
A PostgreSQL extension

Reference Guide

Version: 4.1.0

Last update: 30 September 2022

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Summary

1 - Introduction..7

1.1 - Document content...7

1.2 - License..7

1.3 - E-Maj's objectives..7

1.4 - Main components..8

2 - How E-Maj works...9

2.1 - Concepts..9

2.1.1 - Tables Group..9

2.1.2 - Mark..9

2.1.3 - Rollback...9

2.2 - Architecture...10

2.2.1 - Logged SQL statements...10

2.2.2 - Created objects...10

2.2.3 - Schemas...11

2.2.4 - Norm for E-Maj objects naming..12

2.2.5 - Tablespaces..12

3 - How to install E-Maj...13

3.1 - Quick start...13

3.1.1 - Software install..13

3.1.2 - Extension install..13

3.1.3 - Extension use..14

3.2 - Installing the E-Maj software...15

3.2.1 - Downloading sources..15

3.2.2 - Standart installation on Linux..15

3.2.3 - Minimum installation on Linux...16

3.2.4 - Installation on Windows..16

3.2.5 - Alternate location of SQL installation scripts..16

3.3 - E-Maj extension setup...17

3.3.1 - Optional preliminary operation..17

3.3.2 - Standart creation of the emaj EXTENSION..17

3.3.3 - Creating the extension by script...18

3.3.4 - Changes in postgresql.conf configuration file...18

3.3.5 - E-Maj parameters...19

3.4 - Update an existing E-Maj version...20

3.4.1 - General approach...20

E-Maj Reference Guide – version 4.1.0 Page 2 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.4.2 - Upgrade by deletion and re-installation..20

3.4.3 - Upgrade from an E-Maj version between 0.11.0 to 1.3.1..........................22

3.4.4 - E-Maj upgrade from 1.3.1 to a higher version..23

3.4.5 - Upgrade an E-Maj version already installed as an extension....................24

3.4.6 - Compatibility break..25

3.5 - Uninstalling an E-Maj extension from a database..26

3.6 - PostgreSQL version upgrade..27

3.6.1 - Changing PostgreSQL minor versions...27

3.6.2 - Changing the major PostgreSQL version and the E-Maj version

simultaneously..27

3.6.3 - Changing the PostgreSQL major version and keeping the existing E-Maj

environment..27

3.6.4 - Post migration adaptation script...27

4 - How to use E-Maj...29

4.1 - Set-up the E-Maj access policy...29

4.1.1 - E-Maj roles..29

4.1.2 - Giving E-Maj rights..29

4.1.3 - Giving rights on application tables and objects..29

4.1.4 - Synthesis...30

4.2 - Creating and dropping tables groups..31

4.2.1 - Tables groups configuration principles...31

4.2.2 - Create a tables group...32

4.2.3 - Assign tables and sequences into a tables group......................................33

4.2.4 - Drop a tables group..35

4.3 - Main functions...36

4.3.1 - Operations chain...36

4.3.2 - Start a tables group...37

4.3.3 - Set an intermediate mark..38

4.3.4 - Rollback a tables group..39

4.3.5 - Perform a logged rollback of a tables group...40

4.3.6 - Stop a tables group...42

4.4 - Modifying tables groups..44

4.4.1 - General information..44

4.4.2 - Add tables or sequences to a tables group..45

4.4.3 - Remove tables from their tables group...45

4.4.4 - Remove sequences from their tables group...46

4.4.5 - Move tables to another tables group..46

4.4.6 - Move sequences to another tables group..47

4.4.7 - Modify tables properties..47

4.4.8 - I ncidence of tables or sequences addition or removal in a group in

LOGGING state ..48

E-Maj Reference Guide – version 4.1.0 Page 3 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.4.9 - Reparing a tables group..50

4.5 - Other groups management functions..52

4.5.1 - Reset log tables of a group...52

4.5.2 - Comments on groups..52

4.5.3 - Protection of a tables group against rollbacks..52

4.5.4 - Forced stop of a tables group...53

4.5.5 - Forced suppression of a tables group..54

4.5.6 - Logged rollback consolidation..54

4.5.7 - List of “consolidable rollbacks”..55

4.5.8 - Exporting and importing tables groups configurations...............................56

4.6 - Marks management functions...58

4.6.1 - Comments on marks...58

4.6.2 - Search a mark...59

4.6.3 - Rename a mark...59

4.6.4 - Delete a mark..59

4.6.5 - Delete oldest marks..60

4.6.6 - Protection of a mark against rollbacks..61

4.7 - Statistics functions...63

4.7.1 - Global statistics about logs...63

4.7.2 - Detailed statistics about logs..64

4.7.3 - Estimate the rollback duration..65

4.8 - Data extraction functions...67

4.8.1 - SQL script generation to replay logged updates..67

4.8.2 - Snap tables of a group..69

4.8.3 - Snap log tables of a group..70

4.9 - Other functions..72

4.9.1 - Check the consistency of the E-Maj environment......................................72

4.9.2 - Exporting and importing parameters configurations...................................72

4.9.3 - Getting the current log table linked to an application table........................74

4.9.4 - Monitoring rollback operations..75

4.9.5 - Updating rollback operations state...76

4.9.6 - History data purge...77

4.9.7 - Deactivating or reactivating event triggers...77

4.10 - Multi-groups functions...79

4.10.1 - General information..79

4.10.2 - Functions list...79

4.10.3 - Syntax for groups array...79

4.10.4 - Other considerations...80

4.11 - Parallel Rollback client..81

4.11.1 - Sessions..81

4.11.2 - Prerequisites...81

E-Maj Reference Guide – version 4.1.0 Page 4 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.11.3 - Syntax...82

4.11.4 - Examples...83

4.12 - Rollback monitoring client...84

4.12.1 - Prerequisite...84

4.12.2 - Syntax...84

 - Examples..85

5 - Miscellaneous..86

5.1 - Parameters..86

5.2 - Log tables structure...87

5.2.1 - Standart structure...87

5.2.2 - Adding technical columns...88

5.3 - Reliability...88

5.3.1 - Internal checks..89

5.3.2 - Event triggers..89

5.4 - Traces of operations..90

5.4.1 - The emaj_hist table...90

5.4.2 - Purge obsolete traces...92

5.5 - The E-Maj rollback under the Hood..93

5.5.1 - Planning and execution...93

5.5.2 - Rollbacking a table..94

5.5.3 - Foreign keys management...94

5.5.4 - Application triggers management...95

5.6 - Impacts on instance and database administration...95

5.6.1 - Stopping and restarting the instance..95

5.6.2 - Saving and restoring the database...96

5.6.3 - Data load...97

5.6.4 - Tables reorganisation...98

5.6.5 - Using E-Maj with replication..99

5.7 - Sensitivity to system time change...101

5.8 - Performance..102

5.8.1 - Updates recording overhead..102

5.8.2 - E-Maj rollback duration...102

5.8.3 - Optimizing E-Maj operations...102

5.9 - Usage limits...104

5.10 - User's responsibility..104

5.10.1 - Defining tables groups content...104

5.10.2 - Appropriate call of main functions..104

5.10.3 - Management of application triggers...104

5.10.4 - Internal E-Maj table or sequence change...105

6 - Emaj_web...106

E-Maj Reference Guide – version 4.1.0 Page 5 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

6.1 - Overview..106

6.2 - Emaj_web client installation..106

6.2.1 - Prerequisite...106

6.2.2 - Download..106

6.2.3 - Application configuration...107

6.3 - Using Emaj_web..107

6.3.1 - Access to Emaj_web and databases..107

6.3.2 - Tables groups list..108

6.3.3 - Some details about the user interface..109

6.3.4 - Tables group details..111

6.3.5 - Statistics..112

6.3.6 - Tables group content..113

6.3.7 - Schemas and tables groups configuration...113

6.3.8 - Monitoring rollback operations..117

6.3.9 - E-Maj environment state...119

7 - Contribute to the E-Maj development...122

7.1 - Build the E-Maj environment...122

7.1.1 - Clone the E-Maj repository...122

7.1.2 - Description of the E-Maj tree..122

7.1.3 - Setting tools parameters...122

7.2 - Coding...123

7.2.1 - Versionning...123

7.2.2 - Coding rules..123

7.2.3 - Version upgrade script..124

7.3 - Testing...125

7.3.1 - Create PostgreSQL instances..125

7.3.2 - Install software dependancies..125

7.3.3 - Execute non regression tests...125

7.3.4 - Test coverage...128

7.3.5 - Evaluate the performances...128

7.4 - Documenting...130

7.5 - Submitting a patch...130

8 - Appendix..131

8.1 - E-Maj functions list..131

8.1.1 - Tables or sequences level functions..131

8.1.2 - Groups level functions..133

8.1.3 - General purpose functions..136

8.2 - E-Maj distribution content..137

8.3 - PostgreSQL and E-Maj versions compatibility matrix...139

E-Maj Reference Guide – version 4.1.0 Page 6 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

1 INTRODUCTION

1.1 DOCUMENT CONTENT

This document is a reference guide for the E-Maj PostgreSQL extension.

Chapter 2 presents the concepts used by E-Maj and the general architecture of the
extension.

Chapter 3 describes E-Maj installation, update and uninstall procedures.

Chapter 4 details how to use E-Maj. It contains a description of each function.

Chapter 5 gives some additional information needed for a good understanding of how the
extension works.

Then, chapter 6 presents Emaj_web, a web graphic interfaces that complement the E-Maj
extension.

1.2 LICENSE

This extension and its documentation are distributed under GPL license (GNU - General
Public License).

1.3 E-MAJ'S OBJECTIVES

E-Maj is the French acronym for « Enregistrement des Mises A Jour », which means
« updates recording ».

It meets two main goals:
➢ E-Maj can be used to trace updates performed by application programs on the

table's content. Viewing these recorded updates offers an answer to the need for
“updates-auditing”,

➢ By using these recorded updates, E-Maj is able to logically restore sets of tables
into predefined states, without being obliged to either restore all files of the
PostgreSQL instance (cluster) or reload the entire content of the concerned tables.

In other words, E-Maj is a PostgreSQL extension which enables fine-grained write logging
and time travel on subsets of the database.

It provides a good solution to :

E-Maj Reference Guide – version 4.1.0 Page 7 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

➢ define save points at precise time on a set of tables,
➢ restore, if needed, this table set into a stable state, without stopping the instance,
➢ manage several save points, each of them being usable at any time as a restore

point.

So, in a production environment, E-Maj may simplify the technical architecture, by
offering a smooth and efficient alternative to time and/or disk consuming intermediate
saves (pg_dump, mirror disks,...). E-Maj may also bring a help to the debugging by giving
a way to precisely analyse how suspicious programs update application tables.

In a test environment, E-Maj also brings smoothness into operations. It is possible to very
easily restore database subsets into predefined stable states, so that tests can be
replayed as many times as needed.

1.4 MAIN COMPONENTS

E-Maj actually groups several components:

➢ a PostgreSQL extension object created into each database, named emaj and
holding some tables, functions, sequences, ...

➢ a set of external clients working in command line interface,
➢ a web application,, Emaj_web.

The external clients and the GUI call the functions of the emaj extension.

All these components are discribed in this documentation.

E-Maj Reference Guide – version 4.1.0 Page 8 / 137

emaj extension

emaj web

Web application

database

clients

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

2 HOW E-MAJ WORKS

2.1 CONCEPTS

E-Maj is built on three main concepts.

2.1.1 Tables Group

The « tables group » represents a set of application tables that live at the same rhythm,
meaning that their content can be restored as a whole if needed. Typically, it deals with all
tables of a database that are updated by one or more sets of programs. Each tables
group is defined by a name which must be unique inside its database. By extent, a tables
group can also contain partitions of partitionned tables and sequences. Tables (including
partitions) and sequences that constitute a tables group can belong to different schemas
of the database.

At a given time, a tables group is either in a « logging » state or in a « idle » state. The
logging state means that all updates applied on the tables of the group are recorded.

A tables group can be either “rollback-able”, which is the standard case, or “audit_only”.
In this latter case, it is not possible to rollback the group. But using this type of group
allows to record tables updates for auditing purposes, even with tables that have no
explicitely created primary key or with tables of type UNLOGGED or WITH OIDS.

2.1.2 Mark

A « mark » is a particular point in the life of a tables group, corresponding to a stable point
for all tables and sequences of the group. A mark is explicitly set by a user operation. It is
defined by a name that must be unique for the tables group.

2.1.3 Rollback

The « rollback » operation consists of resetting all tables and sequences of a group in the
state they had when a mark was set.

There are two rollback types:
➢ with a « unlogged rollback », no trace of updates that are cancelled by the rollback

operation are kept,
➢ with « logged rollback », update cancellations are recorded in log tables, so that

they can be later cancelled: the rollback operation can be … rolled back.

E-Maj Reference Guide – version 4.1.0 Page 9 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Note that this concept of E-Maj rollback is different from the usual concept of “transactions
rollback” managed by PostgreSQL.

2.2 ARCHITECTURE

In order to be able to perform a rollback operation without having previously kept a
physical image of the PostgreSQL instance's files, all updates applied on application
tables must be recorded, so that they can be cancelled.

With E-Maj, this updates recording takes the following form.

2.2.1 Logged SQL statements

The recorded update operations concerns the following SQL verbs:
➢ rows insertions:

• INSERT, either elementary (INSERT … VALUES) or set oriented (INSERT …
SELECT)

• COPY … FROM
➢ rows updates:

• UPDATE
➢ rows deletions:

• DELETE
➢ tables truncations

• TRUNCATE

For statements that process several rows, each creation, update or deletion is individually
recorded. For instance, if a “DELETE FROM <table>” is performed against a table having
1 million rows, 1 million row deletion events are recorded.

At TRUNCATE SQL execution time, the whole table content is recorded before its effective
deletion.

2.2.2 Created objects

For each application table, the following objects are created:
➢ a dedicated log table, containing data corresponding to the updates applied on the

application table,
➢ a trigger and a specific function, that, for each row creation (INSERT, COPY),

change (UPDATE) or suppression (DELETE), record into the log table all data
needed to potentially cancel later this elementary action,

➢ another trigger, that processes TRUNCATE SQL statements ,
➢ a sequence used to quickly count the number of updates recorded in log tables

between 2 marks.

E-Maj Reference Guide – version 4.1.0 Page 10 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

A log table has the same structure as its corresponding application table. However, it
contains some additional technical columns, described at §5.2.1.

To let E-Maj work, some other technical objects are also created at extension installation
time:

➢ 16 tables,
➢ 8 composite and 3 enum types,
➢ 1 view,
➢ 2 triggers,
➢ more than 150 functions, more than 70 of them being directly callable by users (cf

§8.1),
➢ 1 sequence named emaj_global_seq used to assign to every update recorded in

any log table of the database a unique identifier with an increasing value over time,
➢ 1 specific schema, named emaj, that contains all these relational objects,
➢ 2 roles acting as groups (NOLOGIN): emaj_adm to manage E-Maj components,

and emaj_viewer to only look at E-Maj components
➢ 3 event triggers.

Technical tables, whose structure is interesting to know, are described in the coming
chapters (emaj_param is described in §5.1 and emaj_hist is described in §5.4).

The emaj_adm role is the owner of all log schemas, tables, sequences and functions.

2.2.3 Schemas

Almost all technical objects created at E-Maj installation are located into the schema
named emaj. The only exception is the event trigger « emaj_protection_trg » that
belongs to the public schema.

All objects linked to application tables are stored into schemas named :
emaj_<schema>

where <schema> is the schema name of the application tables.

The creation and the suppression of log schemas are only managed by E-Maj functions.
They should NOT contain any other objects than those created by the extension.

E-Maj Reference Guide – version 4.1.0 Page 11 / 137

Log
table

Application
table

SQL Log trigger and
function

Insert / Update / Delete Insert

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

2.2.4 Norm for E-Maj objects naming

For an application table, the log objects name is prefixed with the table name. More
precisely, for an application table:

➢ the name of the log table is:
<table.name>_log

➢ the name of the log function is:
<table.name>_log_fnct

➢ the name of the sequence associated to the log table is:
<table.name>_log_seq

For application tables whose name is very long (over 50 characters), the prefix used to
build the log objects name is generated so it respects the PostgreSQL naming rules and
avoids name conflict.

A log table name may contain a suffix like “_1”, “_2”, etc. In such a case, it deals with an
old log table that has been renamed.

Other E-Maj function names are also normalised:
➢ function names that begin with 'emaj_' are functions that are callable by users,
➢ function names that begin with '_' are internal functions that should not be called

directly.

Triggers created on application tables have the same name:
➢ emaj_log_trg for the log triggers,
➢ emaj_trunc_trg for the triggers that manage TRUNCATE verbs.

The name of event triggers starts with “emaj_” and ends with “_trg”.

2.2.5 Tablespaces

When the extension is installed, the E-Maj technical tables are stored into the default
tablespace set at instance or database level or explicitely set for the current session.

The same rule applies for log tables and index. But using tables group parameters, it is
also possible to store log tables and/or their index into specific tablespaces.

E-Maj Reference Guide – version 4.1.0 Page 12 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3 HOW TO INSTALL E-MAJ

In this chapter, we will describe how to download and install or upgrade the E-Maj
extension. Uninstallation is also discussed in this chapter.

3.1 QUICK START

The E-Maj installation is described in detail in the coming chapter. But the few following
commands allow to quicky install and use E-Maj under Linux.

3.1.1 Software install

To install E-Maj, log on your postgres (or another) account, download E-Maj from PGXN
(https://pgxn.org/dist/e-maj/) and type:

unzip e-maj-<version>.zip

cd e-maj-<version>/

sudo cp emaj.control $(pg_config --sharedir)/extension/.

sudo cp sql/emaj--* $(pg_config --sharedir)/extension/.

The chapter §3.2 presents other ways to download and install the software.

3.1.2 Extension install

To install the emaj extension into a database, log on the target database, using a super-
user role and execute:

create extension emaj cascade;

grant emaj_adm to <role>;

For PostgreSQL versions prior 9.6, see §3.3.2.

With the latest statement, you give E-Maj administration grants to a particular role. Then,
this role can be used to execute all E-Maj operations, avoiding the use of superuser role.

E-Maj Reference Guide – version 4.1.0 Page 13 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

https://pgxn.org/dist/e-maj/

3.1.3 Extension use

You can now log on the database with the role having the E-Maj administration rights.

Then, an empty (here ROLLBACKABLE) tables group must be created:

SELECT emaj.emaj_create_group('my_group', true);

The tables group can now be populated with tables and sequences, using statements like:

SELECT emaj.emaj_assign_table('my_schema', 'my_table', 'my_group');

to add a table into the group, or, to add all tables and sequences of a given schema

SELECT emaj.emaj_assign_tables('my_schema', '.*', ‘’, 'my_group');

SELECT emaj.emaj_assign_sequences('my_schema', '.*', ‘’, 'my_group');

Note that only tables having a primary key will be effectively assigned to a
ROLLBACKABLE group.

Then the typical commands sequence:

SELECT emaj.emaj_start_group('my_group', 'Mark-1');

[INSERT/UPDATE/DELETE on tables]

SELECT emaj.emaj_set_mark_group('my_group','Mark-2');

[INSERT/UPDATE/DELETE on tables]

SELECT emaj.emaj_set_mark_group('my_group','Mark-3');

[INSERT/UPDATE/DELETE on tables]

SELECT emaj.emaj_rollback_group('my_group','Mark-2');

SELECT emaj.emaj_stop_group('my_group');

SELECT emaj.emaj_drop_group('my_group');

will start the tables group, log updates and set several intermediate marks, go back to one
of them, stop the recording and finally drop the group.

Additionally, the Emaj_web can also be installed and used (see §6).

E-Maj Reference Guide – version 4.1.0 Page 14 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.2 INSTALLING THE E-MAJ SOFTWARE

3.2.1 Downloading sources

E-Maj is available for download on the Internet site PGXN, the PostgreSQL Extension
Network (https://pgxn.org/dist/e-maj/).

E-Maj and its add-ons are also available on the github.org Internet site:
➢ source components (https://github.com/ dalibo /emaj)
➢ documentation (https://github.com/beaud76/emaj_doc)
➢ Emaj_web GUI (https://github.com/ dalibo /emaj_web)

Caution: installing the extension from the github.org repository creates the extension in its
development version (“devel”). In this case, no future extension update is possible. For a
stable E-Maj use, it is highly recommended to use the packets available from PGXN.

3.2.2 Standart installation on Linux

Download the latest E-Maj version by any convenient way. If the pgxn client is installed,
just execute the command:

pgxn download E-Maj

Then decompress the downloaded archive file with the commands::

unzip e-maj-<version>.zip

cd e-maj-<version>/

Identify the precise location of the SHAREDIR directory. Depending on the PostgreSQL
installation, the pg_config --sharedir shell command may directly report this directory
name. Otherwise, look at typical locations like:

➢ /usr/share/postgresql/<pg_version> for Debian or Ubuntu

➢ /usr/pgsql-<pg_version>/share for RedHat or CentOS

Copy some files to the extension directory of the postgresql version you want to use. As a
super-user or pre-pended with sudo, type:

cp emaj.control <SHAREDIR_directory>/extension/.

cp sql/emaj--* <SHAREDIR_directory>/extension/.

E-Maj Reference Guide – version 4.1.0 Page 15 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

https://github.com/beaud76/emaj_web
https://github.com/beaud76/emaj
https://github.com/beaud76/emaj_web
https://github.com/beaud76/emaj_doc
https://github.com/beaud76/emaj
https://github.com/beaud76/emaj
https://github.com/beaud76/emaj
https://pgxn.org/dist/e-maj/

The latest E-Maj version is now installed and referenced by PostgreSQL. The e-maj-
<version> directory contains the file tree described at §8.2.

3.2.3 Minimum installation on Linux

On some environments (like DBaaS clouds for instance), it is not allowed to add
extensions into the SHAREDIR directory. For these cases, a minimum installation is
possible.

Download the latest E-Maj version by any convenient way and decompress it.

If the pgxn client is installed, just execute the commands:

pgxn download E-Maj

unzip e-maj-<version>.zip

The e-maj-<version> directory contains the file tree described at §8.2.

The extension creation will be a little bit different (§3.3).

3.2.4 Installation on Windows

To install E-Maj on Windows:

➢ Download the extension from the pgxn.org site,
➢ Extract the file tree from the downloaded zip file,
➢ Copy the files emaj.control and sql/emaj--* into the share\extension folder of the

PostgreSQL installation folder (typically c:\Program_Files\PostgreSQL\
<postgres_version>)

3.2.5 Alternate location of SQL installation scripts

The emaj.control file located in the SHAREDIR/extension directory of the PostgreSQL
version, may contain a directive that defines the directory where SQL installation scripts
are located.

So it is possible to only put the emaj.control file into this SHAREDIR/extension directory,
by creating a pointer towards the script directory.

To setup this, just:

E-Maj Reference Guide – version 4.1.0 Page 16 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

➢ copy the emaj.contol file from the root directory of the decompressed structure into
the SHAREDIR/extension directory,

➢ adjust the directory parameter of the emaj.control file to reflect the actual location
of the E-Maj SQL scripts.

3.3 E-MAJ EXTENSION SETUP

If an extension already exists in the database, but in an old E-Maj version, please go on
with §3.4.

The standart way to install E-Maj consists in creating an EXTENSION object (in the
PostgreSQL terminology). To achieve this task, the user must be logged to the database
as superuser.

In environments for which this is not possible (cases of minimum installation – see §3.2.3),
a psql script can be executed.

3.3.1 Optional preliminary operation

The technical tables of the E-Maj extension are created into the default tablespace. If the
E-Maj administrator wants to store them into a dedicated tablespace, he can create it if
needed and define it as the default tablespace for the session:

SET default_tablespace = <tablespace.name>;

3.3.2 Standart creation of the emaj EXTENSION

3.3.2.1 PostgreSQL version 9.6 and above

The E-Maj extension can now be created into the database, by executing the SQL
command:.

CREATE EXTENSION emaj CASCADE;

After having verified that the PostgreSQL version is at least 9.5, the script creates the
emaj schema and populate it with technical tables, functions and some other objects.

The emaj schema must only contain E-Maj related objects.

E-Maj Reference Guide – version 4.1.0 Page 17 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

If they are not already present, both emaj_adm and emaj_viewer roles are created.

Finally, the installation script looks at the instance configuration and may display a
warning message regarding the -max-prepared-statements parameter (see §4.11.2).

3.3.2.2 PostgreSQL version 9.5

With PostgreSQL version prior 9.6, the CASCADE clause doesn’t exist. In that case, the
required extensions must be explicitely created, if needed, before emaj.

CREATE EXTENSION IF NOT EXISTS dblink;
CREATE EXTENSION IF NOT EXISTS btree_gist;
CREATE EXTENSION emaj;

3.3.3 Creating the extension by script

When creating the emaj EXTENSION is not possible, a psql script can be used instead.

\i <emaj_directory>/sql/emaj-<version>.sql

where <emaj_directory> is the directory generated by the E-Maj installation (see §3.2.3)
and <version> the current E-Maj version.

It is not mandatory to execute the installation script as superuser. But if it is not
the case, the role used for this installation will need the rights to create triggers
on the application tables of the future tables groups.

In this installation mode, all optimizations regarding E-Maj rollbacks are not available,
leading to a decreased performance level of these operations.

3.3.4 Changes in postgresql.conf configuration file

Main E-Maj functions set a lock on each table of a processed tables group. If some groups
contains a large number of tables, it may be necessary to increase the value of the
max_locks_per_transaction parameter in the postgresql.conf configuration file. This
parameter is used by PostgreSQL to compute the size of the “shared lock table” that
tracks locks for the whole instance. Its default value equals 64. It can be increased if an E-
Maj operation fails with a message indicating that all entries of the “shared lock table”
have been used.

E-Maj Reference Guide – version 4.1.0 Page 18 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Furthermore, if the parallel rollback tool may be used (see § 4.11), it will be probably
necessary to adjust the max_prepared_transaction parameter.

3.3.5 E-Maj parameters

Several parameters have an influence on the E-Maj behaviour. They are presented in
details in chapter §5.1.

The parameters setting step is optional. E-Maj works well with the default parameter
values.

However, if the E-Maj administrator wishes to take benefit from the rollback operations
monitoring capabilities, it is necessary to insert a row into the emaj_param table to setup
the value of the “dblink_user_password” parameter (see §4.9.4.1)

Test and demonstration

It is possible to check whether the E-Maj installation works fine, and discover its main
features by executing a demonstration script. Under psql, just execute the emaj_demo.sql
script that is supplied with the extension.

\i <emaj_directory>/sql/demo.sql

If no error is encountered, the script displays this final message:

This ends the E-Maj demo. Thank You for using E-Maj and have fun!

Examining the messages generated by the script execution, allows to discover most E-
Maj features. Once the script execution is completed, the demonstration environment is
left as is, so that it remains possible to examine it or to play with it. To suppress it, execute
the cleaning function that the script has created.

SELECT emaj.emaj_demo_cleanup();

This drops the emaj_demo_app_schema schema and both emaj demo group 1 and emaj
demo group 2' tables groups.

E-Maj Reference Guide – version 4.1.0 Page 19 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.4 UPDATE AN EXISTING E-MAJ VERSION

3.4.1 General approach

The first step consists in installing the new version of the E-Maj software, using the
procedure described in §3.2. Keep the old E-Maj version directory at least until the end of
the upgrade. Some files may be needed.

It is also necessary to check whether some preliminary operations as described in §3.3.1
must be executed.

Then, the process to upgrade an E-Maj extension in a database depends on the already
installed E-Maj version.

For E-Maj versions prior 0.11.0, there is no particular update procedure. A simple E-Maj
deletion and then re-installation has to be done, as described in §3.4.2. This approach
can also be used for any E-Maj version, even though it has a drawback: all log contents
are deleted, resulting in no further way to rollback or look at the recorded updates.

For installed E-Maj version 0.11.0 and later, it is possible to perform an upgrade without
E-Maj deletion.

The upgrade procedure for an existing E-Maj version between 0.11.0 and 1.3.1 is
described in §3.4.3.
The upgrade from version 1.3.1 to a higher version is described in §3.4.4.
The upgrade from a version greater or equal 2.0.0 is described in §3.4.5.

Starting from version 2.2.0, E-Maj no longer supports PostgreSQL versions
prior 9.2. Starting from version 3.0.0, E-Maj no longer supports PostgreSQL
versions prior 9.5. If an older PostgreSQL version is used, it must be updated
before migrating E-Maj to a higher version.

3.4.2 Upgrade by deletion and re-installation

For this upgrade path, it is not necessary to use the full un-installation procedure
described in §3.5. In particular, the tablespace and both roles can remain as is. However,
it may be judicious to save some useful pieces of information. Here is a suggested
procedure.

3.4.2.1 Stop tables groups

If some tables groups are in LOGGING state, they must be stopped, using the
emaj_stop_group() function (see §4.3.6) (or the emaj_force_stop_group() function if
emaj_stop_group() (see §4.5.4) returns an error).

E-Maj Reference Guide – version 4.1.0 Page 20 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.4.2.2 Save user data

The procedure depends on the installed E-Maj version.

Installed version >= 3.3

The full existing tables groups configuration, as well as E-Maj parameters, can be saved
on flat files, using:

SELECT emaj.emaj_export_groups_configuration('<file.path.1>');

SELECT emaj.emaj_export_parameters_configuration
('<file.path.2>');

Installed version < 3.3

If the installed E-Maj version is prior 3.3.0, these export functions are not available.

As starting from E-Maj 4.0 the tables groups configuration doesn’t use the
emaj_group_def table anymore, rebuilding the tables groups after the E-Maj version
upgrade will need either to edit a JSON configuration file to import or to execute a set of
tables/sequences assignment functions.

If the emaj_param tables contains specific parameters, it can be saved on file with a copy
command, or duplicated ouside the emaj schema.

If the installed E-Maj version is 3.1.0 or higher, and if the E-Maj administrator has
registered application triggers as “not to be automatically disabled at E-Maj rollback time”,
the emaj_ignored_app_trigger table can also be saved.

CREATE TABLE public.sav_ignored_app_trigger AS
SELECT * FROM emaj.emaj_ignored_app_trigger;

CREATE TABLE public.sav_param AS
SELECT * FROM emaj.emaj_param WHERE param_key <> 'emaj_version';

3.4.2.3 E-Maj deletion and re-installation

Once connected as super-user, just chain the execution of the uninstall.sql script, of the
current version and then the extension creation.

\i <old_emaj_directory>/sql/emaj_uninstall.sql

E-Maj Reference Guide – version 4.1.0 Page 21 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

CREATE EXTENSION emaj;

NB: before E-Maj 2.0.0, the uninstall script was named uninstall.sql.

3.4.2.4 Restore user data

Previous version >= 3.3

The exported tables groups and parameters configurations can be reloaded with:

SELECT emaj.emaj_import_parameters_configuration
('<file.path.2>', TRUE);

SELECT emaj.emaj_import_groups_configuration('<file.path.1>');

Previous version < 3.3

The saved parameters and application triggers configurations can be reloaded for
instance with INSERT SELECT statements:

INSERT INTO emaj.emaj_ignored_app_trigger
SELECT * FROM public.sav_ignored_app_trigger;

INSERT INTO emaj.emaj_param
SELECT * FROM public.sav_param;

The tables groups need to be rebuilt using the standard methods of the new version (See
§4.2).

Then, temporary tables or files can be deleted.

3.4.3 Upgrade from an E-Maj version between 0.11.0 to 1.3.1

For installed version between 0.11.0 and 1.3.1, psql upgrade scripts are supplied. They
allow to upgrade from one version to the next one.

Each step can be performed without impact on existing tables groups. They may even
remain in LOGGING state during the upgrade operations. This means in particular that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed
after the migration.

E-Maj Reference Guide – version 4.1.0 Page 22 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Source
version

Target
version

psql script Duration Concurrent
updates (1)

0.11.0 0.11.1 emaj-0.11.0-to-0.11.1.sql Very quick Yes

0.11.1 1.0.0 emaj-0.11.1-to-1.0.0.sql Very quick Yes

1.0.0 1.0.1 emaj-1.0.0-to-1.0.1.sql Very quick Yes

1.0.1 1.0.2 emaj-1.0.1-to-1.0.2.sql Very quick Yes

1.0.2 1.1.0 emaj-1.0.2-to-1.1.0.sql Variable No (2)

1.1.0 1.2.0 emaj-1.1.0-to-1.2.0.sql Very quick Yes

1.2.0 1.3.0 emaj-1.2.0-to-1.3.0 .sql Quick Yes (3)

1.3.0 1.3.1 emaj-1.3.0-to-1.3.1.sql Very quick Yes

(1) The last column indicates whether the E-Maj upgrade can be executed while
application tables handled by E-Maj are accessed in update mode. Note that any other E-
Maj operation executed during the upgrade operation would wait until the end of the
upgrade.
(2) When upgrading into 1.1.0, log tables structure changes. As a consequence:

➢ eventhough tables groups may remain in LOGGING state, the upgrade can only be
executed during a time period when application tables are not updated by any
application processing,

➢ the operation duration will mostly depends on the volume of data stored into the log
tables.

Note also that E-Maj statistics collected during previous rollback operations are not kept
(due to large differences in the way rollbacks are performed, the old statistics are not
pertinent any more).
(3) It is advisable to perform the upgrade into 1.3.0 in a period of low database activity .
This is due to Access Exclusive locks that are set on application tables while the E-Maj
triggers are renamed.

At the end of each upgrade step, the script displays the following message :

>>> E-Maj successfully migrated to <new_version>

3.4.4 E-Maj upgrade from 1.3.1 to a higher version

The upgrade from the 1.3.1 version is specific as it must handle the installation mode
change, moving from a psql script to an extension.

Concretely, the operation is performed with a single SQL statement:

CREATE EXTENSION emaj FROM unpackaged;

E-Maj Reference Guide – version 4.1.0 Page 23 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The PostgreSQL extension manager determines the scripts to execute depending on the
E-Maj version identifier found in the emaj.control file.

But this upgrade is not able to process cases when at least one tables group has been
created with a PostgreSQL version prior 8.4. In such a case, these old tables groups must
be dropped before the upgrade and recreated after.

This upgrade is also not possible with PostgreSQL version 13 and higher. For these
PostgreSQL versions, E-Maj must be uninstalled and re-installed in its latest version.

3.4.5 Upgrade an E-Maj version already installed as an extension

An existing version already installed as an extension can be upgraded using the SQL
statement:

ALTER EXTENSION emaj UPDATE;

The PostgreSQL extension manager determines the scripts to execute depending on the
current installed E-Maj version and the version found in the emaj.control file.

The operation is very quick et does not alter tables groups. They may remain in LOGGING
state during the upgrade. As for previous upgrades, this means that:

➢ updates on application tables can continue to be recorded during and after this
version change,

➢ a « rollback » on a mark set before the version change can also be performed
after the migration.

Version specific details:
➢ The procedure that upgrades a version 2.2.2 into 2.2.3 checks the recorded log

sequences values. In some cases, it may ask for a preliminary reset of some
tables groups.

➢ The procedure that upgrades a version 2.3.1 into 3.0.0 changes the structure of
log tables: both emaj_client_ip and emaj_client_port columns are not created
anymore. Existing log tables are not modified. Only the new log tables are
impacted. But the administrator can add these columns, by using the
‘alter_log_tables’ parameter (Cf §5.2.2).

➢ The procedure that upgrades a version 3.0.0 into 3.1.0 renames existing log
objects. This leads to locking the application tables, which may generate conflicts
with the parallel use of these tables. This procedure also issues a warning
message indicating that the changes in E-Maj rollback functions regarding the
application triggers processing may require changes in user’s procedures.

➢ The procedure that upgrades a version 3.4.0 into 4.0.0 updates the log tables
content for TRUNCATE recorded statements. The upgrade duration depends on
the global log tables size.

E-Maj Reference Guide – version 4.1.0 Page 24 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.4.6 Compatibility break

As a general rule, upgrading the E-Maj version does not change the way to use the
extension. There is an ascending compatibility between versions. The exceptions to this
rule are presented below.

3.4.6.1 Upgrading towards version 4.0.0

The compatibility breaks of the 4.0.0 E-Maj version mainly deal with the way to manage
tables groups configurations. The 3.2.0 version brought the ability to dynamicaly manage
the assignment of tables and sequences into tables groups. The 3.3.0 version allowed to
describe tables groups configuration with JSON structures. Since, these technics have
existed beside the historical way to handle tables group using the emaj_group_def table.
Starting with the 4.0.0 version, this historical way to manage tables groups configurations
has disappeared.

More precisely:

➢ The table emaj_group_def does not exist anymore.
➢ The emaj_create_group() function only creates empty tables groups, that must be

then populated with functions of the emaj_assign_table() /
emaj_assign_sequence() family, or the emaj_import_groups_configuration()
function. The third and last parameter of the emaj_create_group() function has
disappeared. It allowed to create empty tables groups.

➢ The now useless emaj_alter_group(), emaj_alter_groups() and
emaj_sync_def_group() functions also disappear.

Furthermore:

➢ The emaj_ignore_app_trigger() function is deleted. The triggers to ignore at E-Maj
rollback time can be registered with the functions of the emaj_assign_table()
family.

➢ In JSON structures managed by the emaj_export_groups_configuration() and
emaj_import_groups_configuration() functions, the format of the
"ignored_triggers" property that lists the triggers to ignore at E-Maj rollback time
has been simplified. It is now a simple text array.

➢ The old family of E-Maj rollback functions that just returned an integer has been
deleted. Only the functions returning a set of messages remain.

➢ The name of function parameters have changed: “v_” prefixes have been
transformed into “p_”. This only impacts function calls formated with named
parameters. But this practice is unusual.

E-Maj Reference Guide – version 4.1.0 Page 25 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.5 UNINSTALLING AN E-MAJ EXTENSION FROM A DATABASE

To uninstall E-Maj from a database, the user must log on this database with psql, as a
superuser.

If the drop of the emaj_adm and emaj_viewer roles is desirable, rights on them given to
other roles must be previously deleted, using REVOKE SQL verbs.

REVOKE emaj_adm FROM <role.or.roles.list>;
REVOKE emaj_viewer FROM <role.or.roles.list>;

If these emaj_adm and emaj_viewer roles own access rights on other application objects,
these rights must be suppressed too, before starting the uninstall operation.

Allthough E-Maj is usualy installed with a CREATE EXTENSION statement, it cannot be
uninstalled with a simple DROP EXTENSION statement. An event trigger blocks such a
statement.

To uninstall E-Maj, just execute the emaj_uninstall.sql delivered script.

\i <emaj_directory>/emaj_uninstall.sql

This script performs the following steps:
➢ it executes the cleaning functions created by demo or test scripts, if they exist,
➢ it stops the tables groups in LOGGING state, if any,
➢ it drops the tables groups, removing in particular the triggers on application tables,
➢ it drops the extension and the main emaj schema,
➢ it drops roles emaj_adm and emaj_viewer if they are not linked to any objects in

the current database or in other databases of the instance.

The uninstallation script execution displays:

$ psql ... -f sql/emaj_uninstall.sql
>>> Starting E-Maj uninstallation procedure...
SET
psql:sql/emaj_uninstall.sql:203: WARNING: emaj_uninstall:
emaj_adm and emaj_viewer roles have been dropped.
DO
SET
>>> E-maj successfully uninstalled from this database

E-Maj Reference Guide – version 4.1.0 Page 26 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

3.6 POSTGRESQL VERSION UPGRADE

3.6.1 Changing PostgreSQL minor versions

As changing the minor PostgreSQL version only consists in replacing the binary files of
the software, there is no particular constraint regarding E-Maj.

3.6.2 Changing the major PostgreSQL version and the E-Maj version
simultaneously

A PostgreSQL major version change may be the opportunity to also change the E-Maj
version. But in this case, the E-Maj environment has to be recreated from scratch and old
objects (tables groups, logs, marks,…) cannot be reused.

3.6.3 Changing the PostgreSQL major version and keeping the existing E-Maj
environment

Nevertheless, it is possible to keep the existing E-Maj components (tables groups, logs,
marks,…) while changing the PostgreSQL major version. And the tables groups may
event stay in logging state during the operation.

But 2 conditions must be met:
➢ the old and new instances must share the same E-Maj version,
➢ a post migration script must be executed, before any E-Maj use.

Of course, it is possible to upgrade the E-Maj version before or after the PostgreSQL
version change.

If the PostgreSQL version upgrade is performed using a database dump and restore, and
if the tables groups may be stopped, a log tables purge, using the emaj_reset_group()
function, may reduce the volume of data to manipulate, thus reducing the time needed for
the operation.

3.6.4 Post migration adaptation script

It may happen that a PostgreSQL major version change has an impact on the E-Maj
extension content. Thus, a script is supplied to handle such cases.

After each PostgreSQL major version upgrade, a psql script must be executed as
superuser:

\i <emaj_directory>/sql/emaj_upgrade_after_postgres_upgrade.sql

E-Maj Reference Guide – version 4.1.0 Page 27 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

For E-Maj versions 2.0.0 and later, the script only creates the event triggers that may be
missing:

➢ those that appear in version 9.3 and protect against the drop of the extension itself
and the drop of E-Maj objects (log tables, functions,...),

➢ those that appear in version 9.5 and protect against log table structure changes.

The script may be executed several times on the same version, only the first execution
modifying the environment.

E-Maj Reference Guide – version 4.1.0 Page 28 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4 HOW TO USE E-MAJ

4.1 SET-UP THE E-MAJ ACCESS POLICY

A bad usage of E-Maj can break the database integrity. So it is advisable to only authorise
its use to specific skilled users.

4.1.1 E-Maj roles

To use E-Maj, it is possible to log on as superuser. But for safety reasons, it is preferable
to take advantage of both roles created by the installation script:

➢ emaj_adm is used as the administration role ; it can execute all functions and
access to all E-Maj tables, with reading and writing rights ; emaj_adm is the owner
of all log objects (schemas, tables, sequences, functions),

➢ emaj_viewer is used for read only purpose ; it can only execute statistics functions
and can only read E-Maj tables.

All rights given to emaj_viewer are also given to emaj_adm.

When created, these roles have no connection capability (no defined password and
NOLOGIN option). It is recommended NOT to give them any connection capability.
Instead, it is sufficient to give the rights they own to other roles, with GRANT SQL verbs.

4.1.2 Giving E-Maj rights

Once logged on as superuser in order to have the sufficient rights, execute one of the
following commands to give a role all rights associated to one of both emaj_adm or
emaj_viewer roles:

GRANT emaj_adm TO <my.emaj.administrator.role>;
GRANT emaj_viewer TO <my.emaj.viewer.role>;

Of course, emaj_adm or emaj_viewer rights can be given to several roles.

4.1.3 Giving rights on application tables and objects

It is not necessary to grant any privilege on application tables and sequences to
emaj_adm and emaj_viewer. The functions that need to access these objects are
executed with the extension installation role, i.e. a superuser role.

E-Maj Reference Guide – version 4.1.0 Page 29 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.1.4 Synthesis

The following schema represents the recommended rights organisation for an E-Maj
administrator.

Of course the schema also applies to emaj_viewer role.

Except when explicitly noticed, the operations presented later can be indifferently
executed by a superuser or by a role belonging to the emaj_adm group.

E-Maj Reference Guide – version 4.1.0 Page 30 / 137

 my_administrator
role

emaj_adm role E-Maj objects

Application
objects

rights

rights

Rights
inheritance

login

X
nologin

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.2 CREATING AND DROPPING TABLES GROUPS

4.2.1 Tables groups configuration principles

Configuring a tables group consists in:
➢ defining the tables group characteristics,
➢ defining the tables and sequences to assign to the group,
➢ optionnaly, defining some specific properties for each table.

4.2.1.1 The tables group

A tables group is identified by its name. Thus, the name must be unique withing the
database. A tables group name contains at least 1 character. It may contain spaces
and/or any punctuation characters. But it is advisable to avoid commas, single or double
quotes.

At creation time, the “ROLLBACKABLE” or “AUDIT_ONLY” groups property (Cf §2.1.1) must
be set. Note that this property cannot be modified once the tables group is created. If it
needs to be changed, the tables group must be dropped and then recreated.

4.2.1.2 The tables and sequences to assign

A tables group can contain tables and/or sequences belonging to one or several schemas.

All tables of a schema are not necessarily member of the same group. Some of them can
belong to another group. Some others can belong to any group.

But at a given time, a table or a sequence cannot be assigned to more than one tables
group.

To guarantee the integrity of tables managed by E-Maj, it is essential to take a
particular attention to the tables groups content definition. If a table were
missing, its content would be out of synchronisation with other tables it is
related to, after an E-Maj rollback operation. In particular, when application
tables are created or suppressed, it is important to always maintain an up-to-
date groups configuration.

All tables assigned to a “ROLLBACKABLE” group must have an explicit primary key
(PRIMARY KEY clause in CREATE TABLE or ALTER TABLE).

E-Maj can process elementary partitions of partitionned tables created with the declarative
DDL (with PostgreSQL 10+). They are processed as any other tables. However, as there
is no need to protect mother tables, which remain empty, E-Maj refuses to include them in
tables groups. All partitions of a partitionned table do not need to belong to a tables group.
Partitions of a partitionned table can be assigned to different tables groups.

E-Maj Reference Guide – version 4.1.0 Page 31 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

By their nature, TEMPORARY TABLE are not supported by E-Maj. UNLOGGED tables and
tables created as WITH OIDS can only be members of “audit_only” tables groups.

If a sequence is associated to an application table, it is advisable to assign it into the
same group as its table, so that, in case of E-maj rollback, the sequence can be reset to
its state at the set mark time. If it were not the case, an E-Maj rollback would simply
generate a hole in the sequence values.

E-Maj log tables and sequences should NOT be assigned in a tables group.

4.2.1.3 Specific tables properties

Four properties are associated to tables assigned to tables group:
➢ the priority level,
➢ the tablespace for log data,
➢ the tablespace for log index,
➢ the list of triggers whose state (ENABLED/DISABLED) must be left unchanged

during E-Maj rollback operations.

The priority level is of type INTEGER. It is NULL by default. It defines a priority order in E-
Maj tables processing. This can be especialy useful at table lock time. Indeed, by locking
tables in the same order as what is typically done by applications, it may reduce the risk of
deadlock. E-Maj functions process tables in priority ascending order, NULL being
processed last. For a same priority level, tables are processed in alphabetic order of
schema name and table name.

To optimize performances of E-Maj installations having a large number of tables, it may
be useful to spread log tables and their index on several tablespaces. Two properties are
available to specify:

➢ the name of the tablespace to use for the log table of an application table,
➢ the name of the tablespace to use for the index of the log table.

By default, these properties have a NULL value, meaning that the default tablespace of
the current session at tables group creation is used.

When an E-Maj rollback is performed on a tables group, enabled triggers of concerned
tables are neutralized, so that table’s content changes generated by the operation do not
fire them. But this by default behaviour can be changed if needed. Note that this does not
concern E-Maj or system triggers.

4.2.2 Create a tables group

To create a tables group, just execute the following SQL statement:

SELECT emaj.emaj_create_group('<group.name>',<is_rollbackable>);

E-Maj Reference Guide – version 4.1.0 Page 32 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The second parameter, of type boolean, indicates whether the group’s type is
“rollbackable” (with value TRUE) or “audit_only” (with value FALSE) group. If this second
parameter is not supplied, the group is considered “rollbackable”.

The function returns the number of created groups, i.e. 1.

4.2.3 Assign tables and sequences into a tables group

Six functions allow to assign one or several tables or sequences to a group.

To add one or several tables into a tables group:

SELECT emaj.emaj_assign_table(‘<schema>’,’<table>’,
'<groupe.name>' [,’<properties>’ [,’<mark>’]]);

or

SELECT emaj.emaj_assign_tables(‘<schema>’,’<tables.array>’,
'<group.name>' [,’<properties>’ [,’<mark>’]]);

or

SELECT emaj.emaj_assign_tables(‘<schema>’,
’<tables.to.include.filter>’,’<tables.to.exclude.filter>’,
'<group.name>' [,’<properties>’ [,’<mark>’]]);

To add one or several sequences into a tables group:

SELECT emaj.emaj_assign_sequence(‘<schema>’,’<sequence>’,
'<group.name>' [,’<mark>’]);

or

SELECT emaj.emaj_assign_sequences(‘<schema>’,
’<sequences.array>’, '<group.name>'
[,’<mark>’]);

or

SELECT emaj.emaj_assign_sequences(‘<schema>’,
’<sequences.to.include.filter>’,’<sequences.to.exclude.filter>’,
'<group.name>' [,’<mark>’]);

For functions processing several tables or sequences in a single operation, the list of
tables or sequences to process is:

➢ either provided by a parameter of type TEXT array,

E-Maj Reference Guide – version 4.1.0 Page 33 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

➢ or built with two regular expressions provided as parameters.

A TEXT array is typically expressed with a syntax like:
ARRAY[‘element_1’,’ element_2’, ...]

Both regular expressions follow the POSIX rules. Refer to the PostgreSQL documentation
for more details. The first one defines a filter that selects the tables of the schema. The
second one defines an exclusion filter applied on the selected tables. For instance:

➢ selects all tables or sequences of the schema my_schema
‘my_schema’, ’.*’, ‘’

➢ select all tables of this schema and whose name start with ‘tbl’
‘my_schema’, ‘^tbl.*’, ’’

➢ select all tables of this schema and whose name start with ‘tbl’, except those who
end with ‘_sav’

‘my_schema’, ‘^tbl.*’, ’_sav$’

The functions assigning tables or sequences to tables groups that build their selection
with regular expressions take into account the context of the tables or sequences. Are not
selected for instance: tables or sequences already assigned, or tables without primary key
for rollbackable groups, or tables declared UNLOGGED.

The <properties> parameter of functions that assign tables to a group allows to set values
to some properties for the table or tables. Of type JSONB, its value can be set like this:

'{ "priority" : <p> ,
 "log_data_tablespace" : "<ldt>" ,
 "log_index_tablespace" : "<lit>" ,
 "ignored_triggers" : ["<tg1>" , "<tg2>" , …] ,
 "ignored_triggers_profiles" : ["<regexp1>" , "<regexp2>" , …] }'

where:
➢ <p> is the priority level for the table or tables
➢ <ldt> is the name of the tablespace to handle log tables
➢ <lit> is the name of the tablespace to handle log indexes
➢ <tg1> and <tg2> are trigger names
➢ <regexp1> and <regexp2> are regular expressions that select triggers names

among those that exist for the table or the tables to assign into the group

If one of these properties is not set, its value is considered NULL.

If specific tablespaces are referenced for any log table or log index, these tablespaces
must exist before the function's execution and the user must have been granted the
CREATE privilege on them.

Both "ignored_triggers" and "ignored_triggers_profiles" properties define the triggers
whose state must remain unchanged during E-Maj rollback operations. Both properties
are of type array. “ignored_triggers" can be a simple string if it only contains one trigger.

E-Maj Reference Guide – version 4.1.0 Page 34 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Triggers listed in the “ignored_triggers" property must exist for the table or the tables
referenced by the function call. The triggers created by E-Maj (emaj_log_trg and
emj_trunc_trg) cannot appear in this list.

If several regular expressions are listed in the "ignored_triggers_profiles" property, they
each act as a filter selecting triggers.

Both "ignored_triggers" and "ignored_triggers_profiles" properties can be used jointly. In
this case, the selected triggers set is the union of those listed by the "ignored_triggers"
property and those selected by each regular expression of the "ignored_triggers_profiles"
property.

For more details about the management of application triggers, refer to §5.10.3.

For all these functions, an exclusive lock is set on each table of the concerned table
groups, so that the groups stability can be guaranted during these operations.

All these functions return the number of assigned tables or sequences.

The tables assignment functions create all the needed log tables, the log functions and
triggers, as well as the triggers that process the execution of TRUNCATE SQL statements.
They also create the log schemas if needed.

4.2.4 Drop a tables group

To drop a tables group previously created by the emaj_create_group() function, this
group must be already in idle state. If it is not the case, the emaj_stop_group() function
has to be used first (see § 4.3.6).

Then, just execute the SQL command:

SELECT emaj.emaj_drop_group('<group.name>');

The function returns the number of tables and sequences contained in the group.

For this tables group, the emaj_drop_group() function drops all the objects that have been
created by the assignment functions: log tables, sequences, functions and triggers.

The function also drops all log schemas that are now useless.
The locks set by this operation can lead to deadlock. If the deadlock processing impacts
the execution of the E-Maj function, the error is trapped and the lock operation is
repeated, with a maximum of 5 attempts.

E-Maj Reference Guide – version 4.1.0 Page 35 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.3 MAIN FUNCTIONS

Before describing each main E-Maj function, it is interesting to have a global view on the
typical operations chain.

4.3.1 Operations chain

The possible chaining of operations for a tables group can be materialised by this
schema.

E-Maj Reference Guide – version 4.1.0 Page 36 / 137

« Unknown » state

Create group

« Idle » state

Drop group

« Logging » state

Start groupStop group

Rollback group Set a mark

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.3.2 Start a tables group

Starting a tables group consists in activating the recording of updates for all tables of the
group. To achieve this, the following command must be executed:

SELECT emaj.emaj_start_group('<group.name>'[,
'<mark.name>'[,<delete.old.logs?>]]);

The group must be first in IDLE state.

When a tables group is started, a first mark is created.

If specified, the initial mark name may contain a generic '%' character. Then this character
is replaced by the current time, with the pattern “hh.mn.ss.mmmm“,

If the parameter representing the mark is not specified, or is empty or NULL, a name is
automatically generated: “START_%”, where the '%' character represents the current time
with a “hh.mn.ss.mmmm” pattern.

The <are.old.logs.to.be.deleted?> parameter is an optional boolean. By default, its value
is true, meaning that all log tables of the tables group are purged before the trigger
activation. If the value is explicitly set to false, all rows from log tables are kept as is. The
old marks are also preserved, even-though they are not usable for a rollback any more,
(unlogged updates may have occurred while the tables group was stopped).

The function returns the number of tables and sequences contained by the group.

To be sure that no transaction implying any table of the group is currently running, the
emaj_start_group() function explicitly sets a SHARE ROW EXCLUSIVE lock on each table
of the group. If transactions accessing these tables are running, this can lead to
deadlock. If the deadlock processing impacts the execution of the E-Maj function, the
error is trapped and the lock operation is repeated, with a maximum of 5 attempts.

The function also performs a purge of the oldest events in the emaj_hist technical table
(see §5.4).

When a group is started, its state becomes “LOGGING”.

Using the emaj_start_groups() function, several groups can be started at once:

SELECT emaj.emaj_start_groups('<group.names.array>'[,
'<mark.name>'[,<delete.old.logs?>]]);

The chapter §4.10.3 explains how to describe the group names array.

E-Maj Reference Guide – version 4.1.0 Page 37 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.3.3 Set an intermediate mark

When all tables and sequences of a group are considered as being in a stable state that
can be used for a potential rollback, a mark can be set. This is done with the following
SQL statement:

SELECT emaj.emaj_set_mark_group('<group.name>', '<mark.name>');

The tables group must be in LOGGING state.

A mark having the same name can not already exist for this tables group.

The mark name may contain a generic '%' character. Then this character is replaced by
the current time, with the pattern “hh.mn.ss.mmmm”,

If the parameter representing the mark is not specified or is empty or NULL, a name is
automatically generated: “MARK_%”, where the '%' character represents the current time
with a “hh.mn.ss.mmmm” pattern.

The function returns the number of tables and sequences contained in the group.

The emaj_set_mark_group() function records the identity of the new mark, with the state
of the application sequences belonging to the group, as well as the state of the log
sequences associated to each table of the group. The application sequences are
processed first, to record their state as earlier as possible after the beginning of the
transaction, these sequences not being protected against updates from concurrent
transactions by any locking mechanism.

It is possible to set two consecutive marks without any update on any table between these
marks.

The emaj_set_mark_group() function sets ROW EXCLUSIVE locks on each table of the
group in order to be sure that no transaction having already performed updates on any
table of the group is running. However, this does not guarantee that a transaction having
already read one or several tables before the mark set, updates tables after the mark set.
In such a case, these updates would be candidate for a potential rollback to this mark.

Using the emaj_set_mark_groups() function, a mark can be set on several groups at
once:

SELECT emaj.emaj_set_mark_groups('<group.names.array>',
'<mark.name>');

The chapter §4.10.3 explains how to describe the group names array.

E-Maj Reference Guide – version 4.1.0 Page 38 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.3.4 Rollback a tables group

If it is necessary to reset tables and sequences of a group in the state they were when a
mark was set, a rollback must be performed. To perform a simple (“unlogged”) rollback,
the following SQL statement can be executed:

SELECT * FROM emaj.emaj_rollback_group('<group.name>',
'<mark.name>' [, <is_alter_group_allowed>]);

The tables group must be in LOGGING state and the supplied mark must be usable for a
rollback, i.e. it cannot be logically deleted.

The 'EMAJ_LAST_MARK' keyword can be used as mark name, meaning the last set mark.

The third parameter is a boolean that indicates whether the rollback operation may target
a mark set before an alter group operation (see §4.4). Depending on their nature,
changes performed on tables groups in LOGGING state can be automatically cancelled or
not. In some cases, this cancellation can be partial. By default, this parameter is set to
FALSE.

The function returns a set of rows with a severity level set to either “Notice” or “Warning”
values, and a textual message. The function returns a “Notice” row indicating the number
of tables and sequences that have been effectively modified by the rollback operation.
Other messages of type “Warning” may also be reported when the rollback operation has
processed tables group changes.

To be sure that no concurrent transaction updates any table of the group during the
rollback operation, the emaj_rollback_group() function explicitly sets an EXCLUSIVE lock
on each table of the group. If transactions updating these tables are running, this can lead
to deadlock. If the deadlock processing impacts the execution of the E-Maj function, the
error is trapped and the lock operation is repeated, with a maximum of 5 attempts. But
tables of the group remain accessible for read only transactions during the operation.

The E-Maj rollback takes into account the existing triggers and foreign keys on the
concerned tables. More details in the chapter §5.5)

When the volume of updates to cancel is high and the rollback operation is therefore long,
it is possible to monitor the operation using the emaj_rollback_activity() function
(§4.9.4.2) or the emajRollbackMonitor.php client (§4.12).

When the rollback operation is completed, the following are deleted:
➢ all log tables rows corresponding to the rolled back updates,
➢ all marks later than the mark referenced in the rollback operation.

Then, it is possible to continue updating processes, to set other marks, and if needed, to
perform another rollback at any mark.

E-Maj Reference Guide – version 4.1.0 Page 39 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

By their nature, the reset of sequences is not “cancellable” in case of abort and
rollback of the transaction that executes the emaj_rollback_group() function.
That is the reason why the processing of application sequences is always
performed after the processing of application tables. However, even-though the
time needed to rollback a sequence is very short, a problem may occur during
this last phase. Rerunning immediately the emaj_rollback_group() function
would not break database integrity. But any other database access before the
second execution may lead to wrong values for some sequences.

Using the emaj_rollback_groups() function, several groups can be rolled back at once:

SELECT * FROM emaj.emaj_rollback_groups('<group.names.array>',
'<mark.name>' [, <is_alter_group_allowed>]);

The chapter §4.10.3 explains how to describe the group names array.

The supplied mark must correspond to the same point in time for all groups. In other
words, this mark must have been set by the same emaj_set_mark_group() function call.

4.3.5 Perform a logged rollback of a tables group

Another function executes a “logged” rollback. In this case, log triggers on application
tables are not disabled during the rollback operation. As a consequence, the updates on
application tables are also recorded into log tables, so that it is possible to cancel a
rollback. In other words, it is possible to rollback … a rollback.

To execute a “logged” rollback, the following SQL statement can be executed:

SELECT * FROM emaj.emaj_logged_rollback_group('<group.name>',
'<mark.name>' [, <is_alter_group_allowed>]);

The usage rules are the same as with emaj_rollback_group() function.

The tables group must be in LOGGING state and the supplied mark must be usable for a
rollback, i.e. it cannot be logically deleted.

The 'EMAJ_LAST_MARK' keyword can be used as mark name, meaning the last set mark.

The third parameter is a boolean that indicates whether the rollback operation may target
a mark set before an alter group operation (see §4.4). Depending on their nature,
changes performed on tables groups in LOGGING state can be automatically cancelled or
not. In some cases, this cancellation can be partial. By default, this parameter is set to
FALSE.

E-Maj Reference Guide – version 4.1.0 Page 40 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The function returns a set of rows with a severity level set to either “Notice” or “Warning”
values, and a textual message. The function returns a “Notice” row indicating the number
of tables and sequences that have been effectively modified by the rollback operation.
Other messages of type “Warning” may also be reported when the rollback operation has
processed tables group changes.

To be sure that no concurrent transaction updates any table of the group during the
rollback operation, the emaj_logged_rollback_group() function explicitly sets an
EXCLUSIVE lock on each table of the group. If transactions updating these tables are
running, this can lead to deadlock. If the deadlock processing impacts the execution of
the E-Maj function, the error is trapped and the lock operation is repeated, with a
maximum of 5 attempts. But tables of the group remain accessible for read only
transactions during the operation.

The E-Maj rollback takes into account the existing triggers and foreign keys on the
concerned tables. More details in the chapter §5.5)

Unlike with emaj_rollback_group() function, at the end of the operation, the log tables
content as well as the marks following the rollback mark remain.
At the beginning and at the end of the operation, the function automatically sets on the
group two marks named:

– 'RLBK_<rollback.mark>_<rollback.time>_START'
– 'RLBK_<rollback.mark>_<rollback.time>_DONE'

where rollback.time represents the start time of the transaction performing the rollback,
expressed as “hours.minutes.seconds.milliseconds”.

When the volume of updates to cancel is high and the rollback operation is therefore long,
it is possible to monitor the operation using the emaj_rollback_activity() function
(§4.9.4.2) or the emajRollbackMonitor.php client (§4.12).

Following the rollback operation, it is possible to resume updating the database, to set
other marks, and if needed to perform another rollback at any mark, including the mark
set at the beginning of the rollback, to cancel it, or even delete an old mark that was set
after the mark used for the rollback.

Rollback from different types (logged/unlogged) may be executed in sequence. For
instance, it is possible to chain the following steps:

Set Mark M1
…

Set Mark M2
…

Logged Rollback to M1,
generating RLBK_M1_<time>_STRT,

and RLBK_M1_<time>_DONE
…

Rollback to RLBK_M1_<time>_DONE
(to cancel the updates performed after the first rollback)

…

E-Maj Reference Guide – version 4.1.0 Page 41 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Rollback to RLBK_M1_<time>_STRT
(to finally cancel the first rollback)

A “consolidation” function for “ogged rollback“ allows to transform a logged rollback into a
simple unlogged rollback (see §4.5.6).

Using the emaj_logged_rollback_groups() function, several groups can be rolled back at
once:

SELECT * FROM emaj.emaj_logged_rollback_groups
('<group.names.array>', '<mark.name>' [, <is_alter_group_allowed>]);

The chapter §4.10.3 explains how to describe the group names array.

The supplied mark must correspond to the same point in time for all groups. In other
words, this mark must have been set by the same emaj_set_mark_group() function call.

4.3.6 Stop a tables group

When one wishes to stop the updates recording for tables of a group, it is possible to
deactivate the logging mechanism, using the command:

SELECT emaj.emaj_stop_group('<group.name>'[, '<mark.name>')];

The function returns the number of tables and sequences contained in the group.

If the mark parameter is not specified or is empty or NULL, a mark name is generated:
STOP_% where % represents the current time expressed as “hh.mn.ss.mmmm”.

Stopping a tables group simply deactivates log triggers of application tables of the group.
The setting of SHARE ROW EXCLUSIVE locks can lead to deadlock. If the deadlock
processing impacts the execution of the E-Maj function, the error is trapped and the lock
operation is repeated, with a maximum of 5 attempts.

Additionally, the emaj_stop_group() function changes the status of all marks set for the
group into a DELETED state. Then, it is not possible to execute a rollback command any
more, even though no updates have been applied on tables between the execution of
both emaj_stop_group() and emaj_rollback_group() functions.

But the content of log tables and E-Maj technical tables can be examined.

When a group is stopped, its state becomes “IDLE” again.

E-Maj Reference Guide – version 4.1.0 Page 42 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Executing the emaj_stop_group() function for a tables group already stopped does not
generate an error. Only a warning message is returned.

Using the emaj_stop_groups() function, several groups can be stopped at once:

SELECT emaj.emaj_stop_groups('<group.names.array>'[,
'<mark.name>')];

The chapter §4.10.3 explains how to describe the group names array.

E-Maj Reference Guide – version 4.1.0 Page 43 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.4 MODIFYING TABLES GROUPS

4.4.1 General information

Several event types may lead to alter a tables group:
➢ the tables group definition may change, some tables or sequences may have been

added or suppressed,
➢ one of the E-Maj parameters linked to a table (priority, tablespaces,...) may have

been modified,
➢ the structure of one or several application tables of the tables group may have

changed, such as an added or dropped column or a column type change,
➢ a table or sequence may change its name or its schema.

When the modification concerns a tables group in LOGGING state, it may be necessary to
temporarily remove the table or sequence from its tables group, with some impacts on
potential future E-Maj rollback operations.

Here are the possible actions, depending on the choosen method.

Actions Method

Add a table/sequence to a group Tables/sequences assignment functions

Remove a table/sequence from a
group

Tables/sequences removal functions

Move a table/sequence to another
group

Tables/sequences move functions

Change the log data or index
tablespace for a table

Tables properties modification functions

Change the E-Maj priority for a table Tables properties modification functions

Repair a table Remove from the group +
add to the group

Rename a table Remove from the group + ALTER TABLE + add

Rename a sequence Remove from the group + ALTER SEQUENCE +
add

Change the schema of a table Remove from the group + ALTER TABLE + add

Change the schema of a sequence Remove from the group + ALTER SEQUENCE +
add

Rename a table’s column Remove from the group + ALTER TABLE + add

Change a table’s structure Remove from the group + ALTER TABLE + add

Other forms of ALTER TABLE No E-Maj impact

Other forms of ALTER SEQUENCE No E-Maj impact

E-Maj Reference Guide – version 4.1.0 Page 44 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Adjusting the structure of in LOGGING state groups may have consequences on E-Maj
rollback or SQL script generation. This is explained into details in §4.4.8.

Even if the tables group is in LOGGING state, an E-Maj rollback operation targeting a mark
set before a group’s change do NOT automatically revert this group’s change. However
the E-Maj administrator can perform by himself the changes that would reset the group to
its previous state.

4.4.2 Add tables or sequences to a tables group

The functions that assign one or several tables or sequences into a tables group that are
used at group’s creation time (§4.2.3) are also usable during the whole group’s life.

When executing these functions, the tables group can be either in IDLE or in LOGGING
state.

When the group is in LOGGING state, an exclusive lock is set on all tables of the
group.

When the tables group is in LOGGING state, a mark is set. Its name is defined by the last
parameter of the function. This parameter is optional. If not supplied, the mark name is
generated, with a “ASSIGN_” prefix.

4.4.3 Remove tables from their tables group

The 3 following functions allow to remove one or several tables from their tables group:

SELECT emaj.emaj_remove_table(‘<schema>’,’<table>’
[,’<mark>’]);

or

SELECT emaj.emaj_remove_tables(‘<schema>’,’<tables.array>’
[,’<mark>’]);

or

SELECT emaj.emaj_remove_tables(‘<schema>’,
’<tables.to.include.filter>’,’<tables.to.exclude.filter>’
[,’<mark>’]);

They are very similar to the tables assignment functions.

When several tables are removed, they do not necessarily belongs to the same group.

E-Maj Reference Guide – version 4.1.0 Page 45 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

When the tables group or groups are in LOGGING state and no mark is supplied in
parameters, the mark is generated with a ‘REMOVE_’ prefix.

4.4.4 Remove sequences from their tables group

The 3 following functions allow to remove one or several sequences from their tables
group:

SELECT emaj.emaj_remove_sequence(‘<schema>’,’<sequence>’
[,’<mark>’]);

or

SELECT emaj.emaj_remove_sequences(‘<schema>’
’<sequences.array>’ [,’<mark>’]);

or

SELECT emaj.emaj_remove_sequences(‘<schema>’
’<sequences.to.include.filter>’,’<sequences.to.exclude.filter>’
[,’<mark>’]);

They are very similar to the sequences assignment functions.

When the tables group is in LOGGING state and no mark is supplied in parameters, the
mark is generated with a ‘REMOVE_’ prefix,

4.4.5 Move tables to another tables group

3 functions allow to move one or several tables to another tables group:

SELECT emaj.emaj_move_table(‘<schema>’,’<table>’,
‘<new.group>’ [,’<mark>’]);

or

SELECT emaj.emaj_move_tables(‘<schema>’,’<tables.array>’,
‘<new.group>’ [,’<mark>’]);

or

SELECT emaj.emaj_move_tables(‘<schema>’,
’<tables.to.include.filter>’,’<tables.to.exclude.filter>’,
‘<new.group>’ [,’<mark>’]);

E-Maj Reference Guide – version 4.1.0 Page 46 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

When serveral tables are moved to another tables group, they do not necessarily belong
to the same source group.

When the tables group is in LOGGING state and no mark is supplied in parameters, the
mark is generated with a ‘MOVE_’ prefix,

4.4.6 Move sequences to another tables group

3 functions allow to move one or several sequences to another tables group:

SELECT emaj.emaj_move_sequence(‘<schema>’,’<sequence>’,
‘<new.group>’ [,’<mark>’]);

or

SELECT emaj.emaj_move_sequences(‘<schema>’
’<sequences.array>’, ‘<new.group>’ [,’<mark>’]);

or

SELECT emaj.emaj_move_sequences(‘<schema>’
’<sequences.to.include.filter>’,’<sequences.to.exclude.filter>’,
‘<new.group>’ [,’<mark>’]);

When serveral sequences are moved to another tables group, they do not necessarily
belong to the same source group.

When the tables group is in LOGGING state and no mark is supplied in parameters, the
mark is generated with a ‘MOVE_’ prefix,

4.4.7 Modify tables properties

3 functions allow to modify the properties of one or several tables from a single schema:

SELECT emaj.emaj_modify_table(‘<schema>’,’<table>’,
’<modified.properties>’ [,’<mark>’]);

or

SELECT emaj.emaj_modify_tables(‘<schema>’,’<tables.array>’,
’<modified.properties>’ [,’<mark>’]);

or

E-Maj Reference Guide – version 4.1.0 Page 47 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

SELECT emaj.emaj_modify_tables(‘<schema>’,
’<tables.to.include.filter>’,’<tables.to.exclude.filter>’,
’<modified.properties>’ [,’<mark>’]);

The <modified.properties> parameter is of type JSONB. Its elementary fields are the
same as the <properties> parameter of the tables assignment functions (cf §4.2.3). But
this <modified.properties> parameter only contains … the properties to modify. The not
listed properties remain unchanged. It is possible to reset a property to its default value by
setting a NULL value (the json null).

The functions return the number of tables that have effectively changed at least one
property.

When the tables group is in LOGGING state and no mark is supplied in parameters, the
mark is generated with a ‘MODIFY_’ prefix,

4.4.8 Incidence of tables or sequences addition or removal in a group in
LOGGING state

Once a table or a sequence is removed from a tables group, any rollback
operation will leave this object unchanged.

Once unlinked from its tables group, the application table or sequence can be altered or
dropped. The historical data linked to the object (logs, marks traces,...) are kept as is so
that they can be later examined. However, they remain linked to the tables group that
owned the object. To avoid any confusion, log tables are renamed, adding a numeric
suffix to its name. These logs and marks traces will only be deleted by a group’s reset
operation (Cf §4.5.1) or by the deletion of the oldest marks of the group (Cf §4.6.5).

When a table or a sequence is added into a tables group in LOGGING state, it
is then processed by any further rollback operation. But if the rollback operation
targets a mark set before the addition into the group, the table or the sequence
is left in its state at the time of the addition into the group and a warning
message is issued. Such a table or sequence will not be processed by a SQL
script generation function call if the requested start mark has been set before
the addition of the table or sequence into the group

Some graphs help to more easily visualize the consequences of the addition or the
removal of a table or a sequence into/from a tables group in LOGGING state.

Let’s use a tables group containing 4 tables (t1 to t4) and 4 marks set over time (m1 to
m4). At m2, t3 has been added to the group while t4 has been removed. At m3, t2 has
been removed from the group while t4 has been re-added.

E-Maj Reference Guide – version 4.1.0 Page 48 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

A rollback to the mark m1:
➢ would process the table t1,
➢ would NOT process the table t2, for lack of log after m3,
➢ would process the table t3, but only up to m2,
➢ would process the table t4, but only up to m3, for lack of log between m2 and m3.

A log statistics report between the marks m1 and m4 would contain:
➢ 1 row for t1 (m1,m4),
➢ 1 row for t2 (m1,m3),
➢ 1 row for t3 (m2,m4),
➢ 2 rows for t4 (m1,m2) and (m3,m4).

E-Maj Reference Guide – version 4.1.0 Page 49 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The SQL script generation for the marks interval m1 to m4:
➢ would process the table t1,
➢ would process the table t2, but only up the mark m3,
➢ would NOT process the table t3, for lack of log before m2,
➢ would process the table t4, but only up to the mark m2, for lack of log between m2

and m3.

If the structure of an application table has been inadvertently changed while it belonged
to a tables group in LOGGING state, the mark set and rollback operations will be blocked
by the E-Maj internal checks. To avoid stopping, altering and then restarting the tables
group, it is possible to only remove the concerned table from its group and then to re-add
it.

When a table changes its affected group, the impact on the ability to generate a SQL
script or to rollback the source and destination tables groups is similar to removing the
table from its source group and then adding the table to the destination group.

4.4.9 Reparing a tables group

Eventhough the event triggers created with E-Maj limit the risk, some E-Maj components
that support an application table (log table, function or trigger) may have been dropped. In
such a case, the associated tables group cannot work correctly anymore.

In order to solve the issue without stopping the tables group if it is in LOGGING state (and
thus loose the benefits of the recorded logs), it is possible to remove the table from its
group and then re-add it, by chaining both commands:

SELECT emaj.emaj_remove_table(‘<schema>’, ‘<table>’
[,’<mark>’]);

SELECT emaj.emaj_assign_table(‘<schema>’, ‘<table>’, ‘<group>’
[,’properties’ [,’<mark>’]]);

Of course, once the table is removed from its group, the content of the associated logs
cannot be used for a potential rollback or script generation anymore.

E-Maj Reference Guide – version 4.1.0 Page 50 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

However, if the log sequence is missing (which should never be the case) and the tables
group is in LOGGING state, it is necessary to force the group’s stop (Cf §4.5.4) before
removing and re-assigning the table.

It may also happen that an application table or sequence has been accidentaly dropped.
In this case, the table of sequence can be simply a posteriori removed from its group by
executing the emaj_remove_table() or emaj_remove_sequence() function.

E-Maj Reference Guide – version 4.1.0 Page 51 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.5 OTHER GROUPS MANAGEMENT FUNCTIONS

4.5.1 Reset log tables of a group

In standard use, all log tables of a tables group are purged at emaj_start_group() time.
But, if needed, it is possible to reset log tables, using the following SQL statement:

SELECT emaj.emaj_reset_group('<group.name>');

The function returns the number of tables and sequences contained by the group.

Of course, in order to reset log tables, the tables group must be in IDLE state.

4.5.2 Comments on groups

In order to set a comment on any group, the following statement can be executed:

SELECT emaj.emaj_comment_group('<group.name>', '<comment>');

The function doesn't return any data.

To modify an existing comment, just call the function again for the same tables group, with
the new comment.

To delete a comment, just call the function, supplying a NULL value as comment.

Comments are stored into the group_comment column from the emaj_group table, which
describes … groups.

4.5.3 Protection of a tables group against rollbacks

It may be useful at certain time to protect tables groups against accidental rollbacks, in
particular with production databases. Two functions fit this need.

The emaj_protect_group() function set a protection on a tables group.

SELECT emaj.emaj_protect_group('<group.name>');

The function returns the integer 1 if the tables group was not already protected, or 0 if it
was already protected.

E-Maj Reference Guide – version 4.1.0 Page 52 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Once the group is protected, any logged or unlogged rollback attempt will be refused.

An “audit_only” or “idle” tables group cannot be protected.

When a tables group is started, it is not protected. When a tables group that is protected
against rollbacks is stopped, it looses its protection.

The emaj_unprotect_group() function remove an existing protection on a tables group.

SELECT emaj.emaj_unprotect_group('<group.name>');

The function returns the integer 1 if the tables group was previously protected, or 0 if it
was not already protected.

An “audit_only” tables group cannot be unprotected.

Once the protection of a tables group is removed, it becomes possible to execute any type
of rollback operation on the group.

A protection mechanism at mark level complements this scheme (Cf §4.6.6).

4.5.4 Forced stop of a tables group

It may occur that a corrupted tables group cannot be stopped. This may be the case for
instance if an application table belonging to a tables group has been inadvertently
dropped while the group was in LOGGING state. If usual emaj_stop_group() or
emaj_stop_groups() functions return an error, it is possible to force a group stop using the
emaj_force_stop_group() function.

SELECT emaj.emaj_force_stop_group('<group.name>');

The function returns the number of tables and sequences contained by the group.

The emaj_force_stop_group() function performs the same actions as the
emaj_stop_group() function, except that:

– it supports the lack of table or E-Maj trigger to deactivate, generating a “warning”
message in such a case,

– it does NOT set a stop mark.

Once the function is completed, the tables group is in IDLE state. It may then be dropped,
using the emaj_drop_group() function.

It is recommended to only use this function if it is really needed.

E-Maj Reference Guide – version 4.1.0 Page 53 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.5.5 Forced suppression of a tables group

It may happen that a damaged tables group cannot be stopped. But not being stopped, it
cannot be dropped. To be able to drop a tables group while it is still in logging state, a
special function exists.

SELECT emaj.emaj_force_drop_group('<group.name>');

The function returns the number of tables and sequences contained by the group.

This emaj_force_drop_group() functions performs the same actions than the
emaj_drop_group() function, but without checking the state of the group. So, it is
recommended to only use this function if it is really needed.

Note: Since the emaj_force_stop_group() function has been created, this
emaj_force_drop_group() function becomes useless. It may be removed in a future
version.

4.5.6 Logged rollback consolidation

Following the execution of a “logged rollback”, and once the rollback operation recording
becomes useless, it is possible to “consolidate” this rollback, meaning to some extent to
transform it into “unlogged rollback”. A the end of the consolidation operation, marks and
logs between the rollback target mark and the end rollback mark are deleted. The
emaj_consolidate_rollback_group() function fits this need.

SELECT emaj.emaj_consolidate_rollback_group('<group.name>',
<end.rollback.mark>);

The concerned logged rollback operation is identified by the name of the mark generated
at the end of the rollback. This mark must always exist, but may have been renamed.
The 'EMAJ_LAST_MARK' keyword may be used as mark name to reference the last set
mark.
The emaj_get_consolidable_rollbacks() function may help to identify the rollbacks that
may be condolidated (See §4.5.7).

Like rollback functions, the emaj_consolidate_rollback_group() function returns the
number of effectively processed tables and sequences.

The tables group may be in LOGGING or IDLE state.

E-Maj Reference Guide – version 4.1.0 Page 54 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The rollback target mark must always exist but may have been renamed. However,
intermediate marks may have been deleted.

When the consolidation is complete, only the rollback target mark and the end rollback
mark are kept.

The disk space of deleted rows will become reusable as soon as these log tables will be
“vacuumed”.

Of course, once consolidated, a “logged rollback” cannot be cancelled (or rolled back)
any more, the start rollback mark and the logs covering this rollback being deleted.

The consolidation operation is not sensitive to the protections set on groups or marks, if
any.

If a database has enough disk space, it may be interesting to replace a simple unlogged
rollback by a logged rollback followed by a consolidation so that the application tables
remain readable during the rollback operation, thanks to the lower locking mode used for
logged rollbacks.

4.5.7 List of “consolidable rollbacks”

The emaj_get_consolidable_rollbacks() function help to identify the rollbacks that may be
consolidated.

SELECT * FROM emaj.emaj_get_consolidable_rollbacks();

The function returns a set of rows with the following columns:
➢ cons_group rolled back tables group
➢ cons_target_rlbk_mark_name rollback target mark name
➢ cons_target_rlbk_mark_time_id temporal reference of the target mark (*)
➢ cons_end_rlbk_mark_name rollback end mark name
➢ cons_end_rlbk_mark_time_id temporal reference of the end mark (*)
➢ cons_rows number of intermediate updates
➢ cons_marks number of intermediate marks

(*) emaj_time_stamp table identifiers ; this table contains the time stamps of the most
important events of the tables groups life.

Using this function, it is easy to consolidate at once all “consolidable” rollbacks for all
tables groups in order to recover as much as possible disk space:

SELECT emaj.emaj_consolidate_rollback_group(cons_group,
cons_end_rlbk_mark__name) FROM
emaj.emaj_get_consolidable_rollbacks();

E-Maj Reference Guide – version 4.1.0 Page 55 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The emaj_get_consolidable_rollbacks() function may be used by emaj_adm and
emaj_viewer roles.

4.5.8 Exporting and importing tables groups configurations

A set of functions allow to export and import tables groups configurations. They may be
useful to deploy a standardized tables group configuration on several databases or to
upgrade the E-Maj version by a complete extension un-install and re-install (Cf §3.4.2).

4.5.8.1 Export a tables groups configuration

Two versions of the emaj_export_groups_configuration() function export a description of
one or several tables groups as a JSON structure.

A tables groups configuration can be written to a file with:

SELECT emaj_export_groups_configuration('<file.path>',
<groups.names.array>);

The file path must be accessible in write mode by the PostgreSQL instance.

The second parameter is optional. It lists in an array the tables groups names to
processed. If the parameter is not supplied or is set to NULL, the configuration of all tables
groups is exported.

The function returns the number of exported tables groups.

If the file path is not supplied (i.e. is set to NULL), the function directly returns the JSON
structure containing the configuration. This structure looks like this:

{
"_comment": "Generated on database <db> with E-Maj version

<version> at <date_heure>",
"tables_groups": [

{
"group": "ggg",
"is_rollbackable": true|false,
"comment": "ccc",
"tables": [

{
"schema": "sss",
"table": "ttt",
"priority": ppp,
"log_data_tablespace": "lll",
"log_index_tablespace": "lll",

E-Maj Reference Guide – version 4.1.0 Page 56 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

"ignored_triggers": ["tg1", "tg2", ...]
},
{
...
}

],
"sequences": [

{
"schema": "sss",
"sequence": "sss",
},
{
...
}

],
},
...

]
}

4.5.8.2 Import a tables groups configuration

Two versions of the emaj_import_groups_configuration() function import a description of
tables groups as a JSON structure.

A tables groups configuration can be read from a file with:

SELECT emaj_import_groups_configuration('<file.path>' [,
<groups.names.array> [, <alter_started_groups> [, <mark>]]]);

The file must be accessible by the PostgreSQL instance.

The file must contain a JSON structure with an attribute named "tables-groups" of type
array, and containing sub-structures describing each tables group, as described in the
previous chapter about tables groups configuration exports.

The function can directly import a file generated by the
emaj_export_groups_configuration() function.

The second parameter is of type array and is optional. It contains the list of the tables
groups to import. By default, all tables groups described in the file are imported.

If a tables group to import does not exist, it is created and its tables and sequences are
assigned into it.

If a tables group to import already exists, its configuration is adjusted to reflect the target
configuration : some tables and sequences may be added or removed, and some

E-Maj Reference Guide – version 4.1.0 Page 57 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

attributes may be modified. When the tables group is in LOGGING state, its configuration
adjustment is only possible if the third parameter is explicitly set to TRUE.

The fourth parameter defines the mark to set on tables groups in LOGGING state. By
default, the generated mark is “IMPORT_%”, where the % character represents the
current time, formatted as “hh.min.ss.mmmm”.

The function returns the number of imported tables groups.

In a variation of the function, the first input parameter directly contains the JSON
description of the groups to load.

SELECT emaj_import_groups_configuration(
'<JSON.structure> [, <groups.names.array> [,
<alter_started_groups> [, <mark>]]]);

4.6 MARKS MANAGEMENT FUNCTIONS

4.6.1 Comments on marks

In order to set a comment on any mark, the following statement can be executed:

SELECT emaj.emaj_comment_mark_group('<group.name>', '<mark>',
'<comment>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

The function doesn't return any data.

To modify an existing comment, just call the function again for the same tables group and
the same mark, with the new comment.

To delete a comment, just call the function, supplying a NULL value as comment.

Comments are stored into the mark_comment column from the emaj_mark table, which
describes … marks.

Comments are mostly interesting when using web clients (See §6). Indeed, they
systematically display the comments in the groups marks list.

E-Maj Reference Guide – version 4.1.0 Page 58 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.6.2 Search a mark

The emaj_get_previous_mark_group() function provides the name of the latest mark
before either a given date and time or another mark for a tables group.

SELECT emaj.emaj_get_previous_mark_group('<group.name>',
'<date.time>');

or

SELECT emaj.emaj_get_previous_mark_group('<group.name>',
'<mark>');

In the first format, the date and time must be expressed as a TIMESTAMPTZ datum, for
instance the literal '2011/06/30 12:00:00 +02'.

In the second format, the keyword 'EMAJ_LAST_MARK' can be used as mark name. It then
represents the last set mark.

If the supplied time strictly equals the time of an existing mark, the returned mark would
be the preceding one.

4.6.3 Rename a mark

A mark that has been previously set by one of both emaj_create_group() or
emaj_set_mark_group() functions can be renamed, using the SQL statement:

SELECT emaj.emaj_rename_mark_group('<group.name>',
'<mark.name>', '<new.mark.name>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

The function does not return any data.

A mark having the same name as the requested new name should not already exist for
the tables group.

4.6.4 Delete a mark

A mark can also be deleted, using the SQL statement:

E-Maj Reference Guide – version 4.1.0 Page 59 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

SELECT emaj.emaj_delete_mark_group('<group.name>',
'<mark.name>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

The function returns 1, corresponding to the number of effectively deleted marks.

As at least one mark must remain after the function has been performed, a mark deletion
is only possible when there are at least two marks for the concerned tables group.

If the deleted mark is the first mark of the tables group, the useless rows of log tables are
deleted.

If a table has been detached from a tables group (Cf. Erreur : source de la référence non
trouvée), and the deleted mark corresponds to the last known mark for this table, the logs
for the period between this mark and the preceeding one are deleted,

4.6.5 Delete oldest marks

To easily delete in a single operation all marks prior a given mark, the following statement
can be executed:

SELECT emaj.emaj_delete_before_mark_group('<group.name>',
'<mark.name>');

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

The function deletes all marks prior the supplied mark, this mark becoming the new first
available mark. It also suppresses from log tables all rows related to the deleted period of
time.

The function returns the number of deleted marks.

The function also performs a purge of the oldest events in the emaj_hist technical table
(see §5.4).

With this function, it is quite easy to use E-Maj for a long period of time, without stopping
and restarting groups, while limiting the disk space needed for accumulated log records.

However, as the log rows deletion cannot use any TRUNCATE command (unlike with the
emaj_start_group() or emaj_reset_group() functions), using
emaj_delete_before_mark_group() function may take a longer time than simply stopping

E-Maj Reference Guide – version 4.1.0 Page 60 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

and restarting the group. In return, no lock is set on the tables of the group. Its execution
may continue while other processes update the application tables. Nothing but other E-
Maj operations on the same tables group, like setting a new mark, would wait until the end
of an emaj_delete_before_mark_group() function execution.

When associated, the functions emaj_delete_before_mark_group() and
emaj_get_previous_mark_group() allow to delete marks older than a retention delay. For
example, to suppress all marks (and the associated log rows) set since more than 24
hours, the following statement can be executed:

SELECT emaj.emaj_delete_before_mark_group('<group>',
emaj.emaj_get_previous_mark_group('<group>', current_timestamp - '1
DAY'::INTERVAL));

4.6.6 Protection of a mark against rollbacks

To complement the mechanism of tables group protection against accidental rollbacks
(see §4.5.3), it is possible to set protection at mark level. Two functions fit this need.

The emaj_protect_mark_group() function sets a protection on a mark for a tables group.

SELECT
emaj.emaj_protect_mark_group('<groupe.name>','<mark.name>');

The function returns the integer 1 if the mark was not previously protected, or 0 if it was
already protected.

Once a mark is protected, any logged or unlogged rollback attempt is refused if it reset the
tables group in a state prior this protected mark.

A mark of an “audit-only” or an “idle” tables group cannot be protected.

When a mark is set, it is not protected. Protected marks of a tables group automatically
loose their protection when the group is stopped. Warning: deleting a protected mark also
deletes its protection. This protection is not moved on an adjacent mark.

The emaj_unprotect_mark_group() function remove an existing protection on a tables
group mark.

SELECT
emaj.emaj_unprotect_mark_group('<group.name>','<mark.name>');

E-Maj Reference Guide – version 4.1.0 Page 61 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The function returns the integer 1 if the mark was previously protected, or 0 if it was not
yet protected.

A mark of an “audit-only” tables group cannot be unprotected.

Once a mark protection is removed, it becomes possible to execute any type of rollback
on a previous mark.

E-Maj Reference Guide – version 4.1.0 Page 62 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.7 STATISTICS FUNCTIONS

There are two functions that return statistics on log tables content:
➢ emaj_log_stat_group() quickly delivers, for each table of a group, the number of

updates that have been recorded in the related log tables, either between 2 marks
or since a particular mark,

➢ emaj_detailed_log_stat_group() provides more detailed information than
emaj_log_stat_group(), the number of updates been reported per table, SQL type
(INSERT/UPDATE/DELETE) and connection role.

Two other E-Maj functions, emaj_estimate_rollback_group() and
emaj_estimate_rollback_groups() , provide an estimate of how long a rollback for one or
several groups to a given mark may last.

These functions can be used by emaj_adm and emaj_viewer E-Maj roles.

4.7.1 Global statistics about logs

Full global statistics about logs content are available with this SQL statement:

SELECT * FROM emaj.emaj_log_stat_group('<group.name>',
'<start.mark>', '<end.mark>');

The function returns a set of rows, whose type is named emaj.emaj_log_stat_type, and
contains the following columns:

➢ stat_group : tables group name (type TEXT),
➢ stat_schema : schema name (type TEXT),
➢ stat_table : table name (type TEXT),
➢ stat_first_mark : mark name of the period start (type TEXT),
➢ stat_first_mark_datetime : mark timestamp of the period start (type

TIMESTAMPTZ),
➢ stat_last_mark : mark name of the period end (type TEXT),
➢ stat_last_mark_datetime : mark timestamp of the period end (type

TIMESTAMPTZ),
➢ stat_rows : number of updates recorded into the related log table

(type BIGINT)

A NULL value or an empty string ('') supplied as start mark represents the oldest mark.

A NULL value supplied as end mark represents the current situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

The function returns one row per table, even if there is no logged update for this table. In
this case, stat_rows columns value is 0.

E-Maj Reference Guide – version 4.1.0 Page 63 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Most of the time, the stat_first_mark, stat_first_mark_datetime, stat_last_mark and
stat_last_mark_datetime columns reference the start and end marks of the requested
period. But they can contain other values when a table has been added or removed from
the tables group during the requested time interval.

It is possible to easily execute more precise requests on these statistics. For instance, it is
possible to get the number of database updates by application schema, with a statement
like:

postgres=# SELECT stat_schema, sum(stat_rows)
FROM emaj.emaj_log_stat_group('myAppl1', NULL, NULL)
GROUP BY stat_schema;
 stat_schema | sum
-------------+-----
 myschema | 41
(1 row)

There is no need for log table scans to get these statistics. For this reason, they are
delivered quickly.

But returned values may be approximative (in fact over-estimated). This occurs in
particular when transactions executed between both requested marks have performed
table updates before being cancelled.

Using the emaj_log_stat_groups() function, log statistics can be obtained for several
groups at once:

SELECT emaj.emaj_log_stat_groups('<group.names.array>',
'<start.mark>', '<end.mark>');

The chapter §4.10.3 explains how to describe the group names array.

4.7.2 Detailed statistics about logs

Scanning log tables brings a more detailed information, at a higher response time cost. So
can we get fully detailed statistics with the following SQL statement:

SELECT * FROM emaj.emaj_detailed_log_stat_group('<group.name>',
'<start.mark>', '<end.mark>');

The function returns a set of rows, whose type is named
emaj.emaj_detailed_log_stat_type, and contains the following columns:

E-Maj Reference Guide – version 4.1.0 Page 64 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

➢ stat_group : tables group name (type TEXT),
➢ stat_schema : schema name (type TEXT),
➢ stat_table : table name (type TEXT),
➢ stat_first_mark : mark name of the period start (type TEXT),
➢ stat_first_mark_datetime : mark timestamp of the period start (type

TIMESTAMPTZ),
➢ stat_last_mark : mark name of the period end (type TEXT),
➢ stat_last_mark_datetime : mark timestamp of the period end (type

TIMESTAMPTZ),
➢ stat_role : connection role (type VARCHAR(32)),
➢ stat_verb : type of the SQL verb that has performed the update

(type VARCHAR(6), with values: INSERT / UPDATE / DELETE),
➢ stat_rows : number of updates recorded into the related log table

(type BIGINT)

A NULL value or an empty string ('') supplied as start mark represents the oldest mark.

A NULL value supplied as end mark represents the current situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

Unlike emaj_log_stat_group(), the emaj_detailed_log_stat_group() function doesn't return
any rows for tables having no logged updates inside the requested marks range. So
stat_rows column never contains 0.

Most of the time, the stat_first_mark, stat_first_mark_datetime, stat_last_mark and
stat_last_mark_datetime columns reference the start and end marks of the requested
period. But they can contain other values when a table has been added or removed from
the tables group during the requested time interval.

Using the emaj_detailed_log_stat_groups() function, detailed log statistics can be
obtained for several groups at once:

SELECT emaj.emaj_detailed_log_stat_groups('<group.names.array>',
'<start.mark>', '<end.mark>');

The chapter §4.10.3 explains how to describe the group names array.

4.7.3 Estimate the rollback duration

The emaj_estimate_rollback_group() function returns an idea of the time needed to
rollback a tables group to a given mark. It can be called with a statement like:

E-Maj Reference Guide – version 4.1.0 Page 65 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

SELECT emaj.emaj_estimate_rollback_group('<group.name>',
'<mark.name>', <is.logged>);

The keyword 'EMAJ_LAST_MARK' can be used as mark name. It then represents the last
set mark.

The third parameter indicates whether the E-Maj rollback to simulate is a logged rollback
or not.

The function returns an INTERVAL value.

The tables group must be in LOGGING state and the supplied mark must be usable for a
rollback, i.e. it cannot be logically deleted.

This duration estimate is approximative. It takes into account:
➢ the number of updates in log tables to process, as returned by the

emaj_log_stat_group() function,
➢ recorded duration of already performed rollbacks for the same tables,
➢ 6 generic parameters (see §5.1) that are used as default values when no statistics

have been already recorded for the tables to process.

The precision of the result cannot be high. The first reason is that, INSERT, UPDATE and
DELETE having not the same cost, the part of each SQL type may vary. The second
reason is that the load of the server at rollback time can be very different from one run to
another. However, if there is a time constraint, the order of magnitude delivered by the
function can be helpful to determine of the rollback operation can be performed in the
available time interval.

If no statistics on previous rollbacks are available and if the results quality is poor, it is
possible to adjust parameters listed in chapter 5.1. It is also possible to manually change
the emaj.emaj_rlbk_stat table's content that keep a trace of the previous rollback
durations, for instance by deleting rows corresponding to rollback operations performed in
unusual load conditions.

Using the emaj_estimate_rollback_groups() function, it is possible to estimate the
duration of a rollback operation on several groups:

SELECT emaj.emaj_estimate_rollback_groups('<group.names.array>',
'<mark.name>', <is.logged>);

The chapter §4.10.3 explains how to describe the group names array.

E-Maj Reference Guide – version 4.1.0 Page 66 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.8 DATA EXTRACTION FUNCTIONS

Three functions extract data from E-Maj infrastructure and store them into external files.

4.8.1 SQL script generation to replay logged updates

Log tables contain all needed information to replay updates. Therefore, it is possible to
generate SQL statements corresponding to all updates that occurred between two marks
or between a mark and the current situation. This is the purpose of the
emaj_gen_sql_group() function.

So these updates can be replayed after the corresponding tables have been restored in
their state at the initial mark, without being obliged to rerun application programs.

To generate this SQL script, just execute the following statement:

SELECT emaj.emaj_gen_sql_group('<group.name>', '<start.mark>',
 '<end.mark>', '<file>' [, <tables/sequences.array>);

A NULL value or an empty string may be used as start mark, representing the first known
mark.
A NULL value or an empty string may be used as end mark, representing the current
situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name, representing the last set
mark.

If supplied, the output file name must be an absolute pathname. It must have the
appropriate permission so that the PostgreSQL instance can write to it. If the file already
exists, its content is overwritten.

The output file name may be set to NULL. In this case, the SQL script is prepared in a
temporary table that can then be accessed through a temporary view, emaj_sql_script.
Using psql, the script can be exported with both commands:

SELECT emaj.emaj_gen_sql_group('<group.name>', '<start.mark>',
 '<end.mark>', NULL [, <tables/sequences.array>);

\copy (SELECT * FROM emaj_sql_script) TO ‘file’

This method allows to generate a script in a file located outside the file systems
accessible by the PostgreSQL instance.

The last parameter of the emaj_gen_sql_group() function is optional. It allows filtering of
the tables and sequences to process. If the parameter is omitted or has a NULL value, all

E-Maj Reference Guide – version 4.1.0 Page 67 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

tables and sequences of the tables group are processed. If specified, the parameter must
be expressed as a non empty array of text elements, each of them representing a schema
qualified table or sequence name. Both syntaxes can be used:
ARRAY['sch1.tbl1','sch1.tbl2']
or
'{ "sch1.tbl1" , "sch1.tbl2" }'

The function returns the number of generated statements (not including comments and
transaction management statements).

The tables group may be in IDLE or in LOGGING state while the function is called.

In order to generate the script, all tables must have an explicit PRIMARY KEY.

If a tables and sequences list is specified to limit the emaj_gen_sql_group()
function's work, it is the user's responsibility to take into account the possible
presence of foreign keys, in order to let the function produce a viable SQL
script.

Statements are generated in the order of their initial execution.

The statements are inserted into a single transaction. They are surrounded by a BEGIN
TRANSACTION; statement and a COMMIT; statement. An initial comment specifies the
characteristics of the script generation: generation date and time, related tables group and
used marks.

At the end of the script, sequences belonging to the tables group are set to their final
state.

Then, the generated file may be executed as is by psql tool, using a connection role that
has enough rights on accessed tables and sequences.

The used technology may result to doubled backslashes in the output file. These doubled
characters must be suppressed before executing the script, for instance, in Unix/Linux
environment, using a command like:
sed 's/\\\\/\\/g' <file.name> | psql ...

As the function can generate a large, or even very large, file (depending on the log
volume), it is the user's responsibility to provide a sufficient disk space.

It is also the user's responsibility to deactivate application triggers, if any exist, before
executing the generated script.

Using the emaj_gen_sql_groups() function, it is possible to generate a sql script related to
several groups:

SELECT emaj.emaj_gen_sql_groups('<group.names.array>',
'<start.mark>', '<end.mark>', '<file>' [, <tables/sequences.array>);

E-Maj Reference Guide – version 4.1.0 Page 68 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The chapter §4.10.3 explains how to describe the group names array.

4.8.2 Snap tables of a group

It may be useful to take images of all tables and sequences belonging to a group to be
able to analyse their content or compare them. It is possible to dump to files all tables and
sequences of a group with:

SELECT emaj.emaj_snap_group('<group.name>', '<storage.directory>',
'<COPY.options>');

The directory/folder name must be supplied as an absolute pathname and must have
been previously created. This directory/folder must have the appropriate permission so
that the PostgreSQL instance can write in it.

The third parameter defines the output files format. It is a character string that matches
the precise syntax available for the COPY TO SQL statement.

The function returns the number of tables and sequences contained by the group.

This emaj_snap_group() function generates one file per table and sequence belonging to
the supplied tables group. These files are stored in the directory or folder corresponding to
the second parameter.

New files will overwrite existing files of the same name.

Created files are named with the following pattern:
<schema.name>_<table/sequence.name>.snap

Some unconvenient in file name characters, namely spaces, “/”, “\”, “$”, “>”, “<”, and “*”
are replaced by “_”.

Each file corresponding to a sequence has only one row, containing all characteristics of
the sequence.

Files corresponding to tables contain one record per row, in the format corresponding to
the supplied parameter. These records are sorted in ascending order of the primary key.

At the end of the operation, a file named _INFO is created in this same directory/folder. It
contains a message including the tables group name and the date and time of the snap
operation.

It is not necessary that the tables group be in idle state to snap tables.

E-Maj Reference Guide – version 4.1.0 Page 69 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

As this function may generate large or very large files (of course depending on tables
sizes), it is user's responsibility to provide a sufficient disk space.

Thanks to this function, a simple test of the E-Maj behaviour could chain:
➢ emaj_create_group(),
➢ emaj_start_group(),
➢ emaj_snap_group(<directory_1>),
➢ updates of application tables,
➢ emaj_rollback_group(),
➢ emaj_snap_group(<directory_2>),
➢ comparison of both directories content, using a diff command for instance.

4.8.3 Snap log tables of a group

It is also possible to record a full or a partial image of all log tables related to a group. This
provides a way to archive updates performed by one or more previous operations. It is
possible to dump on files all tables and sequences of a group with:

SELECT emaj.emaj_snap_log_group('<group.name>', '<start.mark>',
'<end.mark>', '<storage.directory>', '<COPY.options>');

A NULL value or an empty string may be used as start mark, representing the first known
mark.
A NULL value or an empty string may be used as end mark, representing the current
situation.

The keyword 'EMAJ_LAST_MARK' can be used as mark name, representing the last set
mark.

The directory/folder name must be supplied as an absolute pathname and must have
been previously created. This directory/folder must have the appropriate permission so
that the PostgreSQL instance can write in it.

The fifth parameter defines the output files format. It is a character string that matches the
precise syntax available for the COPY TO SQL statement.

The function returns the number of generated files.

This emaj_snap_log_group() function generates one file per log table, containing the part
of this table that corresponds to the updates performed between both supplied marks.
Created files name has the following pattern:

<log.table.name>.snap

So most of the time, they look like:
<schema.name>_<table/sequence.name>_log.snap

E-Maj Reference Guide – version 4.1.0 Page 70 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The function also generates two files, containing the application sequences state at the
time of the respective supplied marks, and named:

<group.name>_sequences_at_<mark.name>

All these files are stored in the directory or folder corresponding to the fourth parameter.
New files will overwrite existing files of the same name.

Some unconvenient in file name characters, namely spaces, “/”, “\”, “$”, “>”, “<”, and “*”
are replaced by “_”.

At the end of the operation, a file named _INFO is created in this same directory/folder. It
contains a message including the table's group name, the mark's name that defined the
mark range and the date and time of the snap operation.

It is not necessary that the tables group be in idle state to snap log tables. If no end mark
has been supplied, the log tables snap is bounded by a pseudo mark set at the function
start. This ensures that, if the group is in logging state, output files will not contain updates
recorded after the function start.

As this function may generate large or very large files (of course depending on tables
sizes), it is user's responsibility to provide a sufficient disk space.

The structure of log tables is described in §5.2.1.

E-Maj Reference Guide – version 4.1.0 Page 71 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.9 OTHER FUNCTIONS

4.9.1 Check the consistency of the E-Maj environment

A function is also available to check the consistency of the E-Maj environment.
It consists in checking the integrity of all E-Maj schemas and all created tables groups.
This function can be called with the following SQL statement:

SELECT * FROM emaj.emaj_verify_all();

For each E-Maj schema (emaj and each log schema) the function verifies that:
➢ all tables, functions, sequences and types contained in the schema are either

objects of the extension, or linked to created tables groups,
➢ they don't contain any view, foreign table, domain, conversion, operator or operator

class.

Then, for each created tables group, the function performs the same checks as those
performed when a group is started, a mark is set, or a rollback is executed (see §5.3.1).

The function returns a set of rows describing the detected discrepancies. If no error is
detected, the function returns a single row containing the following messages:

'No error detected'

The function also returns warnings when:
➢ a sequence linked to a column belongs to a tables group, but the associated table

does not belong to the same tables group,
➢ a table of a tables group is linked to another table by a foreign key, but the

associated table does not belong to the same tables group.

The emaj_verify_all() function can be executed by any role belonging to emaj_adm or
emaj_viewer roles.

If errors are detected, for instance after an application table referenced in a tables group
has been dropped, appropriate measures must be taken. Typically, the potential orphan
log tables or functions must be manually dropped.

4.9.2 Exporting and importing parameters configurations

Two functions sets allow to respectively export and import parameters configurations.
They can be useful to deploy a standardized parameters set on several databases, or
during E-Maj version upgrades by a full extension uninstallation and reinstallation (Cf
§3.4.2).

E-Maj Reference Guide – version 4.1.0 Page 72 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.9.2.1 Exporting a parameters configuration

Two versions of the emaj_export_parameters_configuration() function export all the
parameters registered in the emaj_param table in a JSON structure, except the
parameter of key "emaj_version", which is linked to the emaj extension itself and is not
really a configuration parameter.

The parameters data can be written to a file with:

SELECT emaj_export_parameters_configuration('<file.path>');

The file path must be accessible in write mode by the PostgreSQL instance.

The function returns the number of exported parameters.

If the file path is not supplied, the function directly returns the JSON structure containing
the parameters value. This structure looks like this:

{
"_comment": "E-Maj parameters, generated from the database

<db> with E-Maj version <version> at <date_heure>",
"parameters": [
 {

"key": "...",
"value": "..."

 },
 {

...
 }
]

}

4.9.2.2 Importing a parameters configuration

Two versions of the emaj_import_parameters_configuration() function import parameters
from a JSON structure into the emaj_param table.

A file containing parameters to load can be read with:

SELECT emaj_import_parameters_configuration('<file.path>',
 <delete.current.configuration>);

The file path must be accessible by the PostgreSQL instance.

The file must contain a JSON structure having an attribute named "parameters", of array
type, and containing sub-structures with the attributes "key" and "value".

E-Maj Reference Guide – version 4.1.0 Page 73 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

{"parameters": [
 {

"key": "...",
"value": "..."

 },
 {

...
 }
]}

If a paramater has no "value" attribute or if this attribute is set to NULL, the parameter is
not inserted into the emaj_param table, and is deleted if it already exists in the table. So
the parameter’s default value will be used by the emaj extension.

The function can directly load a file generated by the
emaj_export_parameters_configuration() function.

If present, the paramètre of key "emaj_version" is not processed.

The second parameter, boolean, is optional. It tells whether the current parameter
configuration has to be deleted before the load. It is FALSE by default, meaning that the
keys currenly stored into the emaj_param table, but not listed in the JSON structure are
kept (differential mode load). If the value of this second parameter is set to TRUE, the
function performs a full replacement of the parameters configuration (full mode load).

The function returns the number of imported parameters.

As an alternative, the first input parameter of the function directly contains the JSON
structure of the parameters to load.

SELECT emaj_import_parameters_configuration(
'<JSON.structure>', <delete.current.configuration>);

4.9.3 Getting the current log table linked to an application table

The emaj_get_current_log_table() function allows to get the schema and table names of
the current log table linked to a given application table.

SELECT log_schema, log_table FROM
emaj_get_current_log_table(<schema>, <table>);

The function always returns 1 row. If the application table does not currently belong to any
tables group, the log_schema and log_table columns are set to NULL.

E-Maj Reference Guide – version 4.1.0 Page 74 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The emaj_get_current_log_table() function can be used by emaj_adm and emaj_viewer
E-Maj roles.

It is possible to build a statement accessing a log table. For instance:

SELECT 'select count(*) from '
|| quote_ident(log_schema) || '.' || quote_ident(log_table)
FROM emaj.emaj_get_current_log_table('myschema','mytable');

4.9.4 Monitoring rollback operations

When the volume of recorded updates to cancel leads to a long rollback, it may be
interesting to monitor the operation to appreciate how it progresses. A function, named
emaj_rollback_activity(), and a client, emajRollbackMonitor.php (see §4.12), fit this
need.

4.9.4.1 Prerequisite

To allow E-Maj administrators to monitor the progress of a rollback operation, the
activated functions update several technical tables as the process progresses. To ensure
that these updates are visible while the transaction managing the rollback is in progress,
they are performed through a dblink connection.

As a result, monitoring rollback operations requires the installation of the dblink extension
(§3.3.2) as well as the insertion of a connection identifier usable by dblink into the
emaj_param table.

Recording the connection identifier can be performed with a statement like:

INSERT INTO emaj.emaj_param (param_key, param_value_text)
VALUES ('dblink_user_password','user=<user> password=<password>');

The declared connection role must have been granted the emaj_adm rights (or be a
superuser).

Lastly, the main transaction managing the rollback operation must be in a “read
committed” concurrency mode (the default value).

4.9.4.2 Monitoring function

The emaj_rollback_activity() function allows to see the progress of rollback operations.

Invoke it with the following statement:

E-Maj Reference Guide – version 4.1.0 Page 75 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

SELECT * FROM emaj.emaj_rollback_activity();

The function does not require any input parameter.

It returns a set of rows of type emaj.emaj_rollback_activity_type. Each row represents an
in progress rollback operation, with the following columns:

➢ rlbk_id rollback identifier
➢ rlbk_groups tables groups array associated to the rollback
➢ rlbk_mark mark to rollback to
➢ rlbk_mark_datetime date and time when the mark to rollback to has been set
➢ rlbk_is_logged boolean taking the “true” value for logged rollbacks
➢ rlbk_nb_session number of parallel sessions
➢ rlbk_nb_table number of tables contained in the processed tables groups
➢ rlbk_nb_sequence number of sequences contained in the processed tables groups
➢ rlbk_eff_nb_table number of tables having updates to cancel
➢ rlbk_status rollback operation state
➢ rlbk_start_datetimerollback operation start timestamp
➢ rlbk_elapse elapse time spent since the rollback operation start
➢ rlbk_remaining estimated remaining duration
➢ rlbk_completion_pct estimated percentage of the completed work

An in progress rollback operation is in one of the following state:
➢ PLANNING the operation is in its initial planning phase,
➢ LOCKING the operation is setting locks,
➢ EXECUTING the operation is currently executing one of the planned steps.

If the functions executing rollback operations cannot use dblink connections (extension
not installed, missing or incorrect connection parameters,...), the emaj_rollback_activity()
does not return any rows.

The remaining duration estimate is approximate. Its precision is similar to the precision of
the emaj_estimate_rollback_group() function (§4.7.3).

4.9.5 Updating rollback operations state

The emaj_rlbk technical table and its derived tables contain the history of E-Maj rollback
operations.

When rollback functions cannot use dblink connections (see the conditions at §4.9.4.1),
all updates of these technical tables are all performed inside a single transaction.
Therefore:

➢ any rollback operation that has not been completed is invisible in these technical
tables,

➢ any rollback operation that has been validated is visible in these technical tables
with a “COMMITTED” state.

E-Maj Reference Guide – version 4.1.0 Page 76 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

When rollback functions can use dblink connections, all updates of emaj_rlbk and its
related tables are performed in autonomous transactions. In this working mode, rollback
functions leave the operation in a “COMPLETED” state when finished. A dedicated internal
function is in charge of transforming the “COMPLETED” operations either into a
“COMMITTED” state or into an “ABORTED” state, depending on how the main rollback
transaction has ended. This function is automatically called when a new mark is set and
when the rollback monitoring function is used.

If the E-Maj administrator wishes to check the status of recently executed rollback
operations, he can use the emaj_cleanup_rollback_state() function at any time:

SELECT emaj.emaj_cleanup_rollback_state();

The function returns the number of modified rollback operations.

4.9.6 History data purge

E-Maj keeps some historical data: traces of elementary operations, E-Maj rollback details,
tables groups structure changes (see §5.4). Oldest traces are automaticaly purged by the
extension. But it is also possible to purge these obsolete traces on demand using:

SELECT emaj.emaj_purge_histories('<retention.delay>');

The <retention.delay> parameter is of type INTERVAL. It overloads the
‘history_retention’ parameter of the emaj_param table.

4.9.7 Deactivating or reactivating event triggers

The E-Maj extension installation procedure activates event triggers to protect it (See
§5.3.2). Normally, these triggers must remain in their state. But if the E-Maj administrator
needs to deactivate and the reactivate them, he can use 2 dedicated functions.

To deactivate the existing event triggers:

SELECT emaj.emaj_disable_protection_by_event_triggers();

The function returns the number of deactivated event triggers (this value depends on the
installed PostgreSQL version).

To reactivate existing event triggers:

E-Maj Reference Guide – version 4.1.0 Page 77 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

SELECT emaj.emaj_enable_protection_by_event_triggers();

The function returns the number of reactivated event triggers.

E-Maj Reference Guide – version 4.1.0 Page 78 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.10MULTI-GROUPS FUNCTIONS

4.10.1 General information

To be able to synchronize current operations like group start or stop, set mark or rollback,
usual functions dedicated to these tasks have twin-functions that process several tables
groups in a single call.

The resulting advantages are:
➢ to process all tables group in a single transaction,
➢ to lock tables belonging to all groups at the beginning of the operation to minimize

the risk of deadlock.

4.10.2 Functions list

The following table lists the multi-groups functions, with their relative mono-group
functions, some of them being discussed later.

Multi-groups functions Relative mono-group function §

emaj.emaj_start_groups() emaj.emaj_start_group() 4.3.2

emaj.emaj_stop_groups() emaj.emaj_stop_group() 4.3.6

emaj.emaj_set_mark_groups() emaj.emaj_set_mark_group() 4.3.3

emaj.emaj_rollback_groups() emaj.emaj_rollback_group() 4.3.4

emaj.emaj_logged_rollback_groups() emaj.emaj_logged_rollback_group() 4.3.5

emaj.emaj_estimate_rollback_groups(
)

emaj.emaj_estimate_rollback_group(
)

4.7.3

emaj.emaj_log_stat_groups() emaj.emaj_log_stat_group() 4.7.1

emaj.emaj_detailed_log_stat_groups() emaj.emaj_detailed_log_stat_group() 4.7.2

emaj.emaj_gen_sql_groups() emaj.emaj_gen_sql_group() Erreur :
source
de la

référenc
e non

trouvée

The parameters of multi-groups functions are the same as those of their related mono-
group function, except the first one. The TEXT table group parameter is replaced by a
TEXT ARRAY parameter representing a tables groups list.

4.10.3 Syntax for groups array

E-Maj Reference Guide – version 4.1.0 Page 79 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The SQL type of the <groups.array> parameter passed to the multi-groups functions is
TEXT[], i.e. an array of text data.

According to SQL standard, there are 2 possible syntaxes to specify a groups array, using
either braces { }, or the ARRAY function.

When using { and }, the full list is written between single quotes, then braces frame the
comma separated elements list, each element been placed between double quotes. For
instance, in our case, we can write:

' { "group 1" , "group 2" , "group 3" } '

The SQL function ARRAY builds an array of data. The list of values is placed between
brackets [], and values are separated by comma. For instance, in our case, we can write :

ARRAY ['group 1' , 'group 2' , 'group 3']

Both syntax are equivalent.

4.10.4 Other considerations

The order of the groups in the groups list is not meaningful. During the E-Maj operation,
the processing order of tables only depends on the priority level defined for each table,
and, for tables having the same priority level, from the alphabetic order of their schema
and table names.

It is possible to call a multi-groups function to process a list of … one group, or even an
empty list. This may allows a set oriented build of this list, using for instance the
array_agg() function.

A tables groups list may contain duplicate values, NULL values or empty strings. These
NULL values or empty strings are simply ignored. If a tables group name is listed several
times, only one occurrence is kept.

Format and usage of these functions are strictly equivalent to those of their twin-functions.

However, an additional condition exists for rollback functions: the supplied mark must
correspond to the same point in time for all groups. In other words, this mark must have
been set by the same emaj_set_mark_group() function call.

E-Maj Reference Guide – version 4.1.0 Page 80 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.11PARALLEL ROLLBACK CLIENT

On servers having several processors or processor cores, it may be possible to reduce
rollback elapse time by paralleling the operation on multiple threads of execution. For this
purpose, E-Maj delivers a specific client to run as a command. It activates E-Maj rollback
functions though several parallel connections to the database.

4.11.1 Sessions

To run a rollback in parallel, E-Maj spreads tables and sequences to process for one or
several tables groups into “sessions”. Each session is then processed in its own thread.

However, in order to guarantee the integrity of the global operation, the rollback of all
sessions is executed inside a single transaction.

Tables are assigned to sessions so that the estimated session durations be the most
balanced as possible.

4.11.2 Prerequisites

Two equivalent tools are actually provided, one coded in php and the other in perl. Both
need that some software components be installed on the server that executes the
command (which is not necessarily the same as the one that hosts the PostgreSQL
instance):

➢ for the php client, the php software and its PostgreSQL interface,
➢ for the perl client, the perl software with the DBI and DBD::Pg modules.

Rolling back each session on behalf of a unique transaction implies the use of two phase
commit. As a consequence, the max_prepared_transaction parameter of the
postgresql.conf file must be adjusted. As the default value of this parameter equals 0, it
must be modified by specifying a value at least equal to the maximum number of sessions
that will be used.

E-Maj Reference Guide – version 4.1.0 Page 81 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.11.3 Syntax

Both php and perl commands share the same syntax:

emajParallelRollback.php -g <group(s).name> -m <mark> -s <number.of.sessions>
[OPTIONS]...
and
emajParallelRollback.pl -g <group(s).name> -m <mark> -s <number.of.sessions>
[OPTIONS]...

General options:
 -l specifies that the requested rollback is a “logged rollback” (see §4.3.5)
 -a specifies that the requested rollback is allowed to reach a mark set before an
alter group operation (see §4.4)
 -v displays more information about the execution of the processing
 --help only displays a command help
 --version only displays the software version

Connection options:
 -d database to connect to
 -h host to connect to
 -p ip-port to connect to
 -U connection role to use
 -W password associated to the role, if needed

To replace some or all these parameters, the usual PGDATABASE, PGPORT, PGHOST
and/or PGUSER environment variables can be used.

To specify a list of tables groups in the -g parameter, separate the name of each group by
a comma.

The supplied connection role must be either a superuser or a role having emaj_adm
rights.

For safety reasons, it is not recommended to use the -W option to supply a password. It is
rather advisable to use the .pgpass file (see PostgreSQL documentation).

To allow the rollback operation to work, the tables group or groups must be in logging
state. The supplied mark must also correspond to the same point in time for all groups. In
other words, this mark must have been set by the same emaj_set_mark_group() function
call.

The 'EMAJ_LAST_MARK' keyword can be used as mark name, meaning the last set mark.

It is possible to monitor the multi-session rollback operations with the same tools as for
mono-session rollbacks: emaj_rollback_activity() function, the emajRollbackMonitor
command (See §4.12) or the Emaj_web rollback monitor page. As for mono-session
rollbacks, the dblink_user_password parameter (See §5.1) must be set in order to get
detailed status of the operations progress.

E-Maj Reference Guide – version 4.1.0 Page 82 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

In order to test both emajParallelRollback commands, the E-Maj extension supplies a test
script, emaj_prepare_parallel_rollback_test.sql. It prepares an environment with two
tables groups containing some tables and sequences, on which some updates have been
performed, with intermediate marks. Once this script has been executed under psql, the
command displayed at the end of the script can be simply run.

4.11.4 Examples

The command:

./client/emajParallelRollback.php -d mydb -g myGroup1 -m Mark1 -s 3

logs on database mydb and executes a rollback of group myGroup1 to mark Mark1, using
3 parallel sessions.

The command:

./client/emajParallelRollback.pl -d mydb -g "myGroup1,myGroup2" -m Mark1 -s 3 -l

logs on database mydb and executes a logged rollback of both groups myGroup1 and
myGroup2 to mark Mark1, using 3 parallel sessions.

E-Maj Reference Guide – version 4.1.0 Page 83 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

4.12ROLLBACK MONITORING CLIENT

E-Maj delivers an external client to run as a command that monitors the progress of
rollback operations in execution.

4.12.1 Prerequisite

Two equivalent tools are actually provided, one coded in php and the other in perl. Both
need that some software components be installed on the server that executes the
command (which is not necessarily the same as the one that hosts the PostgreSQL
instance):

➢ for the php client, the php software and its PostgreSQL interface,
➢ for the perl client, the perl software with the DBI and DBD::Pg modules.

In order to get detailed information about the in-progress rollback operations, it is
necessary to set the dblink_user_password parameter (See §5.1).

4.12.2 Syntax

Both php and perl commands share the same syntax:

emajRollbackMonitor.php [OPTIONS]...
and
emajRollbackMonitor.pl [OPTIONS]...

General options:
 -i time interval between 2 displays (in seconds, default = 5s)
 -n number of displays (default = 1)
 -a maximum time interval for rollback operations to display (in hours, default =

24h)
 -l maximum number of completed rollback operations to display (default = 3)
 --help only displays a command help
 --version only displays the software version

Connection options:
 -d database to connect to
 -h host to connect to
 -p ip-port to connect to
 -U connection role to use
 -W password associated to the role, if needed

To replace some or all these parameters, the usual PGDATABASE, PGPORT, PGHOST
and/or PGUSER environment variables can be used.

E-Maj Reference Guide – version 4.1.0 Page 84 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The supplied connection role must either be a super-user or have emaj_adm or
emaj_viewer rights.

For security reasons, it is not recommended to use the -W option to supply a password.
Rather, it is advisable to use the .pgpass file (see PostgreSQL documentation).

Examples

The command:

./client/emajRollbackMonitor.php -i 3 -n 10

displays 10 times and every 3 seconds, the list of in progress rollback operations and the
list of the at most 3 latest rollback operations completed in the latest 24 hours.

The command:

./client/emajRollbackMonitor.pl -a 12 -l 10

displays only once the list of in progress rollback operations and the list of at most 10
operations completed in the latest 12 hours.

Example of display:

 E-Maj (version 3.3.0) - Monitoring rollbacks activity

04/02/2018 - 12:07:17
** rollback 34 started at 2020 -02-04 12:06:20.350962+02 for groups
{myGroup1,myGroup2}
 status: COMMITTED ; ended at 2020 -02-04 12:06:21.149111+02
** rollback 35 started at 2020 -02-04 12:06:21.474217+02 for groups {myGroup1}
 status: COMMITTED ; ended at 2020 -02-04 12:06:21.787615+02
-> rollback 36 started at 2020 -02-04 12:04:31.769992+02 for groups {group1232}
 status: EXECUTING ; completion 89 % ; 00:00:20 remaining
-> rollback 37 started at 2020 -02-04 12:04:21.894546+02 for groups {group1233}
 status: LOCKING ; completion 0 % ; 00:22:20 remaining
-> rollback 38 started at 2020 -02-04 12:05:21.900311+02 for groups {group1234}
 status: PLANNING ; completion 0 %

E-Maj Reference Guide – version 4.1.0 Page 85 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

5 MISCELLANEOUS

5.1 PARAMETERS

The E-Maj extension works with some parameters. Those are stored into the emaj_param
internal table.

The emaj_param table structure is the following:

Column Type Description

param_key TEXT keyword identifying the parameter

param_value_text TEXT parameter value, if its type is text (otherwise
NULL)

param_value_numeric NUMERIC parameter value, if its type is numeric
(otherwise NULL)

param_value_boolean BOOLEAN parameter value, if its type is boolean
(otherwise NULL)

param_value_interval INTERVAL parameter value, if its type is time interval
(otherwise NULL)

The E-Maj extension installation procedure inserts a single row into the emaj_param
table. This row, that should not be modified, describes parameter:

➢ version (text) current E-Maj version.

But the E-Maj administrator may insert other rows into the emaj_param table to change
the default value of some parameters.

Presented in alphabetic order, the existing key values are:
➢ alter_log_table (text) ALTER TABLE directive executed at the

log table creation ; no ALTER TABLE exectuted by default (see §5.2.2).
➢ avg_fkey_check_duration (interval) default value = 20 µs ; defines the

average duration of a foreign key value check ; can be modified to better represent
the performance of the server that hosts the database (see §4.7.3).

➢ avg_row_delete_log_duration (interval) default value = 10 µs ; defines the
average duration of a log row deletion ; can be modified to better represent the
performance of the server that hosts the database (see §4.7.3).

➢ avg_row_rollback_duration (interval) default value = 100 µs ; defines the
average duration of a row rollback ; can be modified to better represent the
performance of the server that hosts the database (see §4.7.3).

➢ dblink_user_password (text) empty string by default ; format =
'user=<user> password=<password>' ; defines the user and password that
elementary functions executing E-Maj rollback operations can use to update the

E-Maj Reference Guide – version 4.1.0 Page 86 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

internal rollback monitoring tables with autonomous transactions. This is required
to monitor the in progress E-Maj rollback operations (see §4.3.4 and §4.3.5).

➢ fixed_dblink_rollback_duration (interval) default value = 4 ms ; defines an
additional cost for each rollback step when a dblink connection is used ; can be
modified to better represent the performance of the server that hosts the database
(see §4.7.3).

➢ fixed_table_rollback_duration (interval) default value = 1 ms ; defines a fixed
rollback cost for any table belonging to a group ; can be modified to better
represent the performance of the server that hosts the database (see §4.7.3).

➢ fixed_step_rollback_duration (interval) default value = 2,5 ms ; defines a fixed
cost for each rollback step ; can be modified to better represent the performance of
the server that hosts the database (see §4.7.3).

➢ history_retention (interval) default value = 1 year ; it can be
adjusted to change the retention delay of rows in the emaj_hist history table and
some other technical tables (see § 5.4) ; a value greater or equal to 100 years is
equivalent to infinity.

Below is an example of a SQL statement that defines a retention delay of history table's
rows equal to 3 months:

INSERT INTO emaj.emaj_param (param_key, param_value_interval)
VALUES ('history_retention','3 months'::interval);

Any change in the emaj-param table’s content is logged into the emaj_hist table (cf §5.4).

Only super-user and roles having emaj_adm rights can access the emaj_param table.

Roles having emaj_viewer rights can only access a part of the emaj_param table, through
the emaj.emaj_visible_param view. This view just masks the real value of the
param_value_text column for the 'dblink_user_password' key.

The emaj_export_parameters_configuration() and
emaj_import_parameters_configuration() functions allow to save the parameters values
and restore them (Cf §4.9.2).

5.2 LOG TABLES STRUCTURE

5.2.1 Standart structure

The structure of log tables is directly derived from the structure of the related application
tables. The log tables contain the same columns with the same type. But they also have
some additional technical columns:

➢ emaj_verb type of the SQL verb that generated the update (INS, UPD, DEL,
TRU)

E-Maj Reference Guide – version 4.1.0 Page 87 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

➢ emaj_tuple row version (OLD for DEL, UPD and TRU ; NEW for INS and
UPD ; empty string for TRUNCATE events)

➢ emaj_gid log row identifier
➢ emaj_changed log row insertion timestamp
➢ emaj_txid transaction id (the PostgreSQL *txid*) that performed the update
➢ emaj_user connection role that performed the update

When a TRUNCATE statement is executed for a table, each row of this table is recorded
(with emaj_verb = TRU and emaj_tuple = OLD). A row is added, with emaj_verb = TRU,
emaj_tuple = ‘’ and the other columns being set to NULL. This row is used by the sql
scripts generation.

5.2.2 Adding technical columns

It is possible to add one or several technical columns to enrich the traces. These columns
value must be set as a default value (a DEFAULT clause) associated to a function (so that
the log triggers are not impacted).

To add one or several technical columns, a parameter of key ‘alter_log_table’ must be
inserted into the emaj_param table (Cf §5.1). The associated text value must contain an
ALTER TABLE clause. At the log table creation time, if the parameter exists, an ALTER
TABLE statement with this parameter is executed.

For instance, one can add to log tables a column to record the value of the
‘application_name’ connection field with:

INSERT INTO emaj.emaj_param (param_key, param_value_text) VALUES
 ('alter_log_table', 'ADD COLUMN extra_col_appname TEXT
 DEFAULT current_setting(''application_name'')');

Several ADD COLUMN directives may be concatenated, separated by a comma. For
instance, to create columns recording the ip adress and port of the connected client:

INSERT INTO emaj.emaj_param (param_key, param_value_text) VALUES
 ('alter_log_table', 'ADD COLUMN emaj_user_ip INET DEFAULT inet_client_addr(),

ADD COLUMN emaj_user_port INT DEFAULT inet_client_port()');

To change the structure of existing log tables once the alter_log_table parameter has
been set, the tables groups must be dropped and then recreated.

5.3 RELIABILITY

E-Maj Reference Guide – version 4.1.0 Page 88 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

Two additional elements help in ensuring the E-Maj reliability: internal checks are
performed at some key moments of tables groups life and event trigers can block some
risky operations.

5.3.1 Internal checks

When a function is executed to start a tables group, to set a mark or to rollback a tables
group, E-Maj performs some checks in order to verify the integrity of the tables groups to
process.

These tables group integrity checks verify that:

➢ the PostgreSQL version at tables group creation time is compatible with the current
version,

➢ each application sequence or table of the group always exists,
➢ each table of the group has its log table, its log function and its triggers,
➢ the log tables structure always reflects the related application tables structure, and

contains all required technical columns,
➢ for ROLLBACKABLE tables groups, no table has been altered as UNLOGGED or

WITH OIDS,
➢ for ROLLBACKABLE tables groups, application tables have their primary key and

their structure has not changed.

By using the emaj_verify_all() function (§4.9.1), the administrator can perform the same
checks on demand on all tables groups.

5.3.2 Event triggers

Installing E-Maj adds 2 event triggers of type “sql_drop“:
➢ emaj_sql_drop_trg blocks the drop attempts of:

✔ any E-Maj object (log schema, log table, log sequence, log function and log
trigger),

✔ any application table or sequence belonging to a tables group in “LOGGING”
state,

✔ any primary key of a table belonging to a rollbackable tables group,
✔ any schema containing at least one table or sequence belonging to a tables

group in “LOGGING” state.

➢ emaj_protection_trg blocks the drop attempts of the emaj extension itself and the
main emaj schema.

Installing E-Maj also adds 1 event trigger of type “table_rewrite”:
➢ emaj_table_rewrite_trg blocks any structure change of application or log table.

It is possible to deactivate and reactivate these event triggers thanks to 2 functions:
emaj_disable_protection_by_event_triggers() and
emaj_enable_protection_by_event_triggers() (see §4.9.7).

E-Maj Reference Guide – version 4.1.0 Page 89 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

However, the protections do not cover all risks. In particular, they do not prevent any
tables or sequences renaming or any schema change. And some other DDL statements
altering tables structure do not fire any trigger.

5.4 TRACES OF OPERATIONS

5.4.1 The emaj_hist table

All operations performed by E-Maj, and that impact in any way a tables group, are traced
into a table named emaj_hist.

Any user having emaj_adm or emaj_viewer rights may look at the emaj_hist content.

The emaj_hist table structure is the following:

Column Type Description

hist_id BIGSERIAL serial number identifying a row in this history
table

hist_datetime TIMESTAMPTZ recording date and time of the row

hist_function TEXT function associated to the traced event

hist_event TEXT kind of event

hist_object TEXT object related to the event (group, table or
sequence)

hist_wording TEXT additional comments

hist_user TEXT role whose action has generated the event

hist_txid BIGINT identifier of the transaction that has generated
the event

The hist_function column can take the following values:
➢ ADJUST_GROUP_PROPERTIES ajust the group_has_waiting_changes column

content of the emaj_group table
➢ ASSIGN_SEQUENCE sequence assigned to a tables group
➢ ASSIGN_SEQUENCES sequences assigned to a tables group
➢ ASSIGN_TABLE table assigned to a tables group
➢ ASSIGN_TABLES tables assigned to a tables group
➢ CLEANUP_RLBK_STATE cleanup the state of recently completed rollback

operations
➢ COMMENT_GROUP comment set on a group
➢ COMMENT_MARK_GROUP comment set on a mark for a tables group
➢ CONSOLIDATE_RLBK_GROUP consolidate a logged rollback operation
➢ CREATE_GROUP tables group creation
➢ DBLINK_OPEN_CNX open a dblink connection for a rollback operation
➢ DBLINK_CLOSE_CNX close a dblink connection for a rollback operation

E-Maj Reference Guide – version 4.1.0 Page 90 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

➢ DELETE_MARK_GROUP mark deletion for a tables group
➢ DISABLE_EVENT_TRIGGERS desactivate event triggers
➢ DROP_GROUP tables group suppression
➢ EMAJ_INSTALL E-Maj installation or version update
➢ ENABLE_EVENT_TRIGGERS activate event triggers
➢ EXPORT_GROUPS export a tables groups configuration
➢ EXPORT_PARAMETERS export an E-maj parameters configuration
➢ FORCE_DROP_GROUP tables group forced suppression
➢ FORCE_STOP_GROUP tables group forced stop
➢ GEN_SQL_GROUP generation of a psql script to replay updates for a

tables group
➢ GEN_SQL_GROUPS generation of a psql script to replay updates for

several tables groups
➢ IMPORT_GROUPS import a tables groups configuration
➢ IMPORT_PARAMETERS import an E-maj parameters configuration
➢ LOCK_GROUP lock set on tables of a group
➢ LOCK_GROUPS lock set on tables of several groups
➢ LOCK_SESSION lock set on tables for a rollback session
➢ MODIFY_TABLE table properties change
➢ MODIFY_TABLES tables properties change
➢ MOVE_SEQUENCE sequence moved to another tables group
➢ MOVE_SEQUENCES sequences moved to another tables group
➢ MOVE_TABLE table moved to another tables group
➢ MOVE_TABLES tables moved to another tables group
➢ PROTECT_GROUP set a protection against rollbacks on a group
➢ PROTECT_MARK_GROUP set a protection against rollbacks on a mark for a

group
➢ PURGE_HISTORIES delete from the historical tables the events prior the

retention delay
➢ REMOVE_SEQUENCE sequence removed from its tables group
➢ REMOVE_SEQUENCES sequences removed from their tables group
➢ REMOVE_TABLE table removed from its tables group
➢ REMOVE_TABLES tables removed from their tables group
➢ RENAME_MARK_GROUP mark rename for a tables group
➢ RESET_GROUP log tables content reset for a group
➢ ROLLBACK_GROUP rollback updates for a tables group
➢ ROLLBACK_GROUPS rollback updates for several tables groups
➢ ROLLBACK_TABLE rollback updates for one table
➢ ROLLBACK_SEQUENCE rollback one sequence
➢ SET_MARK_GROUP mark set on a tables group
➢ SET_MARK_GROUPS mark set on several tables groups
➢ SNAP_GROUP snap all tables and sequences for a group
➢ SNAP_LOG_GROUP snap all log tables for a group
➢ START_GROUP tables group start
➢ START_GROUPS tables groups start
➢ STOP_GROUP tables group stop
➢ STOP_GROUPS tables groups stop
➢ UNPROTECT_GROUP remove a protection against rollbacks on a group
➢ UNPROTECT_MARK_GROUP remove a protection against rollbacks on a mark for

a group

E-Maj Reference Guide – version 4.1.0 Page 91 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The hist_event column can take the following values:
➢ BEGIN
➢ DELETED PARAMETER parameter deleted from emaj_param
➢ END
➢ EVENT TRIGGERS DISABLED
➢ EVENT TRIGGERS ENABLED
➢ GROUP_CREATED new tables group created
➢ INSERTED PARAMETER parameter inserted into emaj_param
➢ LOG DATA TABLESPACE CHANGED tablespace for the log table modified
➢ LOG INDEX TABLESPACE CHANGED tablespace for the log index modified
➢ LOG_SCHEMA CREATED
➢ LOG_SCHEMA DROPPED
➢ MARK DELETED
➢ NAMES PREFIX CHANGED E-Maj names prefix modified
➢ NOTICE notice message issued by a rollback
➢ PRIORITY CHANGED priority level modified
➢ SEQUENCE ADDED sequence added to a logging tables

group
➢ SEQUENCE MOVED sequence moved from one group to

another
➢ SEQUENCE REMOVED sequence removed from a logging

tables group
➢ TABLE ADDED table added to a logging tables

group
➢ TABLE MOVED table moved from one group to another
➢ TABLE REMOVED table removed from a logging tables

group
➢ TABLE REPAIRED table repaired for E-Maj
➢ TRIGGERS TO IGNORE CHANGED set of application triggers to ignore at

rollback time changed
➢ UPDATED PARAMETER parameter updated in emaj_param
➢ WARNING warning message issued by a rollback

5.4.2 Purge obsolete traces

When a tables group is started, using the emaj_start_group() function, or when old marks
are deleted, using the emaj_delete_before_mark_group() function, the oldest events are
deleted from emaj_hist tables. The events kept are those not older than a parametrised
retention delay and not older than the oldest active mark and not older than the oldest
uncompleted rollback operation. By default, the retention delay for events equals 1 year.
But this value can be modified at any time by inserting the history_retention parameter
into the emaj_param table with a SQL statement (see §5.1). The same retention applies
to the tables that log elementary steps of tables groups alter or rollback operations.

The obsolete traces purge can also be initiated by explicitely calling the
emaj_purge_histories() function (see §4.9.6). The input parameter of the function defines
a retention delay that overloads the history_retention parameter of the emaj_param
table.

E-Maj Reference Guide – version 4.1.0 Page 92 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

In order to schedule purges periodically, it is possible to:
➢ set the history_retention parameter to a very high value (for instance ‘100
YEARS’), so that tables groups starts and oldest marks deletions do not perform any
purge, and
➢ schedule purge operations by any means (crontab, pgAgent, pgTimeTable or any
other tool).

5.5 THE E-MAJ ROLLBACK UNDER THE HOOD

5.5.1 Planning and execution

E-Maj rollbacks are complex operations. They can be logged or not, concern one or
several tables groups, with or without parallelism, and be lounched by a direct SQL
function call or by a client. Thus E-Maj rollbacks are splitted into elementary steps.

An E-Maj rollback is executed in two phases: a planning phase and an execution phase.

The planning phase determines all the needed elementary steps and estimates the
execution duration. The estimate is computed for each step by taking into account:

➢ duration statistics of similar steps for previous rolllback operations, stored into the
emaj_rlbk_stat table

➢ and predefined parameters of the cost model (see § 5.1).

Then, for parallel rollbacks, elementary steps are assigned to the requested n sessions.

The emaj_estimate_rollback_group() function (Cf §4.7.3) executes the planning phase
and just returns its result, without chaining the execution phase.

The plan produced by the planning phase is recorded into the emaj_rlbk_plan table.

The E-Maj rollback execution phase just chains the elementary steps of the built plan.

First, a lock of type EXCLUSIVE is set on all tables of the rolled back tables group or tables
groups, so that any table’s content change attempt from another client be blocked.

Then, for each table having changes to revert, the elementary steps are chained. In
ascending order:

➢ preparing application triggers;
➢ disabling E-Maj triggers;
➢ deleting or setting as DEFERRED foreign keys;
➢ rollbacking the table;
➢ deleting a content of the log table;
➢ recreating or resetting the state of foreign keys;
➢ reseting the state of application triggers;
➢ re-enabling E-Maj triggers.

E-Maj Reference Guide – version 4.1.0 Page 93 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

For each elementary step, the function that drives the plan execution updates the
emaj_rlbk_plan table. Reading this table’s content may bring interesting information about
the way the E-Maj rollback operation has been processed.

If the dblink_user_password parameter is set, the emaj_rlbk_plan updates are processed
into autonomous transactions, so that it is possible to look at the rollback operation in real
time. That’s what the emajRollbackMonitor (§4.12) and Emaj_web (§6.3.8) clients do.

5.5.2 Rollbacking a table

Rollbacking a table consists in reseting its content in the state at the time of the E-Maj
rollback target mark setting.

In order to optimize the operation and avoid the execution of one SQL statement for each
elementary change, a table rollback just executes 4 global SQL statements:

➢ create and populate a temporary table containing all primary keys to process;
➢ delete from the table to process all rows corresponding to changes to revert of type

INSERT and UPDATE;
➢ ANALYZE the log table if the rollback is logged and if the number of changes is

greater than 1000 (to avoid a poor execution plan of the last statement);
➢ insert into the table to process the oldest rows content corresponding to the

changes to revert of type UPDATE and DELETE.

5.5.3 Foreign keys management

If a table processed by the rollback operation has a foreign key or is referenced by a
foreign key belonging to another table, then this foreign key needs to be taken into
account for the rollback execution.

Depending on the context, several behaviours exist.

For a given table, if all other tables linked to it by foreign keys belong to the same tables
group or tables groups processed by the E-Maj rollback operation, reverting the changes
on all tables will safely preserve the referential integrity.

For this first case (which is the most frequent) the table rollback is executed with a
session_replication_role parameter set to ‘replica’. In this mode, no check on foreign keys
is performed while updating the table.

On the contrary, if tables are linked to other tables that do not belong to the tables groups
processed by the rollback operation or that are not including into any tables groups, then it
is essential that the referential integrity be checked.

In this second case, checking the referential integrity is performed:
➢ either by pushing the checks at the end of the transaction, with a SET

CONSTRAINTS … DEFERRED statement, if needed;
➢ or by dropping the foreign key before rollbacking the table and recreating it after.

E-Maj Reference Guide – version 4.1.0 Page 94 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

The first option is choosen if the foreign key is declared DEFERRABLE and does not hold
an ON DELETE or ON UPDATE clause.

5.5.4 Application triggers management

Triggers belonging to tables to rollback that are not E-Maj triggers are temporarily
disabled during the operation. But this default behaviour can be adjusted when assigning
a table to a tables group or importing a tables group configuration, by defining a trigger as
“not to be disabled at rollback time” (see §4.4.2, §4.4.7, §4.5.8.2 and §5.10.3).

The technical way to disable or not the application triggers depends on the
session_replication_role parameter value set for each table to rollback.

If session_replication_role equals ‘replica’, then the enabled triggers at the E-Maj rollback
start are not called. If a trigger is declared as ‘not to be disabled”, it is temporarily changed
into an ALWAYS trigger during the operation.

If session_replication_role keeps its default value, enabled triggers to neutralize are just
temporarily disabled during the operation.

5.6 IMPACTS ON INSTANCE AND DATABASE ADMINISTRATION

5.6.1 Stopping and restarting the instance

Using E-Maj doesn't bring any particular constraint regarding stopping and restarting a
PostgreSQL instance.

5.6.1.1 General rule

At instance restart, all E-Maj objects are in the same state as at instance stop: log triggers
of tables groups in LOGGING state remain enabled and log tables contain cancel-able
updates already recorded.

If a transaction with table updates were not committed at instance stop, it would be rolled
back during the recovery phase of the instance start, the application tables updates and
the log tables updates being cancelled at the same time.

This rule also applies of course to transactions that execute E-Maj functions, like a tables
group start or stop, a rollback, a mark deletion,...

5.6.1.2 Sequences rollback

Due to a PostgreSQL constraint, the rollback of application sequences assigned to a
tables group is the only operation that is not protected by transactions. That is the reason

E-Maj Reference Guide – version 4.1.0 Page 95 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

why application sequences are processed at the very end of the rollback operations (See
§4.3.4). (For the same reason, at set mark time, application sequences are processed at
the beginning of the operation.)

In case of an instance stop during an E-Maj rollback execution, it is recommended to
rerun this rollback just after the instance restart, to ensure that application sequences and
tables remain properly synchronised.

5.6.2 Saving and restoring the database

Using E-Maj allows a reduction in the database saves frequency. But E-Maj
cannot be considered as a substitute to regular database saves that remain
indispensable to keep a full image of databases on an external support.

5.6.2.1 File level saves and restores

When saving or restoring instances at file level, it is essential to save or restore ALL
instance files, including those stored on dedicated tablespaces.

After a file level restore, tables groups are in the very same state as at the save time, and
the database activity can be restarted without any particular E-Maj operation.

5.6.2.2 Logical saves and restores of entire database

To properly save and restore a database with E-Maj, using pg_dump, and psql or
pg_restore, it is essential that both source and restored databases use the same E-Maj
version. If this is not the case, the content of some technical tables may be not
synchronised with their structure. Reading the row of key ‘emaj_version’ in the
emaj.emaj_param table may help in knowning the version of an E-Maj extension created
in a database.

Regarding stopped tables groups (in IDLE state), as log triggers are disabled and the
content of related log tables is meaningless, there is no action required to find them in the
same state as at save time.

Concerning tables groups in LOGGING state at save time, it is important to be sure that
log triggers will only be activated after the application tables rebuild. Otherwise, during the
tables rebuild, tables updates would also be recorded in log tables!

When using pg_dump command for saves and psql or pg_restore commands for
restores, and processing full databases (schema + data), these tools recreate triggers, E-
Maj log triggers among them, after tables have been rebuilt. So there is no specific
precaution to take.

E-Maj Reference Guide – version 4.1.0 Page 96 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

On the other hand, in case of data only save or restore (i.e. without schema, using -a or --
data-only options), the --disable-triggers must be supplied:

➢ with pg_dump (or pg_dumpall) with save in plain format (and psql is used to
restore),

➢ with pg_restore command with save in tar or custom format.

Restoring the database structure generates 2 error messages reporting that the
_emaj_protection_event_trigger_fnct() function and the emaj_protection_trg event
trigger already exist:

...
ERROR: function "_emaj_protection_event_trigger_fnct" already exists with same
argument types
...
ERROR: event trigger "emaj_protection_trg" already exists
...

This message display is normal and does not indicate a defective restore. Indeed, both
objects are created with the extension and are then detached from it, so that the trigger
can block any attempt of the extension drop. As a result, the pg_dump tool saves them as
independent objects. And when restoring, these objects are created twice, first with the
emaj extension creation, and then as independent objects, this second attempt generating
both error messages.

5.6.2.3 Logical save and restore of partial database

With pg_dump and pg_restore tools, database administrators can perform on a subset of
database schemas or tables.

Restoring a subset of application tables and/or log tables generates a heavy risk of data
corruption in case of later E-Maj rollback of concerned tables. Indeed, it is impossible to
guarantee in this case that application tables, log tables and internal E-Maj tables that
contain essential data for rollback, remain coherent.

If it is necessary to perform partial application tables restores, a drop and recreation of all
tables groups concerned by the operation must be performed just after.

The same way, it is strongly recommended to NOT restore a partial emaj schema content.

The only case of safe partial restore concerns a full restore of the emaj schema content
as well as all tables belonging to all groups that are created in the database.

5.6.3 Data load

Beside using pg_restore or psql with files produced by pg_dump, it is possible to
efficiently load large amounts of data with the COPY SQL verb or the \copy psql meta-

E-Maj Reference Guide – version 4.1.0 Page 97 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

command. In both cases, this data loading fires INSERT triggers, among them the E-Maj
log trigger. Therefore, there is no constraint to use COPY or \copy in E-Maj environment.

With other loading tools, it is important to check that triggers are effectively fired for each
row insertion.

5.6.4 Tables reorganisation

5.6.4.1 Reorganisation of application tables

Application tables protected by E-Maj can be reorganised using the SQL CLUSTER
command. Whether or not log triggers are enabled, the organisation process has no
impact on log tables content.

5.6.4.2 Reorganisation of E-Maj tables

The index corresponding to the primary key of each table from E-Maj schemas (neither
log tables nor technical tables) is declared “cluster”.

So using E-Maj may have an operational impact regarding the execution of
CLUSTER SQL commands at database level.

When E-Maj is used in continuous mode (with deletion of oldest marks instead of regular
tables groups stop and restart), it is recommended to regularly reorganize E-Maj log
tables. This reclaims unused disk space following mark deletions.

E-Maj Reference Guide – version 4.1.0 Page 98 / 137

 appl

 log

 appl

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

5.6.5 Using E-Maj with replication

5.6.5.1 Integrated physical replication

E-Maj is totally compatible with the use of the different PostgreSQL integrated physical
replication modes (WAL archiving and PITR, asynchronous and synchronous Streaming
Replication). Indeed, all E-Maj objects hosted in the instance are replicated like all other
objects of the instance.

However, because of the way PostgreSQL manages sequences, the sequences' current
values may be a little forward on secondary instances than on the primary instance. For
E-Maj, this may lightly overestimate the number of log rows in general statistics. But there
is no consequence on the data integrity.

5.6.5.2 Integrated logical replication

Starting with version 10, PostgreSQL includes logical replication mechanisms. The
replication granularity is the table. The publication object used with the logical replication
is quite close to the E-Maj tables group concept, except that a publication cannot contain
sequences.

Several cases have to be examined.

Replication of application tables managed by E-Maj

An application table that belongs to a tables group can be replicated. The effect of any
rollback operation that may occur would be simply replicated on subscriber side, as long
as no filter has been applied on replicated SQL verbs types.

Replication of application tables with E-Maj activated on subscriber side

As of E-Maj 4.0, it is possible to include an application table into a tables group, with
updates coming from a logical replication flow. But all E-Maj operations (starting/stopping

E-Maj Reference Guide – version 4.1.0 Page 99 / 137

Publisher

 appl

 log

Subscriber

 appl

SubscriberPublisher

 appl

 log

 appl

 appl

 log log

 appl

 log

 appl

 log

the group, setting marks,…) must of course be executed on the subscriber side. An E-Maj
rollback operation can be launched once the replication flow has been stopped (to avoid
updates conflicts). But then, tables on both publisher and subscriber sides are not
coherent anymore.

Replication of E-Maj log tables

As of E-Maj 4.0, it is technicaly possible to replicate an E-Maj log table (once found a way
to get the DDL that creates the log table – using pg_dump for instance). This allows to
duplicate or concentrate logs content on another server. But the replicated log table can
only be used for log auditing. As log sequences are not replicated, these logs cannot be
used for other purposes.

Replication of application tables and E-Maj log tables

Application tables and log tables can be simultaneously replicated. But as seen
previously, these replicated logs can only be used for auditing purpose. E-Maj rollback
operations can only be executed on publisher side.

5.6.5.3 Other replication solutions

Using E-Maj with external replication solutions based on triggers like Slony or Londiste,
requires some attention... It is probably advisable to avoid replicating log tables and E-Maj
technical tables.

E-Maj Reference Guide – version 4.1.0 Page 100 / 137

Publisher

 appl

 log

Subscriber

 log

Publisher

 appl

 log

Subscriber

 appl

 log

5.7 SENSITIVITY TO SYSTEM TIME CHANGE

To ensure the integrity of tables managed by E-Maj, it is important that the rollback
mechanism be insensitive to potential date or time change of the server that hosts the
PostgreSQL instance.

The date and time of each update or each mark is recorded. But nothing other than
sequence values recorded when marks are set, are used to frame operation in time. So
rollbacks and mark deletions are insensitive to potential system date or time change.
However, two minor actions may be influenced by a system date or time change:

➢ the deletion of oldest events in the emaj_hist table (the retention delay is a time
interval),

➢ finding the name of the mark immediately preceding a given date and time as
delivered by the emaj_get_previous_mark_group() function.

E-Maj Reference Guide – version 4.1.0 Page 101 / 137

5.8 PERFORMANCE

5.8.1 Updates recording overhead

Recording updates in E-Maj log tables has necessarily an impact on the duration of these
updates. The global impact of this log on a given processing depends on numerous
factors. Among them:

➢ the part that the update activity represents on the global processing,
➢ the intrinsic performance characteristics of the storage subsystem that supports log

tables.

However, the E-Maj updates recording overhead is generally limited to a few per-cents.
But this overhead must be compared to the duration of potential intermediate saves
avoided with E-Maj.

5.8.2 E-Maj rollback duration

The duration of an E-Maj rollback depends on several factors, like:
➢ the number of updates to cancel,
➢ the intrinsic characteristics of the server and its storage material and the load

generated by other activities hosted on the server,
➢ triggers or foreign keys on tables processed by the rollback operation,
➢ contentions on tables at lock set time.

To get an order of magnitude of an E-Maj rollback duration, it is possible to use the
emaj_estimate_rollback_group() and emaj_estimate_rollback_groups() functions (See
§4.7.3).

5.8.3 Optimizing E-Maj operations

Here are some advice to optimize E-Maj operations:

5.8.3.1 Use tablespaces

Creating tables into tablespaces located in dedicated disks or file systems is a way to
more efficiently spread the access to these tables. To minimize the disturbance of
application tables access by log tables access, the E-Maj administrator has two ways to
use tablespaces for log tables and indexes location.

By setting a specific default tablespace for the session before the tables groups creation,
log tables and indexes are created by default into this tablespace, without any additional
action.

E-Maj Reference Guide – version 4.1.0 Page 102 / 137

But through parameters set when calling the emaj_assign_table(), emaj_assign_tables()
and emaj_modify_table() functions, it is also possible to specify a tablespace to use for
any log table or log index (see §4.2.1.3).

5.8.3.2 Declare foreign keys as DEFERRABLE

Foreign keys can be explicitly declared as DEFERRABLE at creation time. If a foreign key
links two tables belonging to different tables groups or if one of them doesn’t belong to
any tables group and if the foreign key has no ON DELETE or ON UPDATE clause then it is
recommended to declare it as DEFERRABLE. This will avoid to be dropped and recreated
at subsequent E-Maj rollbacks. The foreign key checks of updated rows are just deferred
to the end of the rollback function execution, once all log tables are processed. This
generally greatly speeds up the rollback operation.

5.8.3.3 Modify memory parameters

Increasing the value of the work_mem parameter when performing an E-Maj rollback may
bring some performance gains.

If foreign keys have to be recreated by an E-Maj rollback operation, increasing the value
of the maintenance_work_mem parameter may also help.

If the E-Maj rollback functions are directly called in SQL, these parameters can be
previously set at session level, with statements like:

SET work_mem = <value>;
SET maintenance_work_mem = <value>;

If the E-Maj rollback operations are executed by a web client, it is also possible to set
these parameters at function level, as superuser:

ALTER FUNCTION emaj._rlbk_tbl(emaj.emaj_relation, BIGINT, BIGINT, INT,
BOOLEAN) SET work_mem = <value>;

ALTER FUNCTION emaj._rlbk_session_exec(INT, INT) SET maintenance_work_mem
= <value>;

E-Maj Reference Guide – version 4.1.0 Page 103 / 137

5.9 USAGE LIMITS

The E-Maj extension usage has some limits.

➢ The minimum required PostgreSQL version is 9.5..
➢ All tables belonging to a “rollbackable” tables group must have an explicit

PRIMARY KEY.
➢ UNLOGGED and WITH OIDS tables can only be members of “audit_only” tables

groups.
➢ TEMPORARY tables are not supported by E-Maj.
➢ Using a global sequence for a database leads to a limit in the number of updates

that E-Maj can manage throughout its life. This limit equals 2^63, about 10^19 (but
only 10^10 on oldest platforms), which still allow to record 10 million updates per
second (100 times the best performance benchmarks results in 2012) during …
30,000 years (or at worst 100 updates per second during 5 years). Would it be
necessary to reset the global sequence, the E-Maj extension would just have to be
un-installed and re-installed.

➢ If a DDL operation is executed on an application table belonging to a tables group,
E-Maj is not able to reset the table in its previous state (see §4.4).

5.10USER'S RESPONSIBILITY

5.10.1 Defining tables groups content

Defining the content of tables group is essential to guarantee the database integrity. It is
the E-Maj administrator's responsibility to ensure that all tables updated by a given
operation are really included in a single tables group.

5.10.2 Appropriate call of main functions

emaj_start_group(), emaj_set_mark_group(), emaj_rollback_group() and
emaj_logged_rollback_group() functions (and their related multi-groups functions) set
explicit locks on tables of the group to be sure that no transactions updating these tables
are running at the same time. But it is the user's responsibility to execute these operations
“at the right time”, i.e. at moments that really correspond to a stable point in the life of
these tables. He must also take care of warning messages that may be reported by E-Maj
rollback functions.

5.10.3 Management of application triggers

Triggers may have been created on application tables. It is not rare that these triggers
perform one or more updates on other tables. In such a case, it is the E-Maj

E-Maj Reference Guide – version 4.1.0 Page 104 / 137

administrator's responsibility to understand the impact of E-Maj rollback operations on
tables concerned by triggers, and if needed, to take the appropriate measures.

By default, E-Maj rollback functions neutralize application triggers during the operation.
But the E-Maj administrator can change this behaviour using the "ignored_triggers" and
"ignored_triggers_profiles" properties of the emaj_assign_table(), emaj_assign_tables(),
emaj_modify_table() and emaj_modify_tables() functions. (Cf. §4.2.3 and § 4.4.7).

If the trigger simply adjusts the content of the row to insert or update, the logged data
contain the final columns values. In case of rollback, the log table contains the right
columns content to apply. So the trigger must be disabled at rollback time (the default
behaviour), so that it does not disturb the processing

If the trigger updates another table, two cases must be considered:
➢ if the updated table belongs to the same tables group, the automatic trigger

disabling and the rollback of both tables let them in the expected state,
➢ if the updated table does not belong to the same tables group, it is essential to

analyse the consequences of a rollback operation, in order to avoid a de-
synchronisation between both tables. If needed, the triggers can be left enabled.
But some other actions may also be required.

For more complex triggers, it is essential to perfectly understand their impacts on E-Maj
rollbacks and take any appropriate mesure at rollback time.

For parallel rollback operations, a trigger kept enabled that updates other tables from the
same tables group, would likely generate a freeze between sessions.

5.10.4 Internal E-Maj table or sequence change

With the rights they have been granted, emaj_adm roles and super-users can update any
E-Maj internal table.

But in practice, only the emaj_param table may be updated by these users. Any
other internal table or sequence update my lead to data corruption.

E-Maj Reference Guide – version 4.1.0 Page 105 / 137

6 EMAJ_WEB

A web application, Emaj_web, makes E-Maj use much easier.

For the records, a plugin for phpPgAdmin also existed. But it is not maintained any more
since E-Maj 3.0.

6.1 OVERVIEW

Emaj_web has borrowed to phpPgAdmin its infrastructure (browser, icon trails, database
connection, management,…) and some useful functions like browsing the tables content
or editing SQL queries.

For databases into which the E-Maj extension has been installed, and if the user is
connected with a role that owns the required rights, all E-Maj objects are accessible.

It is then possible to:
➢ define or modify groups content,
➢ see the list of tables groups and perform any possible action, depending on groups

state (create, drop, start, stop, set or remove a mark, rollback, add or modify a
comment),

➢ see the list of the marks that have been set for a group, and perform any possible
action on them (delete, rename, rollback, add or modify a comment),

➢ get statistics about log tables content and see their content,
➢ monitor in progress rollback operations.

6.2 EMAJ_WEB CLIENT INSTALLATION

6.2.1 Prerequisite

Emaj_web requires a web server with a php interpreter.

6.2.2 Download

The Emaj_web application can be downloaded from the following git repository:
https://github.com/ dalibo /emaj_ web

E-Maj Reference Guide – version 4.1.0 Page 106 / 137

https://github.com/beaud76/emaj_web
https://github.com/beaud76/emaj_web
https://github.com/beaud76/emaj
https://github.com/beaud76/emaj_web

6.2.3 Application configuration

The configuration is centralized into a single file: emaj_web/conf/config.inc.php. It
contains the general parameters of the applications, and the description of the
PostgreSQL instances connections.

When the number of instances is large, it is possible to split them into “instances groups”.
A group can contain instances or other instance groups.

In order to submit batch rollbacks (i.e. without blocking the use of the browser while the
rollback operation is in progress), it is necessary to specify a value for two configuration
parameters:

➢ $conf['psql_path'] defines the access path of the psql executable file,
➢ $conf['temp_dir'] defines a temporary directory that rollback functions can use.

The distributed emaj_web/conf/config.inc.php-dist file can be used as a configuration
template.

6.3 USING EMAJ_WEB

6.3.1 Access to Emaj_web and databases

Accessing Emaj_web in a browser displays the welcome page.

To sign in to a database, select the target instance in the left browser or in the ‘servers’
tab, and fill the connection identifier and password. Several connections can remain
opened simultaneously.

Once connected to a database where the emaj extension has been installed, the user
interacts with the extension, depending on the role it owns (super-user, emaj_adm or
emaj_viewer).

On the left, the browser tree shows all the configured instances, that may be split into
instances groups, and all the databases they contain. By unfolding a database object, the
user reaches the E-Maj tables groups and the existing schemas.

E-Maj Reference Guide – version 4.1.0 Page 107 / 137

Figure 1 – The browser tree.

Both icons located at the bottom-right allow to adjust the browser width.

6.3.2 Tables groups list

By selecting a database, the user reaches a page that lists all tables groups created in
this database.

E-Maj Reference Guide – version 4.1.0 Page 108 / 137

Figure 2 – Tables groups list.

This page displays two lists:
➢ the tables groups in LOGGING state
➢ the tables groups in IDLE state.

For each created tables group, the following attributes are displayed:
➢ its creation date and time,
➢ the number of application tables and sequences it contains,
➢ its type (“ROLLBACKABLE” or “AUDIT_ONLY”, protected against rollback or not),
➢ the number of marks it owns,
➢ its associated comment, if any.

For each tables group, several buttons are available so that the user can perform any
possible action, depending on the group state.

At the bottom of the page, three buttons allow to create a new tables group, to export or
import a tables groups configuration to or from a local file.

6.3.3 Some details about the user interface

E-Maj Reference Guide – version 4.1.0 Page 109 / 137

The page headers contain:
➢ some information regarding the current connection,
➢ 3 links to reach the SQL statements editor, the history of submitted statements and

to logout the current connection,
➢ a combo box to select the language used by the user interface,
➢ a breadcrumb trail,
➢ and a button to directly go to the page bottom.

The user can navigate in Emaj_web functions using two icon bars: one for the general
purpose functions and the other for the functions concerning a single tables group.

Figure 3 – Main icons bar.

Figure 4 – Tables groups icons bar.

For emaj_viewer roles, some icons are not visible.

On some tables, it is possible to dynamically sort displayed rows, using small vertical
arrows on the right of column titles.

On some tables too, an icon located at the left of the header row, let show or hide input
fields that can be used to dynamically filter displayed rows.

Figure 5 – Filtering the tables groups in logging state.
Here, only tables groups whose name contains “my” and having more than 2 marks are

displayed, sorted in descending order by number of tables.

Some tables allow to perform actions on several objects at once. In this case, the user
selects the objects with the checkboxes on the first column of the table and choose the
action to perform among the available buttons under the table.

E-Maj Reference Guide – version 4.1.0 Page 110 / 137

Columns containing comments have a limited size. But the full comment content is visible
in tooltip when the mouse goes over the cell.

Cells containing event timestamps or durations show a full data content in tooltip.

6.3.4 Tables group details

From the tables groups list page, it is possible to get more information about a particular
tables group by clicking on its name. This page is also accessible with the “Properties”
icon of the groups bar and through the left browsing tree.

Figure 6 – Details of a tables group

A first line repeats information already displayed on the groups list (number of tables and
sequences, type, state and number of marks). It also shows the disk space used by its log
tables.

This line is followed by the group's comment, if any has been recorded for this group.

Next is a set of buttons to execute actions depending on the group's state.

Then, the user can see the list of all marks that have been set on the group. For each of
them, the following is displayed:

➢ its name,

E-Maj Reference Guide – version 4.1.0 Page 111 / 137

➢ the date and time it has been set,
➢ its state (active or not, protected against rollback or not),
➢ the number of recorded log rows between this mark and the next one (or the

current situation if this is the last set mark),
➢ the total number of recorded log rows from when the mark was set,
➢ the comment associated to the mark, if it exists.

For each mark, several buttons are available to perform the actions permitted by the
mark's state.

6.3.5 Statistics

Using the “Log statistics” tab of the group’s bar, one gets statistics about updates
recorded into the log tables for the selected tables group.

Two types of statistics can be produced:
➢ some estimates about the number of updates per table, recorded between two

marks or between one mark and the current situation,
➢ a precise numbering of updates per tables, per statement type

(INSERT/UPDATE/DELETE/TRUNCATE) and role.

The figure below shows an example of detailed statistics.

E-Maj Reference Guide – version 4.1.0 Page 112 / 137

Figure 7 – Detailed statistics about updates recorded between two marks

The displayed page contains a first line returning global counters.

On each line of the statistics table, the user can click on a “SQL” button to easily look at
the log tables content. A click on this button opens the SQL editor window and proposes
the statement displaying the content of the log table that corresponds to the selection
(table, time frame, role, statement type). The user can modify this suggested statement
before executing it to better fit his needs.

6.3.6 Tables group content

Using the “Content” tab of the group’s bar, it is possible to get a summary of a tables
group content.

For each table belonging to the group, the displayed sheet shows its E-Maj
characteristics, as well as the disk space used by its log table and index.

Figure 8 – A tables group’s content.

6.3.7 Schemas and tables groups configuration

The “schemas” tab displays the list of schemas contained in the database.

By selecting one of them, two additional lists are displayed: the tables and the sequences
contained by this schema.

For both lists, the E-Maj properties and some general properties of each object become
visible. Some action buttons allow to reach their structure or content and manage their
assignment to tables groups.

E-Maj Reference Guide – version 4.1.0 Page 113 / 137

Figure 9 – Schema content and tables groups configuration.

6.3.7.1 Triggers

The “Triggers” tab lists the application triggers (those not linked to E-Maj), with their main
characteristics.

A button allows to switch their de-activation mode at E-Maj rollback time.

E-Maj Reference Guide – version 4.1.0 Page 114 / 137

Figure 10 – Application triggers list.

6.3.8 Monitoring rollback operations

Using the “Rollback operations” tab of the main bar, users can monitor the rollback
operations. Three different lists are displayed:

➢ in progress rollback operations, with the characteristics of the rollback operations
and estimates of the percentage of the operation already done and of the
remaining duration,

➢ the completed operations,
➢ logged rollback operations that are consolidable.

For each consolidable rollback, a button allows to effectively consolidate the operation.

E-Maj Reference Guide – version 4.1.0 Page 115 / 137

Figure 11 – Rollback operations monitoring.

Clicking on a rollback identifier in one of these tables displays a page that shows
information details about the selected in progress or completed operation.

More precisely, are displayed:
➢ the rollback identification,
➢ its progress,
➢ the final report returned to the user, when the operation is completed,
➢ its main technical characteristics,
➢ the launched session or sessions,
➢ and the detail of the operation plan, showing each elementary step, with its

duration and optionaly estimates computed by E-Maj at the operation initialisation.

E-Maj Reference Guide – version 4.1.0 Page 116 / 137

Figure 12 – Details of a Rollback operation.

6.3.9 E-Maj environment state

By selecting the “E-Maj” tab of the main bar, the user reaches an overview of the E-Maj
environment state.

First, some items are displayed:
➢ the installed PostgreSQL and E-Maj versions,
➢ the disk space used by E-Maj (log tables, technical tables and their indexes), and

the part of the global database space it represents.

E-Maj Reference Guide – version 4.1.0 Page 117 / 137

If the user is connected with a “superuser” role, some buttons allow to create, update or
drop the emaj extension, depending on the context.

Then, the environment integrity is checked; the result of the emaj_verify_all() function
execution is displayed.

The page ends with a list of the extension parameters value, be they present in the
emaj_param table or set to their default value.

Two buttons allow to export and import parameters configurations to or from a local file.

E-Maj Reference Guide – version 4.1.0 Page 118 / 137

Figure 13 – The E-Maj environment state.

E-Maj Reference Guide – version 4.1.0 Page 119 / 137

7 CONTRIBUTE TO THE E-MAJ DEVELOPMENT

Any contribution to the development and the improvement of the E-Maj extension is
welcome. This chapter gives some information to make these contributions easier.

7.1 BUILD THE E-MAJ ENVIRONMENT

The E-Maj extension repository is hosted on the github site:
https://github.com/ dalibo /emaj

7.1.1 Clone the E-Maj repository

So the first acction to perform is to locally clone this repository on his/her own computer.
This can be done by using the functionnalities of the github web interface or by typing the
shell command:

git clone https://github.com/dalibo/emaj.git

7.1.2 Description of the E-Maj tree

So one has a full directory tree (except the web clients). It contains all directories and files
described in the appendix 8.2, except the doc directory content that is separately
maintained (see below).

The main directory also contains the following components:

➢ the tar.index file that is used to build the tarball of the E-Maj version distributed on
pgxn.org

➢ the docs directory with all sources of the online documentation (see §7.4)
➢ in the sql directory:

➢ the file emaj--devel.sql, source of the extension in its current version
➢ the source of the previous version emaj--<previous_version>.sql
➢ a emaj_prepare_emaj_web_test.sql script that prepares an E-Maj environment

to test the Emaj_web client
➢ a test directory containing all components used to test the extension (see §7.3)
➢ a tools directory containing some … tools.

7.1.3 Setting tools parameters

The tools stored in the tools directory need some parameters to be set, depending on
his/her own environment. A parameter system covers some tools. For the others, the
tools/README file details the changes to apply.

E-Maj Reference Guide – version 4.1.0 Page 120 / 137

https://github.com/beaud76/emaj
https://github.com/beaud76/emaj
https://github.com/beaud76/emaj
https://github.com/beaud76/emaj

7.1.3.1 Créating the emaj_tools.env file

The parameters that may be modified are grouped into the tools/emaj_tools.env file,
which is called by tools/emaj_tools.profile.

The repository contains a file tools/emaj_tools.env-dist that may be used as a template to
create the emaj_tools.env file.

The emaj_tools.env file must contain:
➢ the list of PostgreSQL versions that are supported by the current E-Maj version and

for which a PostgreSQL instance exists for tests (EMAJ_USER_PGVER variable),
➢ for each PostgreSQL version used for the tests, 6 variables describing the location

of binaries, the main directory of the related instance, the role and the ip-port to be
used for the connection to the instance.

7.2 CODING

7.2.1 Versionning

The version currently under development is named devel.

Regularly and when it is justified, a new version is created. Its name has a X.Y.Z pattern.

The tools/create_version.sh shell script assists in creating this version. It is only used by
the E-Maj maintainers. So its use is not described here.

7.2.2 Coding rules

Coding the emaj--devel.sql script must follow these rules:
➢ script structure: after some checks about the execution conditions that must be

met, the objects are created in the following order: roles, enumerated types,
sequences, tables (with their indexes and contraints), composite types, E-Maj
parameters, low level functions, elementary functions that manage tables and
sequences, functions that manage tables groups, general purpose functions, event
triggers, grants, additional actions for the extensions. The script ends with some
final operations.

➢ all objects are created in the emaj schema, except the
_emaj_protection_event_trigger_fnct() function, created in the public schema,

➢ tables and sequences names are prefixed by ‘emaj_’
➢ functions names are prefixed by ‘emaj_’ when they are usable by end users, or by

‘_’ for internal functions,
➢ the internal tables and the functions callable by end users must have a comment,
➢ the language keywords are in upper case, objects names are in lower case,
➢ the code is indented with 2 space characters,

E-Maj Reference Guide – version 4.1.0 Page 121 / 137

➢ lines must not contain tab characters, must not be longer than 140 characters long
and must not end with spaces,

➢ in the functions structure, the code delimiters must contain the function name
surrounded with a $ character (or do for code blocks),

➢ variables names are prefixed with ‘v_’ for simple variables, ‘p_’ for functions
parameters or ‘r_’ for RECORD type variables,

➢ the code must be compatible with all PostgreSQL versions supported by the
current E-Maj version. When this is striclty necessary, the code may be
differenciated depending on the PostgreSQL version.

A perl script, tools/check_code.pl performs some checks on the code format of the script
that creates the extension. It also detects unused variables. This script is directly called in
non-regression tests scenarios (Cf §7.3).

7.2.3 Version upgrade script

E-Maj is installed into a database as an extension. The E-Maj administrator must be able
to easily upgrade the extension version (cf §3.4). So an upgrade script is provided for
each version, that upgrades from the previous version to the next version. It is named
emaj--<previous_version>--devel.sql.

The development of this script follows these rules:
➢ Develop/maintain the upgrade script at the same time as the main emaj--devel.sql

script, so that the tests of a change include upgrade version cases,
➢ Apply the same coding rules as for the main script,
➢ As far as possible, ensure that the upgrade operation is able to process tables

groups in logging state, without loosing the capability to perform E-Maj rollbacks on
marks set prior the version upgrade.

At the beginning of a version, the upgrade script is built using a template (the file
tools/emaj_upgrade.template).

As the development goes on, a perl script helps to synchronize the
creation/deletion/replacement of functions. It compares the emaj--devel.sql script and the
script that creates the previous version and updates the emaj--<previous_version>--
devel.sql script. To let it work properly, it is essential to keep both tags that frame the part
of the script that describes functions.

After having adapted the parameters (see the TOOLS/README file), just submit:

perl tools/sync_fct_in_upgrade_script.pl

The other parts of the script must be coded manually. If the structure of an internal table is
changed, the table content must be migrated (scripts for prior version upgrade can be
used as examples).

E-Maj Reference Guide – version 4.1.0 Page 122 / 137

7.3 TESTING

Through the rollback functions, the E-Maj extension updates database content. So the
reliability is a key characteristics. For this reason, it is essential to pay a great attention to
the tests.

7.3.1 Create PostgreSQL instances

The ideal is to be able to test E-Maj with all PostgreSQL versions that are supported by
the extension (currently from version 9.5 to version 12).

The tools/create_cluster.sh script helps in creating a test instance. Its content may show
the characteristics of the instance to create. It can also be executed (after parameters
setting as indicated in tools/README):

tools/create_cluster.sh <PostgreSQL_major_version>

7.3.2 Install software dependancies

Testing the clients may require to install some additional software components:
➢ the php software, with its PostgreSQL interface,
➢ the perl software, with the DBI and DBD::Pg modules.

7.3.3 Execute non regression tests

A solid test environment is supplied in the repository. It contains:
➢ a test tool,
➢ test scenarios,
➢ expected results.

7.3.3.1 The test scenarios

The test system contains 4 scenarios:
➢ a full standart scenario,
➢ the same scenario but installing the extension from the previous version with an

immediate upgrade into the current version,
➢ the same scenario but installing the extension with the emaj-devel.sql script

provided for cases when a “CREATE EXTENSION emaj” statement is not possible,
➢ a shorter scenario but with an upgrade into the current version while tables groups

are in logging state.

E-Maj Reference Guide – version 4.1.0 Page 123 / 137

These scenarios call psql scripts, all located into the test/sql directory. The scripts chain
E-Maj function calls in different contexts, and SQL statements to prepare or check the
results.

At the end of scripts, internal sequences are often reset, so that a single function call
insertion does not produce impacts in the next scripts results.

The psql test scripts must be maintained in the same time as the extension source.

7.3.3.2 The expected results

For each psql script, the test tool produces a result file. These files are distinguished from
a PostgreSQL version to another. They are located in the
test/<PostgreSQL_version>/results directory.

At the end of a run, the test tool compares these files with a reference located into the
test/<PostgreSQL_version>/expected directory.

Unlike for files in the test/<PostgreSQL_version>/results directory, files in the
test/<PostgreSQL_version>/expected directory belong to the git repository. They must
always remain consistent with the source of the extension and the psql test scripts.

7.3.3.3 The test tool

The test tool, regress.sh, combines all test functions.

Before using it, it is necessary to:
➢ have the PostgrSQL instances to be used already created and the

tools/emaj_tools.env file already setup
➢ manually create the test/<PostgreSQL_version>/results directories.

The test tool can be launched with the command:

tools/regress.sh

As it starts with a copy of the emaj.control file into the SHAREDIR/extension directory of
each configured PostgreSQL version, it may ask for the password of the Linux account to
be able to execute sudo commands. It also automatically generates the emaj-devel.sql
script used to create the extension with psql.

It then displays the list of test functions in a menu. Just enter the letter corresponding to
the choosen test.

The test functions are:
➢ standart tests for each configured PostgreSQL version,

E-Maj Reference Guide – version 4.1.0 Page 124 / 137

➢ the tests with the installation of the previous version followed by an upgrade,
➢ the tests with the installation of the version with the emaj-devel.sql script,
➢ the tests with an E-Maj version upgrade while tables groups are in logging state,
➢ tests chaining a database save with pg_dump and a restore, with different

PostgreSQL versions,
➢ a PostgreSQL upgrade version test using pg_upgrade with a database containing

the E-Maj extension.

It is important to execute the four first sets of tests for each E-Maj change.

7.3.3.4 Validate results

After having executed a psql script, regress.sh compares the outputs of the run with the
expected outputs and reports the comparison result with the words ‘ok’ or ‘FAILED’.

Here is an example of the display issued by the test tool (in this case with the scenario
chaining the installation and a version upgrade, and with a detected difference):

Run regression test
============== dropping database "regression" ==============
DROP DATABASE
============== creating database "regression" ==============
CREATE DATABASE
ALTER DATABASE
============== running regression test queries ==============
test install_upgrade ... ok
test setup ... ok
test create_drop ... ok
test start_stop ... ok
test mark ... ok
test rollback ... ok
test misc ... ok
test alter ... ok
test alter_logging ... ok
test viewer ... ok
test adm1 ... ok
test adm2 ... ok
test adm3 ... ok
test client ... ok
test check ... FAILED
test cleanup ... ok

=======================
 1 of 15 tests failed.
=======================

The differences that caused some tests to fail can be viewed in the
file "/home/postgres/proj/emaj/test/11/regression.diffs". A copy of the test summary
that you see
above is saved in the file "/home/postgres/proj/emaj/test/11/regression.out".

When at least one script fails, it is important to closely analyze the differences, by
reviewing the test/<PostgreSQL_version>/regression.diffs file content, and check that

E-Maj Reference Guide – version 4.1.0 Page 125 / 137

the differences are directly linked to changes applied in the extension source code or in
the test scripts.

Once the reported differences are considered as valid, the content of the
test/<PostgreSQL_version>/result directories must be copied into the
test/<PostgreSQL_version>/expected directories. A shell script processes all
PostgreSQL versions in a single command:

sh tools/copy2Expected.sh

It may happen that some test outputs do not match the expected outputs, due to
differences in the PostgreSQL behaviour from one run to another. Repeating the test
allows to check these cases.

7.3.4 Test coverage

7.3.4.1 Functions test coverage

The PostgreSQL test instances are configured to count the functions executions. The
check.sql test script displays the functions execution counters. It also displays E-Maj
functions that have not been executed.

7.3.4.2 Error messages test coverage

A perl script extracts error and warning messages coded in the sql/emaj--devel.sql file. It
then extracts the messages from the files of the test/10/expected directory. It finally
displays error or warning messages that are not covered by tests.

The script can be run with the command:

perl tools/check_error_messages.pl

Some messages are known to not be covered by tests (for instance internal errors that
are hard to reproduce). These messages, coded in the perl script, are excluded from the
final report.

7.3.5 Evaluate the performances

The tools/performance directory contains some shell scripts helping in measuring
performances. As the measurement results totally depend on the platform and the
environment used, no reference results are supplied.

E-Maj Reference Guide – version 4.1.0 Page 126 / 137

The scripts cover the following domains:
➢ log_overhead/pgbench.sh evaluates the log mechanism overhead, using

pgbench,
➢ large_group/large_group.sh evaluates the behaviour of groups containing a

large number of tables,
➢ rollback/rollback_perf.sh evaluates the E-Maj rollback performances with

different tables profiles.

For all these files, some variables have to be configured at the begining of the scripts.

E-Maj Reference Guide – version 4.1.0 Page 127 / 137

7.4 DOCUMENTING

A LibreOffice format documentation is managed by the maintainers. It has its own github
reporistory: emaj_doc. Thus the doc directory of the main repository remains empty.

The online documentation is managed by sphinx. It is located in the docs directory.

To install sphinx, refer to the docs/README.rst file.

The documentation exists in two languages, English and French. Depending on the
languages, document sources are located in /docs/en and /docs/fr. These documents are
in ReStructured Text format.

To compile the documentation for a language, set the current directory to
docs/<language> and execute the command:

make html

When there is no compilation error anymore, the documentation becomes available locally
on a brower, by opening the docs/<language>/_build/html/index.html file.

The documentation on the readthedocs.org site is automatically updated as soon as the
main github repository is updated.

7.5 SUBMITTING A PATCH

Patches can be proposed to the E-Maj maintainers through Pull Requests on the github
site.

Before submitting a patch, it may be useful to create an issue on github, in order to start a
discussion with the maintainers and help in working on the patch.

E-Maj Reference Guide – version 4.1.0 Page 128 / 137

8 APPENDIX

8.1 E-MAJ FUNCTIONS LIST

The E-Maj functions that are available to users can be grouped into 3 categories. They
are listed below, in alphabetic order. They are all callable by roles having emaj_adm
privileges. The charts also specify those callable by emaj_viewer roles.

8.1.1 Tables or sequences level functions

Functions Input parameters Output data
Callable by

emaj_viewer
Ref.

emaj_assign_sequence schema TEXT
sequence TEXT
group TEXT
[properties JSONB]
[mark TEXT]

1 INT § 4.4.2

emaj_assign_sequences schema TEXT
sequences.array TEXT[]
group TEXT
[properties JSONB]
[mark TEXT]

#.séquences INT § 4.4.2

emaj_assign_sequences schema TEXT
sequences.to.include.filter
TEXT
sequences.to.exclude.filter
TEXT
group TEXT
[properties JSONB]
[mark TEXT]

#.séquences INT § 4.4.2

emaj_assign_table schema TEXT
table TEXT
groupe TEXT
[properties JSONB]
[mark TEXT]

1 INT § 4.4.2

emaj_assign_tables schema TEXT
tables.array TEXT[]
group TEXT
[properties JSONB]
[mark TEXT]

#.tables INT § 4.4.2

emaj_assign_tables schema TEXT
tables.to.include.filter
TEXT
tables.to.exclude.filter
TEXT
group TEXT
[properties JSONB]
[mark TEXT]

#.tables INT § 4.4.2

emaj_get_current_log_table schema TEXT (log.schema TEXT, Yes § 4.9.3

E-Maj Reference Guide – version 4.1.0 Page 129 / 137

Functions Input parameters Output data
Callable by

emaj_viewer
Ref.

table TEXT log.table TEXT)

emaj_modify_table schema TEXT
table TEXT
properties JSONB
[mark TEXT]

#.tables INT § 4.4.7

emaj_modify_tables schema TEXT
tables.array TEXT[]
properties JSONB
[mark TEXT]

#.tables INT § 4.4.7

emaj_modify_tables schema TEXT
tables.to.include.filter
TEXT
tables.to.exclude.filter
TEXT
properties JSONB
[mark TEXT]

#.tables INT § 4.4.7

emaj_move_sequence schema TEXT
sequence TEXT
new.group TEXT
[mark TEXT]

1 INT § 4.4.6

emaj_move_sequences schema TEXT
sequences.array TEXT[]
new.group TEXT
[mark TEXT]

#.sequences INT § 4.4.6

emaj_move_sequences schema TEXT
sequences.to.include.filter
TEXT
sequences.to.exclude.filter
TEXT
new.group TEXT
[mark TEXT]

#.sequences INT § 4.4.6

emaj_move_table schema TEXT
table TEXT
new.group TEXT
[mark TEXT]

1 INT § 4.4.5

emaj_move_tables schema TEXT
tables.array TEXT[]
new.group TEXT
[mark TEXT]

#.tables INT § 4.4.5

emaj_move_tables schema TEXT
tables.to.include.filter
TEXT
tables.to.exclude.filter
TEXT
new.group TEXT
[mark TEXT]

#.tables INT § 4.4.5

emaj_remove_sequence schema TEXT
sequence TEXT
[mark TEXT]

1 INT § 4.4.4

emaj_remove_sequences schema TEXT
sequences.array TEXT[]

#.sequences INT § 4.4.4

E-Maj Reference Guide – version 4.1.0 Page 130 / 137

Functions Input parameters Output data
Callable by

emaj_viewer
Ref.

[mark TEXT]

emaj_remove_sequences schema TEXT
sequences.to.include.filter
TEXT
sequences.to.exclude.filter
TEXT
[mark TEXT]

#.sequences INT § 4.4.4

emaj_remove_table schema TEXT
table TEXT
[mark TEXT]

1 INT § 4.4.3

emaj_remove_tables schema TEXT
tables.array TEXT[]
[mark TEXT]

#.tables INT § 4.4.3

emaj_remove_tables schema TEXT
tables.to.include.filter
TEXT
tables.to.exclude.filter
TEXT
[mark TEXT]

#.tables INT § 4.4.3

8.1.2 Groups level functions

Functions Input parameters Output data
Callable by

emaj_viewer
Ref.

emaj_comment_group group TEXT
comment TEXT

- § 4.5.2

emaj_comment_mark_group group TEXT
mark TEXT
comment TEXT

- § 4.6.1

emaj_consolidate_rollback_grou
p

group TEXT
end.rollback.mark TEXT

tables.and.seq INT §4.5.6

emaj_create_group group TEXT
[is.rollbackable
BOOLEAN]

1 INT § 4.2.2

emaj_delete_before_mark_group group TEXT
mark TEXT

#.deleted.marks INT § 4.6.5

emaj_delete_mark_group group TEXT
mark TEXT

1 INT § 4.6.4

emaj_detailed_log_stat_group group TEXT
start.mark TEXT
end.markTEXT

SETOF
emaj_detailed_log_st
at_type

Yes § 4.7.2

emaj_detailed_log_stat_groups groups.array TEXT[]
start.mark TEXT
end.mark TEXT

SETOF
emaj_log_stat_type

Yes § 4.7.2

emaj_drop_group group TEXT #.tables.and.seq INT § 4.2.4

emaj_estimate_rollback_group group TEXT duration INTERVAL Yes § 4.7.3

E-Maj Reference Guide – version 4.1.0 Page 131 / 137

Functions Input parameters Output data
Callable by

emaj_viewer
Ref.

mark TEXT

emaj_estimate_rollback_groups groups.array TEXT[]
mark TEXT

duration INTERVAL Yes § 4.7.3

emaj_force_drop_group group TEXT #.tables.and.seq INT §4.5.5

emaj_force_stop_group group TEXT #.tables.and.seq INT § 4.5.4

emaj_gen_sql_group group TEXT
start.mark TEXT
end.mark TEXT
output.file.path TEXT
[tables.seq.array
TEXT[]]

#.gen.statements
BIGINT

§ 4.8.1

emaj_gen_sql_groups groups.array TEXT[]
start.mark TEXT
end.mark TEXT
output.file.path TEXT
[tables.seq.array
TEXT[]]

#.gen.statements
BIGINT

§ 4.8.1

emaj_get_previous_mark_group group TEXT
date.time
TIMESTAMPTZ

mark TEXT Yes § 4.6.2

emaj_get_previous_mark_group group TEXT
mark TEXT

mark TEXT Yes § 4.6.2

emaj_log_stat_group group TEXT
start.mark TEXT
end.mark TEXT

SETOF
emaj_log_stat_type

Yes § 4.7.1

emaj_log_stat_groups groups.array TEXT[]
start.mark TEXT
end.mark TEXT

SETOF
emaj_log_stat_type

Yes § 4.7.1

emaj_logged_rollback_group group TEXT
mark TEXT
[is.alter.group.allowed
BOOLEAN]

SETOF (severity
TEXT, message
TEXT)

§ 4.3.5

emaj_logged_rollback_groups groups.array TEXT[]
mark TEXT
[is.alter.group.allowed
BOOLEAN]

SETOF (severity
TEXT, message
TEXT)

§ 4.3.5

emaj_protect_group group TEXT 0/1 INT § 4.5.3

emaj_protect_mark_group group TEXT
mark TEXT

0/1 INT § 4.6.6

emaj_rename_mark_group group TEXT
mark TEXT
new.name TEXT

- § 4.6.3

emaj_reset_group group TEXT #.tables.and.seq INT § 4.5.1

emaj_rollback_group group TEXT
mark TEXT
[is_alter_group_allowed
BOOLEAN]

SETOF (severity
TEXT, message
TEXT)

§ 4.3.4

E-Maj Reference Guide – version 4.1.0 Page 132 / 137

Functions Input parameters Output data
Callable by

emaj_viewer
Ref.

emaj_rollback_groups groups.array TEXT[]
mark TEXT
[is_alter_group_allowed
BOOLEAN]

SETOF (severity
TEXT, message
TEXT)

§ 4.3.4

emaj_set_mark_group group TEXT
[mark TEXT]

#.tables.and.seq INT § 4.3.3

emaj_set_mark_groups groups.array TEXT[]
[mark TEXT]

#.tables.and.seq INT § 4.3.3

emaj_snap_group group TEXT
directory TEXT
copy.options TEXT

#.tables.and.seq INT § 4.8.2

emaj_snap_log_group group TEXT
start.mark TEXT
end.mark TEXT
directory TEXT
copy.options TEXT

#.tables.and.seq INT § 4.8.3

emaj_start_group group TEXT
[mark TEXT]
[reset.loge BOOLEAN]

#.tables.and.seq INT § 4.3.2

emaj_start_groups groups.array TEXT[]
[mark TEXT]
[reset.loge BOOLEAN]

#.tables.and.seq INT § 4.3.2

emaj_stop_group group TEXT
[mark TEXT]

#.tables.and.seq INT § 4.3.6

emaj_stop_groups groups.array TEXT[]
[mark TEXT]

#.tables.and.seq INT § 4.3.6

emaj_unprotect_group group TEXT 0/1 INT § 4.5.3

emaj_unprotect_mark_group group TEXT
mark TEXT

0/1 INT § 4.6.6

E-Maj Reference Guide – version 4.1.0 Page 133 / 137

8.1.3 General purpose functions

Functions
Input

parameters
Output data

Callable by
emaj_viewer

Ref.

emaj_cleanup_rollback_state - # rollback INT § 14.9.5

emaj_disable_protection_by_event_triggers - # triggers INT § 4.9.7

emaj_enable_protection_by_event_triggers - # triggers INT § 4.9.7

emaj_export_groups_configuration NULL [,
groups.array
TEXT[]]

configuration
JSON

§ 4.5.8.1

emaj_export_groups_configuration file TEXT [,
groups.array
TEXT[]]

#.groups INT § 4.5.8.1

emaj_export_parameters_configuration - parameters JSON §4.9.2.1

emaj_export_parameters_configuration file.path TEXT # parameters INT § 4.9.2.1

emaj_get_consolidable_rollbacks - SETOF
emaj_consolidabl
e_rollback_type

Yes § 4.5.7

emaj_import_groups_configuration groups JSON [,
groups.array
TEXT[]] [,
alter.logging.groups
BOOLEAN] [,
mark TEXT]

#.groups INT § 4.5.8.1

emaj_import_groups_configuration file TEXT [,
groups.array
TEXT[]] [,
alter.logging.groups
BOOLEAN] [,
mark TEXT]

#.groups INT § 4.5.8.1

emaj_import_parameters_configuration parameters JSON,
[delete.current.conf
BOOLEAN)]

parameters INT § 4.9.2.2

emaj_import_parameters_configuration file.path TEXT,
[delete.current.conf
BOOLEAN)]

parameters INT § 4.9.2.2

emaj_purge_histories Retention.delay
INTERVAL

- § 4.9.6

emaj_rollback_activity - SETOF
emaj_rollback_ac
tivity_type

Yes § 4.9.4

emaj_verify_all - SETOF TEXT Yes § 4.9.1

E-Maj Reference Guide – version 4.1.0 Page 134 / 137

8.2 E-MAJ DISTRIBUTION CONTENT

Once installed (see §3), an E-Maj version contents the following files.

sql/emaj--<version>.sql installation script of the extension

sql/emaj-<version>.sql alternate psql installation script

sql/emaj—4.0.1--4.1.0.sql extension upgrade script from 4.0.1 to 4.1.0

sql/emaj--4.0.0--4.0.1.sql extension upgrade script from 4.0.0 to 4.0.1

sql/emaj--3.4.0--4.0.0.sql extension upgrade script from 3.4.0 to 4.0.0

sql/emaj--3.3.0--3.4.0.sql extension upgrade script from 3.3.0 to 3.4.0

sql/emaj--3.2.0--3.3.0.sql extension upgrade script from 3.2.0 to 3.3.0

sql/emaj--3.1.0--3.2.0.sql extension upgrade script from 3.1.0 to 3.2.0

sql/emaj--3.0.1--3.1.0.sql extension upgrade script from 3.0.0 to 3.1.0

sql/emaj--2.3.1--3.0.0.sql extension upgrade script from 2.3.1 to 3.0.0

sql/emaj--2.3.0--2.3.1.sql extension upgrade script from 2.3.0 to 2.3.1

sql/emaj--2.2.3--2.3.0.sql extension upgrade script from 2.2.3 to 2.3.0

sql/emaj--2.2.2--2.2.3.sql extension upgrade script from 2.2.2 to 2.2.3

sql/emaj--2.2.1--2.2.2.sql extension upgrade script from 2.2.1 to 2.2.2

sql/emaj--2.2.0--2.2.1.sql extension upgrade script from 2.2.0 to 2.2.1

sql/emaj--2.1.0--2.2.0.sql extension upgrade script from 2.1.0 to 2.2.0

sql/emaj--2.0.1--2.1.0.sql extension upgrade script from 2.0.1 to 2.1.0

sql/emaj--2.0.0--2.0.1.sql extension upgrade script from 2.0.0 to 2.0.1

sql/emaj--1.3.1--2.0.0.sql extension upgrade script from 1.3.1 to 2.0.0

sql/emaj--unpackaged--1.3.1.sql script that transforms an existing 1.3.1
version into extension

sql/emaj-1.3.0-to-1.3.1.sql psql script that upgrades a 1.3.0 version

sql/emaj-1.2.0-to-1.3.0.sql psql script that upgrades a 1.2.0 version

sql/emaj-1.1.0-to-1.2.0.sql psql script that upgrades a 1.1.0 version

sql/emaj-1.0.2-to-1.1.0.sql psql script that upgrades a 1.0.2 version

sql/emaj-1.0.1-to-1.0.2.sql psql script that upgrades a 1.0.1 version

sql/emaj-1.0.0-to-1.0.1.sql psql script that upgrades a 1.0.0 version

sql/emaj-0.11.1-to-1.0.0.sql psql script that upgrades a 0.11.1 version

sql/emaj-0.11.0-to-0.11.1.sql psql script that upgrades a 0.11.0 version

sql/emaj_demo.sql psql E-Maj demonstration script

sql/emaj_prepare_parallel_rollback_test.sql psql test script for parallel rollbacks

E-Maj Reference Guide – version 4.1.0 Page 135 / 137

sql/emaj_uninstall.sql psql script to uninstall the E-Maj
components

README.md reduced extension's documentation

CHANGES.md change log

LICENSE information about E-Maj license

AUTHORS.md who are the authors

META.json technical data for PGXN

emaj.control extension control flle used by the integrated
extensions management

doc/Emaj.<version>_doc_en.pdf English version of the full E-Maj
documentation

doc/Emaj.<version>_doc_fr.pdf French version of the full E-Maj
documentation

doc/Emaj.<version>_pres_en.odp English version of the E-Maj presentation

doc/Emaj.<version>_pres_fr.odp French version of the E-Maj presentation

doc/Emaj.<version>_pres_en.pdf English version of the E-Maj presentation
(pdf version)

doc/Emaj.<version>_pres_fr.pdf French version of the E-Maj presentation
(pdf version)

client/emajParallelRollback.php php tool for parallel rollback

client/emajParallelRollback.pl perl tool for parallel rollback

client/emajRollbackMonitor.php php tool for rollbacks monitoring

client/emajRollbackMonitor.pl perl tool for rollbacks monitoring

E-Maj Reference Guide – version 4.1.0 Page 136 / 137

8.3 POSTGRESQL AND E-MAJ VERSIONS COMPATIBILITY MATRIX

PostgreSQL versions E-Maj versions

Min Max Min Date

8.2 8.4 0.4.0 01/2010

8.2 9.0 0.8.0 10/2010

8.2 9.1 0.10.0 11/2011

8.2 9.2 0.11.1 07/2012

8.3 9.3 1.1.0 10/2013

8.3 9.5 1.2.0 01/2016

8.3 9.6 1.3.1 09/2016

9.1 9.6 2.0.0 11/2016

9.1 10 2.1.0 08/2017

9.2 10 2.3.0 07/2018

9.2 11 2.3.1 09/2018

9.5 11 3.0.0 03/2019

9.5 12 3.1.0 06/2019

9.5 14 3.3.0 03/2020

9.5 15 4.1.0 10/2022

E-Maj Reference Guide – version 4.1.0 Page 137 / 137

	1 Introduction
	1.1 Document content
	1.2 License
	1.3 E-Maj's objectives
	1.4 Main components

	2 How E-Maj works
	2.1 Concepts
	2.1.1 Tables Group
	2.1.2 Mark
	2.1.3 Rollback

	2.2 Architecture
	2.2.1 Logged SQL statements
	2.2.2 Created objects
	2.2.3 Schemas
	2.2.4 Norm for E-Maj objects naming
	2.2.5 Tablespaces

	3 How to install E-Maj
	3.1 Quick start
	3.1.1 Software install
	3.1.2 Extension install
	3.1.3 Extension use

	3.2 Installing the E-Maj software
	3.2.1 Downloading sources
	3.2.2 Standart installation on Linux
	3.2.3 Minimum installation on Linux
	3.2.4 Installation on Windows
	3.2.5 Alternate location of SQL installation scripts

	3.3 E-Maj extension setup
	3.3.1 Optional preliminary operation
	3.3.2 Standart creation of the emaj EXTENSION
	3.3.2.1 PostgreSQL version 9.6 and above
	3.3.2.2 PostgreSQL version 9.5

	3.3.3 Creating the extension by script
	3.3.4 Changes in postgresql.conf configuration file
	3.3.5 E-Maj parameters

	3.4 Update an existing E-Maj version
	3.4.1 General approach
	3.4.2 Upgrade by deletion and re-installation
	3.4.2.1 Stop tables groups
	3.4.2.2 Save user data
	3.4.2.3 E-Maj deletion and re-installation
	3.4.2.4 Restore user data

	3.4.3 Upgrade from an E-Maj version between 0.11.0 to 1.3.1
	3.4.4 E-Maj upgrade from 1.3.1 to a higher version
	3.4.5 Upgrade an E-Maj version already installed as an extension
	3.4.6 Compatibility break
	3.4.6.1 Upgrading towards version 4.0.0

	3.5 Uninstalling an E-Maj extension from a database
	3.6 PostgreSQL version upgrade
	3.6.1 Changing PostgreSQL minor versions
	3.6.2 Changing the major PostgreSQL version and the E-Maj version simultaneously
	3.6.3 Changing the PostgreSQL major version and keeping the existing E-Maj environment
	3.6.4 Post migration adaptation script

	4 How to use E-Maj
	4.1 Set-up the E-Maj access policy
	4.1.1 E-Maj roles
	4.1.2 Giving E-Maj rights
	4.1.3 Giving rights on application tables and objects
	4.1.4 Synthesis

	4.2 Creating and dropping tables groups
	4.2.1 Tables groups configuration principles
	4.2.1.1 The tables group
	4.2.1.2 The tables and sequences to assign
	4.2.1.3 Specific tables properties

	4.2.2 Create a tables group
	4.2.3 Assign tables and sequences into a tables group
	4.2.4 Drop a tables group

	4.3 Main functions
	4.3.1 Operations chain
	4.3.2 Start a tables group
	4.3.3 Set an intermediate mark
	4.3.4 Rollback a tables group
	4.3.5 Perform a logged rollback of a tables group
	4.3.6 Stop a tables group

	4.4 Modifying tables groups
	4.4.1 General information
	4.4.2 Add tables or sequences to a tables group
	4.4.3 Remove tables from their tables group
	4.4.4 Remove sequences from their tables group
	4.4.5 Move tables to another tables group
	4.4.6 Move sequences to another tables group
	4.4.7 Modify tables properties
	4.4.8 Incidence of tables or sequences addition or removal in a group in LOGGING state
	4.4.9 Reparing a tables group

	4.5 Other groups management functions
	4.5.1 Reset log tables of a group
	4.5.2 Comments on groups
	4.5.3 Protection of a tables group against rollbacks
	4.5.4 Forced stop of a tables group
	4.5.5 Forced suppression of a tables group
	4.5.6 Logged rollback consolidation
	4.5.7 List of “consolidable rollbacks”
	4.5.8 Exporting and importing tables groups configurations
	4.5.8.1 Export a tables groups configuration
	4.5.8.2 Import a tables groups configuration

	4.6 Marks management functions
	4.6.1 Comments on marks
	4.6.2 Search a mark
	4.6.3 Rename a mark
	4.6.4 Delete a mark
	4.6.5 Delete oldest marks
	4.6.6 Protection of a mark against rollbacks

	4.7 Statistics functions
	4.7.1 Global statistics about logs
	4.7.2 Detailed statistics about logs
	4.7.3 Estimate the rollback duration

	4.8 Data extraction functions
	4.8.1 SQL script generation to replay logged updates
	4.8.2 Snap tables of a group
	4.8.3 Snap log tables of a group

	4.9 Other functions
	4.9.1 Check the consistency of the E-Maj environment
	4.9.2 Exporting and importing parameters configurations
	4.9.2.1 Exporting a parameters configuration
	4.9.2.2 Importing a parameters configuration

	4.9.3 Getting the current log table linked to an application table
	4.9.4 Monitoring rollback operations
	4.9.4.1 Prerequisite
	4.9.4.2 Monitoring function

	4.9.5 Updating rollback operations state
	4.9.6 History data purge
	4.9.7 Deactivating or reactivating event triggers

	4.10 Multi-groups functions
	4.10.1 General information
	4.10.2 Functions list
	4.10.3 Syntax for groups array
	4.10.4 Other considerations

	4.11 Parallel Rollback client
	4.11.1 Sessions
	4.11.2 Prerequisites
	4.11.3 Syntax
	4.11.4 Examples

	4.12 Rollback monitoring client
	4.12.1 Prerequisite
	4.12.2 Syntax
	Examples

	5 Miscellaneous
	5.1 Parameters
	5.2 Log tables structure
	5.2.1 Standart structure
	5.2.2 Adding technical columns

	5.3 Reliability
	5.3.1 Internal checks
	5.3.2 Event triggers

	5.4 Traces of operations
	5.4.1 The emaj_hist table
	5.4.2 Purge obsolete traces

	5.5 The E-Maj rollback under the Hood
	5.5.1 Planning and execution
	5.5.2 Rollbacking a table
	5.5.3 Foreign keys management
	5.5.4 Application triggers management

	5.6 Impacts on instance and database administration
	5.6.1 Stopping and restarting the instance
	5.6.1.1 General rule
	5.6.1.2 Sequences rollback

	5.6.2 Saving and restoring the database
	5.6.2.1 File level saves and restores
	5.6.2.2 Logical saves and restores of entire database
	5.6.2.3 Logical save and restore of partial database

	5.6.3 Data load
	5.6.4 Tables reorganisation
	5.6.4.1 Reorganisation of application tables
	5.6.4.2 Reorganisation of E-Maj tables

	5.6.5 Using E-Maj with replication
	5.6.5.1 Integrated physical replication
	5.6.5.2 Integrated logical replication
	5.6.5.3 Other replication solutions

	5.7 Sensitivity to system time change
	5.8 Performance
	5.8.1 Updates recording overhead
	5.8.2 E-Maj rollback duration
	5.8.3 Optimizing E-Maj operations
	5.8.3.1 Use tablespaces
	5.8.3.2 Declare foreign keys as DEFERRABLE
	5.8.3.3 Modify memory parameters

	5.9 Usage limits
	5.10 User's responsibility
	5.10.1 Defining tables groups content
	5.10.2 Appropriate call of main functions
	5.10.3 Management of application triggers
	5.10.4 Internal E-Maj table or sequence change

	6 Emaj_web
	6.1 Overview
	6.2 Emaj_web client installation
	6.2.1 Prerequisite
	6.2.2 Download
	6.2.3 Application configuration

	6.3 Using Emaj_web
	6.3.1 Access to Emaj_web and databases
	6.3.2 Tables groups list
	6.3.3 Some details about the user interface
	6.3.4 Tables group details
	6.3.5 Statistics
	6.3.6 Tables group content
	6.3.7 Schemas and tables groups configuration
	6.3.7.1 Triggers

	6.3.8 Monitoring rollback operations
	6.3.9 E-Maj environment state

	7 Contribute to the E-Maj development
	7.1 Build the E-Maj environment
	7.1.1 Clone the E-Maj repository
	7.1.2 Description of the E-Maj tree
	7.1.3 Setting tools parameters
	7.1.3.1 Créating the emaj_tools.env file

	7.2 Coding
	7.2.1 Versionning
	7.2.2 Coding rules
	7.2.3 Version upgrade script

	7.3 Testing
	7.3.1 Create PostgreSQL instances
	7.3.2 Install software dependancies
	7.3.3 Execute non regression tests
	7.3.3.1 The test scenarios
	7.3.3.2 The expected results
	7.3.3.3 The test tool
	7.3.3.4 Validate results

	7.3.4 Test coverage
	7.3.4.1 Functions test coverage
	7.3.4.2 Error messages test coverage

	7.3.5 Evaluate the performances

	7.4 Documenting
	7.5 Submitting a patch

	8 Appendix
	8.1 E-Maj functions list
	8.1.1 Tables or sequences level functions
	8.1.2 Groups level functions
	8.1.3 General purpose functions

	8.2 E-Maj distribution content
	8.3 PostgreSQL and E-Maj versions compatibility matrix

