

Estimating an E-Maj rollback duration

● In order to know if we have enough time to perform the operation
or if another way to recover would be more efficient

● A function estimates the time needed to rollback a group to a
given mark

– emaj_estimate_rollback_group (group, mark)

E
–

M
 a

 j

23 / 61

4.5.0

Executing a parallel E-Maj rollback

● A php or perl client performs rollbacks with parallelism
– emajParallelRollback.php -d <database> -h <host> -p

<port> -U <user> -W <password> -g <group_name or
groups_list> -m <mark> -s <nb_sessions> [-l] [-c
comment>]

● Automatically spreads the tables to process into a given number of
parallel sessions

● All sessions belong to a single transaction (2PC)
=> max_prepared_transactions >= nb sessions

● Needs php or perl with its PostgreSQL extension

E
–

M
 a

 j

24 / 61

4.5.0

Monitoring E-Maj rollbacks in execution

● A function
– SELECT * FROM emaj.emaj_rollback_activity ();
– returns

● The characteristics of rollbacks (group, mark...)
● Their state
● Their current duration
● An estimate of the remaining duration and the already executed %

● Needs to setup the value of the “dblink_user_password” parameter
in the emaj_param table

E
–

M
 a

 j

25 / 61

4.5.0

Monitoring E-Maj rollbacks

● A php or perl client to monitor the executing or completed
rollbacks

– emajRollbackMonitor.php -d <database> -h <host> -p
<port> -U <user> -W <password> -n <nb_iterations> -i
<refresh_rate_in_seconds> -l <nb_completed rollbacks> -a
<completed_rollbacks_history_depth_in_hours>

 E-Maj (version 4.2.0) - Monitoring rollbacks activity

21/03/2023 - 08:31:23
** rollback 34 started at 2023-03-21 08:31:16.777887+01 for groups {myGroup1}
 status: COMMITTED ; ended at 2023-03-21 08:31:16.9553+01
** rollback 35 started at 2023-03-21 08:31:17.180421+01 for groups {myGroup1}
 status: COMMITTED ; ended at 2023-03-21 08:31:17.480194+01
-> rollback 36 started at 2023-03-21 08:29:26.003502+01 for groups {group20101}
 status: EXECUTING ; completion 85 %; 00:00:20 remaining

E
–

M
 a

 j

26 / 61

4.5.0

Consolidate a “logged” rollback

● “Consolidate” a rollback means transform a “logged rollback” into
a “simple rollback”

● Intermediate logs and marks are deleted, recovering some place in
the logs

– emaj_consolidate_rollback_group (groups,
end_rollback_mark)

● Tables can be updated during the consolidation
● A function returns the list of consolidable rollbacks

– emaj_get_consolidable_rollbacks ()

E
–

M
 a

 j

27 / 61

4.5.0

Example of E-Maj rollback consolidation

M1 M2 M3

emaj
_log

ged_
roll

back
_gro

up(M2)
rlbk log

emaj
_con

soli
date

_rol
lbac

k_gr
oup(...M2...DONE)

...M2...START

...M2...DONE

M4

upd logupd log upd log upd log upd log

E
–

M
 a

 j

28 / 61

4.5.0

Being protected against unattended E-Maj rollbacks

● 2 functions to manage the protection of a tables group
– emaj_protect_group (group)
– emaj_unprotect_group (group)

● 2 functions to manage the protection of a mark
– emaj_protect_mark_group (group, mark) blocks any attempt to

rollback to a mark prior the protected mark
– emaj_unprotect_mark_group (group, mark)

set_mark M1 rollback M2
set_mark M2

set_mark M3 rollback M1protect_mark M2

RefusedOK

E
–

M
 a

 j

29 / 61

4.5.0

The emajStat client to monitor changes recording
● A perl client to count changes on tables and sequences since the

latest mark of their group and since the previous display, in
absolute value and changes per second

● Many options to filter groups, tables and sequences, define the
refresh parameters, …

– For the details: emajStat.pl --help
 E-Maj (version 4.5.0) - Monitoring logged changes on database regression (@127.0.0.1:5412)
--
2024/08/15 08:12:59 - Logging: groups=2/3 tables=11/11 sequences=4/4 - Changes since 1.004 sec: 0 (0.000
c/s)
 Group name + Latest mark + Changes since mark + Changes since prev.
 myGroup1 | Multi-1 (2024/08/15 08:12:38) | 359 (17.045 c/s) | 0 (0.000 c/s)
 Table name + Group + Changes since mark + Changes since prev.
 myschema1.mytbl1 | myGroup1 | 211 (10.018 c/s) | 0 (0.000 c/s)
 myschema1.myTbl3 | myGroup1 | 60 (2.849 c/s) | 0 (0.000 c/s)
 myschema1.mytbl2b | myGroup1 | 52 (2.469 c/s) | 0 (0.000 c/s)
 myschema1.mytbl2 | myGroup1 | 27 (1.282 c/s) | 0 (0.000 c/s)
 myschema1.mytbl4 | myGroup1 | 9 (0.427 c/s) | 0 (0.000 c/s)
 Sequence name + Group + Changes since mark + Changes since prev.
 myschema1.mytbl2b_col20_seq | myGroup1 | -5 (-0.237 c/s) | 0 (0.000 c/s)
 myschema1.myTbl3_col31_seq | myGroup1 | -20 (-0.950 c/s) | 0 (0.000 c/s)

E
–

M
 a

 j

30 / 61

4.5.0

emajStat logic and parameters

Tables
 group in
“Logging”

state

Filtre
sur les
noms

S

Tables
in groups

Sequences
in groups

g

S

t

--include-groups
--exclude-groups

Filter
on

names

Filter
on

names

Filter
on

names

--include-tables
--exclude-tables

--include-sequences
--exclude-sequences

Look at
log

sequences

Look at
sequences

Aggregation

D
i
s
p
l
a
y

Sort and
limit

Sort and
limit

Sort and
limit

--max-groups

--max-tables

--max-sequences

E
–

M
 a

 j

31 / 61

4.5.0

Analyse recorded data changes

● Dump on files, by COPY, in a given directory, a log tables extracts and
sequences of a group

– emaj_dump_changes_group (group, start_mark, end_mark,
options_list, tables/seq_array, directory)

● Generate SQL to extract recorded changes between 2 marks for all or
some tables or sequences of a group

– In the instance disk space :
emaj_gen_sql_dump_changes_group (group, start_mark,
end_mark, options_list, tables/seq_array, file)

– In an emaj_temp_sql temporary table, for any use by any client :
emaj_gen_sql_dump_changes_group (group, start_mark,
end_mark, options_list, tables/seq_array)

E
–

M
 a

 j

32 / 61

4.5.0

Analyse data changes: the options
● Common to emaj_dump_changes_group() and

emaj_gen_sql_dump_changes_group()
– CONSOLIDATION = NONE (default) | PARTIAL | FULL
– EMAJ_COLUMNS = ALL | MIN | (list) : selects E-Maj technical columns
– COLS_ORDER = LOG_TABLE | PK : sets the order of delivered columns
– ORDER_BY = PK | TIME : sets the order of delivered rows, by PK or emaj_gid
– SEQUENCES_ONLY : excludes tables
– TABLES_ONLY : excludes sequences

● For emaj_dump_changes_group()
– COPY_OPTIONS = (options list) : for the COPY TO generation
– NO_EMPTY_FILES : removes empty files (tables without changes)

● For emaj_gen_sql_dump_changes_group()
– PSQL_COPY_DIR = directory : generates a \copy for each statement, with this

directory
– PSQL_COPY_OPTIONS = (liste options) : sets the \copy options
– SQL_FORMAT = RAW | PRETTY : formats each statement on 1 or several lines

E
–

M
 a

 j

33 / 61

4.5.0

Analyse data changes: the consolidated vision of
changes
● The consolidated vision of changes provides a net outcome of recorded changes,

for a given time range and for each primary key
– At most: 1 “OLD” row (the initial state) and 1 “NEW” row (the final state)
– Ex: if UPDATE ‘A’→’B’ then UPDATE ‘B’→’C’, row OLD = ‘A’ and row NEW = ‘C’

● Therefore each examined table must have an explicit PK
● 2 consolidation kinds

– “Partial consolidation”: without taking into account the columns content
– “Full consolidation”: examining the changed data

● For a given PK, no change is reported if all columns of both “OLD” and
“NEW” rows are equal

● Ex: no change reported for a given PK if UPDATE ‘A’→’B’ then UPDATE
‘B’→’A’, or if INSERT then DELETE

● Sequences
– 1 “OLD” row and 1 “NEW” row for the initial and final sequence’s characteristics
– In “Full consolidation” mode, no row is returned if the sequence has not been changed

E
–

M
 a

 j

34 / 61

4.5.0

Analyse data changes: emaj_temp_sql temporary
table structure
CREATE TEMP TABLE emaj_temp_sql (
 sql_stmt_number INT, -- Statement number
 -- (0 for the initial comment)
 sql_line_number INT, -- Line number within the statement
 -- (0 for the initial comment of the statement)
 sql_rel_kind TEXT, -- Relation kind: "table" or "sequence"
 sql_schema TEXT, -- Schema name
 sql_tblseq TEXT, -- Table or sequence name
 sql_first_mark TEXT, -- Fist mark name (for the table/sequence)
 sql_last_mark TEXT, -- Last mark name (for the table/sequence)
 sql_group TEXT, -- Tables group owning the relation
 sql_nb_changes BIGINT, -- Estimated number of changes to process
 sql_file_name_suffix TEXT, -- File name suffix
 sql_text TEXT, -- SQL statement text
 sql_result BIGINT -- Column dedicated to the caller for its operations
 -- (some other can be added with ALTER TABLE)
);

An index on the 2 first columns

E
–

M
 a

 j

35 / 61

4.5.0

Replay data changes

● Generate a sql script replaying the elementary recorded changes
between 2 marks, for some or all tables and sequences of a group

– In the instance disk space:
emaj_gen_sql_group (group, start_mark, end_mark,
dest_file [,tables/seq_list])

– Anywhere, with psql:
SELECT emaj_gen_sql_group (group, start_mark,
end_mark, NULL [,tables/seq_list])
\copy (SELECT * FROM emaj_sql_script) TO ‘dest_file’

● Useful in test environment to “replicate” the changes produced by a
processing

E
–

M
 a

 j

36 / 61

4.5.0

The tables group life cycle
« unknown »

Create group

« idle »

Drop group

« logging »

Start groupStop group

Rollback group Set a mark

E
–

M
 a

 j

37 / 61

4.5.0

Tables groups dynamic adjustment

● To add one or several tables
– emaj_assign_table(schema, table, group, properties [, mark])
– emaj_assign_tables(schema, tables list, group, properties [,

mark])
– emaj_assign_tables(schema, selection filter, exclusion filter,

group, properties [, mark])
● Properties:

– JSON format
– To define the priority and the tablespaces for log data and index

● Selection and exclusion filters: RegExp

E
–

M
 a

 j

38 / 61

4.5.0

Tables groups dynamic adjustment

● Example
– emaj_assign_tables(‘myschema’, ‘tbl.*’,’_sav$’, ‘mygroup’,

‘{“priority”:1}’::json)
assigns to the group ‘mygroup’ and with the priority 1 all tables of
the schema ‘myschema’ whose name starts with ‘tbl’ and doesn’t
end with ‘_sav’

E
–

M
 a

 j

39 / 61

4.5.0

Tables groups dynamic adjustment

● Similarly:
– emaj_assign_sequence() and emaj_assign_sequences()
– emaj_modify_table() and emaj_modify_tables()
– emaj_move_table() and emaj_move_tables()
– emaj_move_sequence() and emaj_move_sequences()
– emaj_remove_table() and emaj_remove_tables()
– emaj_remove_sequence() and emaj_remove_sequences()

E
–

M
 a

 j

40 / 61

2.2.3

Impact of logging group structure changes on
rollbacks

m1 m2 m3 m4

t1
t2
t3
t4

Table t2 removed at mark m3, t3 added at m2, t4 removed at m2 and added at m3

emaj_rollback_group(<groupe>,’m1’, true) would pr

]

]
[

[

E
–

M
 a

 j

41 / 61

2.2.3

Impact of logging group structure changes on
statistics and content changes extracts

m1 m2 m3 m4

t1
t2
t3
t4

emaj_log_stat_group(<groupe>,’m1’,’m4’) and
emaj_dump_changes_group(<groupe>,’m1’,’m4’,...) would report:

]

]
[

[

E
–

M
 a

 j

42 / 61

2.2.3

Impact of logging group structure changes on the
SQL scripts generation

m1 m2 m3 m4

t1
t2
t3
t4

emaj_gen_sql_group(<group>,’m1’,’m4’) would process:

]

]
[

[

E
–

M
 a

 j

43 / 61

2.2.3

Modify the structure of a table in a LOGGING group

● For actions like: rename the table, change its schema,
add/drop/rename a column, change a column type

● The log table structure is impacted
● 3 steps

– Remove the table from its tables group
– ALTER TABLE
– Add the table into its tables group

● Constraint: an E-Maj rollback to a prior mark will not be able to go
beyond the structure change

● Idem to rename a sequence of change its schema

E
–

M
 a

 j

44 / 61

4.5.0

Processing several groups in a single operation
● Some “multi-groups” variants of functions

– emaj_start_groups (groups_array, …)
– emaj_stop_groups (groups_array, …)
– emaj_set_mark_groups (groups_array, …)
– emaj_rollback_groups (groups_array, …)
– emaj_logged_rollback_groups (groups_array, …)
– emaj_log_stat_groups (groups_array, …)
– emaj_gen_sql_groups (groups_array, …)

● Allows to get marks shared by several groups
● Both PostgreSQL syntaxes for groups arrays

– ARRAY['group 1', 'group 2', …]
– '{"group 1", "group 2", … }'

E
–

M
 a

 j

45 / 61

4.5.0

Managing marks

● Comment a mark for a group (add/modify/suppress)
– emaj_comment_mark_group (group, mark, comment)

● Rename a mark
– emaj_rename_mark_group (group, old_name, new_name)

● Delete a mark
– emaj_delete_mark_group (group, mark)
– If the deleted mark is the first one, logs prior the second one are deleted

● Delete all marks prior a given mark
– emaj_delete_before_mark_group (group, mark)
– Deletes logs prior the mark (it may take a long time...)

E
–

M
 a

 j

46 / 61

4.5.0

Managing mark (2)

● Search for marks
– emaj_find_previous_mark_group (group, date-time) returns the

mark immediately preceeding a given date and time
– emaj_find_previous_mark_group (group, mark) returns the mark

immediately preceeding a given mark
● “EMAJ_LAST_MARK” represents the last set mark for a group

– Usable for all parameters defining an existing mark

E
–

M
 a

 j

47 / 61

4.5.0

Other actions on groups

● Comment a group (add/modify/suppress)
– emaj_comment_group (group, comment)

● Purge log tables of a stopped group (anticipating its next restart)
– emaj_reset_group (group)

● Export / import tables groups configurations
– emaj_export_groups_configuration ()
– emaj_import_groups_configuration ()

● Force a group stop (in case of problem with the normal stop function)
– emaj_force_stop_group (group)

E
–

M
 a

 j

48 / 61

4.5.0

Other actions on groups

● Snap on files in a given directory, by COPY, all tables and sequences
of a group

– emaj_snap_group (group, directory, copy_options)
● Erase histories about a dropped tables group

– emaj_forget_group (group)

E
–

M
 a

 j

49 / 61

4.5.0

Other actions
● Get the current emaj extension version or drop the extension

– emaj_get_version ()
– emaj_drop_extension ()

● Verify the good health of the E-Maj installation
– emaj_verify_all ()

● Get the current log table of a given application table
– emaj_get_current_log_table ()

● Manualy purge obsoletes traces
– emaj_purge_histories ()

● Create/modify/delete a comment on a rollback
– emaj_comment_rollback ()

● Export or import parameters configuration
– emaj_export_parameters_configuration ()
– emaj_import_parameters_configuration ()

E
–

M
 a

 j

50 / 61

4.5.0

Temporary or permanent logging?

● Temporary logging = steps like
– emaj_start_group()
– repeat

● processiong
● emaj_set_mark()

– emaj_stop_group()
● At next start, old logs are purged
● But stops and starts set very

heavy locks

● Permanent logging = no
repeated group stop/restart

– Obsolete data in log tables must
be regularly deleted, using the
emaj_delete_before_mark()
function

● The deletion can be costly if the
volume of log to delete is big

E
–

M
 a

 j

51 / 61

4.5.0

For large databases...

● Log tables and indexes can be stored into tablespaces
– 2 optional properties set when assigning tables to groups

E
–

M
 a

 j

52 / 61

4.5.0

To ensure the reliability

● No change in the PostgreSQL engine
● Many systematic checks, in particular at group start, mark set or

rollback times:
– Do all required tables, sequences, functions and triggers exist?
– Consistency of columns between the application tables and the related log

tables (existence, type)?
● Heavy locks on tables at start_group, set_mark_group and
rollback_group, to be sure that no transaction is currently updating
application tables

– The order of lock setting can be influence by a priority level defined
for each table

● Rollback all tables and sequences by a single transaction

E
–

M
 a

 j

53 / 61

4.5.0

To ensure the reliability (2)

● “event triggers” block unintentional drops or some component changes
(tables, sequences, functions...)

– 2 functions to deactivate/reactivate the lock-in
– emaj_disable_protection_by_event_triggers ()
– emaj_enable_protection_by_event_triggers ()

E
–

M
 a

 j

54 / 61

4.5.0

Impact of application triggers on E-Maj rollbacks

● Triggers of type BEFORE on a table
belonging to a tables group

– Values really inserted into the
database are recorded into the
log

– => to be disabled at E-Maj rollback
● Triggers of type AFTER updating a

table belonging to the same tables
group

– The rollback will reset both tables
with the right content

– => to be disabled at E-Maj rollback

● Other cases : study the impacts

SQL logtable
Before
trigger

rollback

group

SQL log_1table_1

After
trigger rollback

group

table_2 log_2

E
–

M
 a

 j

55 / 61

4.5.0

Impact of application triggers on E-Maj rollbacks

● By default, application triggers are automatically disabled by E-Maj rollbacks
● A trigger may be left in its state at rollback time if it is registered as is
● 2 properties for emaj_assign_table(), emaj_assign_tables(),
emaj_modify_table() and emaj_modify_tables() functions to specify the
triggers that must be ignored by the E-Maj rollback processing

– "ignored_triggers": ["trg1","trg2",…] lists trigger names
– "ignored_triggers_profiles": ["regexp1","regexp2",…] lists regular

expressions that select trigger names

E
–

M
 a

 j

56 / 61

4.5.0

To contribute to the security

● 2 NOLOGIN roles whose rigths may be granted:
– emaj_adm for the E-Maj administration
– emaj_viewer to just look at E-Maj objects (logs, marks, statistics)

● E-Maj objects are only created and handled by a super-user or a member
of the emaj_adm role

● No other right has to be granted on E-Maj schemas, tables and functions
● Log triggers are created with the “SECURITY DEFINER” attribute
● No need to give additional rights to application tables or sequences

E
–

M
 a

 j

57 / 61

4.5.0

Performances

● Log overhead
– Highly depends on hardware and on the application read/write SQL ratio
– Typically a few % on elapse times
– But can be much higher on pure data loading

● Rollback duration
– Of course depends on the number of updates to cancel
– Also highly depends on

● The hardware configuration
● Tables structure (row sizes, indexes, foreign keys, other

constraints…)
– But almost always shorter than a logical restore

E
–

M
 a

 j

58 / 61

4.5.0

Emaj_web

● For administrators
and users

● All E-Maj objects
(groups, marks...)
and their attributes

● (almost) all
possible actions
on E-Maj objects

Tables groups list

E
–

M
 a

 j

59 / 61

4.5.0

Emaj_web : tables group details

E
–

M
 a

 j

60 / 61

4.5.0

Current limitations

● Since E-Maj 4.2, the minimum required PostgreSQL version is 11
● Every application table belonging to a rollbackable group needs a
PRIMARY KEY

● DDL statements cannot be logged or cancelled by E-Maj
– Changing a table’s structure requires to temporarily remove the table from its

group
● FOREIGN KEYs defined on partitionned tables are

incompatible with E-Maj rollbacks
– => define them on each partition

E
–

M
 a

 j

61 / 61

4.5.0

To conclude...

● Many more informations in
– the documentation:

https://emaj.readthedocs.io/en/latest/index.html
– the README et CHANGES files

● Many thanks to all contributors and users
● Feel free to give any feedback through github or email

(phb.emaj@free.fr)

https://emaj.readthedocs.io/en/latest/index.html

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61

