
E
 –

 M
 a

 j

1 / 51

3.1.0 French acronym for 
"Enregistrement des Mises A Jour"

i.e. "updates recording"

Let your PostgreSQL data
travel back in time



E
 –

 M
 a

 j

2 / 51

3.1.0

E-Maj, what is it for?

● E-Maj allows the data content to travel back in time, with a table 
level granularity

● By recording updates on sets of application tables, it is possible to 
– Count them (statistic function),
– Easily view them (audit function),
– Revert them ("rollback" function),
– Replay them (script generation, or revert a revert...)

● Usable with
– applications in test or in production 
– databases of all sizes



E
 –

 M
 a

 j

3 / 51

3.1.0

The gains

● In test environment
– Helps the application tests management by providing a quick way to 

● Examine updates generated by the application, for debugging 
purpose

● Cancel updates generated by the application in order to easily 
repeat tests

● In production environment 
– Allows to cancel processings

● Without being obliged to save and restore the instance by pg_dump/
pg_restore or by physical copy

● With a finer granularity
– Avoids to loose entire batch processing nights by helping the recovery after 

failure
– Very interesting with large tables and few updates



E
 –

 M
 a

 j

4 / 51

3.1.0

The components

● E-Maj, the heart
– A PostgreSQL extension
– Open Source, under GPL licence
– Download from pgxn.org - https://pgxn.org/dist/e-maj/
– Sources available on github.com - https://github.com/dalibo/emaj

● Emaj_web
– A web client - https://github.com/dalibo/emaj_web

● The online documentation
– In English (or French) - https://emaj.readthedocs.io/en/latest/

https://pgxn.org/dist/e-maj/
https://github.com/dalibo/emaj
https://github.com/dalibo/emaj_web
https://emaj.readthedocs.io/en/latest/


E
 –

 M
 a

 j

5 / 51

3.1.0

The characteristics which drove the design

● Reliability
– Absolute data integrity after updates cancellation
– Management of all usual objects (tables, sequences, contraints,...)

● Ease of use for DBAs, production people, application developpers 
and testers,...

– Easy to understand and use
– Easy to integrate into an automatized production (thus scriptable)

● Performance
– Limited log overhead
– Acceptable “rollback” duration

● Security
● Maintenability



E
 –

 M
 a

 j

6 / 51

3.1.0

Concepts

● Tables Group = a set of tables and/or sequences belonging to 
one or several schemas and having the same life cycle ;  it's the 
only object manipulated by users

● Mark = stable point in the life of a tables group, whose state can 
be set back ; identified by a name

● E-Maj Rollback = positioning of a tables group at a previously set 
mark state

– NB: this concept is different from the transaction rollbacks performed by the 
RDBMS

● a “RDBMS-rollback” cancels the current transaction
● a “E-Maj rollback” cancels updates from several commited 

transactions



E
 –

 M
 a

 j

7 / 51

3.1.0

Concepts (addon)

● By default, a tables group is created as “rollbackable”
● A tables group may be created as “audit-only”

– E-Maj rollbacks are not possible
– But 

● TRUNCATE are recorded and not blocked
● A table may have no declared PRIMARY KEY
● A table may have been created as UNLOGGED or WITH OIDS



E
 –

 M
 a

 j

8 / 51

3.1.0

An updates recording based on triggers

SQL

Log triggers 
and functions

Rollback 
function

Insert 
Update 
Delete

Delete
Insert

Insert
Application

tables
Log 

tables



E
 –

 M
 a

 j

9 / 51

3.1.0

Main objects

SQL

Log triggers 
and functions

Rollback 
function

Insert 
Update 
Delete

Delete
Insert

Insert
Application

tables
Log 

tables

Tables group

E-Maj
environment

emaj_viewer
role

emaj_adm
role



E
 –

 M
 a

 j

10 / 51

3.1.0

Management of application sequences

● Sequence increments are not individually recorded
● At set mark time

– The state of each sequence of the group is stored into an internal 
table

● At E-Maj rollback time
– Each sequence is reset to its state recorded at the targeted mark



E
 –

 M
 a

 j

11 / 51

3.1.0

Install E-Maj

● Download and unzip the extension
● Standart install

– Copy emaj.control and sql/*.sql files into $SHAREDIR/extension
– Log on the target database as super-user and execute

● CREATE EXTENSION emaj CASCADE;
● Install on DBaaS cloud environment

– psql … -f sql/emaj-<version>.sql
● This adds to the database

– the extensions dblink et btree_gist if needed
– 1 schema, named 'emaj', with about 110 functions, 15 technical 

tables, 8 types, 1 view, 1 sequence, 2 event triggers
– 2 roles



E
 –

 M
 a

 j

12 / 51

3.1.0

Initialization

● Populate the emaj_group_def table to define the tables groups 
content

– 1 row per application table/sequence
– At least grpdef_group, grpdef_schema and grpdef_tblseq 

columns
● For each group:

– SELECT emaj_create_group (group, is_rollbackable);
– Creates for each application table:

● 1 log table + 1 sequence
● 1 trigger + 1 log function

– NB: SELECT emaj_drop_group (group)
●  … drops an existing group



E
 –

 M
 a

 j

13 / 51

3.1.0

The 3 main functions to manage groups

● “Starting” a group
– emaj_start_group (group, mark)

activates the log triggers and sets a first mark
● Setting a mark

– emaj_set_mark_group (group, mark)
sets an intermediate mark

● “Stopping” a group
– emaj_stop_group (group [,mark])

deactivates the log triggers => a rollback is not possible anymore
● The % character in a mark name represents the current date and time



E
 –

 M
 a

 j

14 / 51

3.1.0

Examine logs

● Examining log tables may largely help the application debuging
● Each application table has its own log table

– emaj_<schema>.<table>_log
● A log table contains

– The same columns as its related application table
– And some technical columns

● A single row change in an application table generates
– 1 log row for an INSERT (image of the new row)
– 1 log row for a DELETE (image of the old row)
– 2 log rows for an UPDATE (image of the old and the new rows)

● A TRUNCATE generates a single log row



E
 –

 M
 a

 j

15 / 51

3.1.0

Log tables technical columns

● 6 technical columns at the end of each log row
– emaj_verb : SQL statement type - INS/UPD/DEL/TRU
– emaj_tuple : row type - OLD/NEW
– emaj_gid : internal sequence number
– emaj_changed : time of the update - clock_timestamp()
– emaj_txid : transaction identifier - txid_current()
– emaj_user : connection role of the client - session_user

● … and some others can be added
● It is possible to identify clients and transactions, and analyze the 

timing of the program execution



E
 –

 M
 a

 j

16 / 51

3.1.0

Counting updates

● 2 statistical functions 
– emaj_log_stat_group (group, start_mark, end_mark)

quickly returns an estimate of recorded updates
● by table
● between 2 marks (or between 1 mark and the current state)

– emaj_detailed_log_stat_group (group, start_mark, 
end_mark)
scans log tables and returns precise statistics on their content

● by table
● by statement type (INSERT / UPDATE / DELETE)
● by ROLE
● between 2 marks (or between 1 mark and the current state)



E
 –

 M
 a

 j

17 / 51

3.1.0

Cancel updates : the “simple” rollback

● A “rollback” function allows to reset a tables group in the state it 
had at a given mark

– emaj_rollback_group (group, mark, false)
● How this works 

– Log triggers are deactivated during the operation
– Each table is reset to its mark state using an optimised algorithm
– Application sequences are reset to their mark state
– Takes into account the foreign keys, if any
– The canceled logs and marks are deleted

=> all what is after the rollback mark is forgotten



E
 –

 M
 a

 j

18 / 51

3.1.0

An optimised rollback algorithm

● It processes each primary key value only once

Ins
1

Ins
1

emaj_rollback_group(M2)

Del
3

Ins
2

Ins
3

Upd
2->4

Del
1

Upd
4->5

Del
6

Ins
2

Upd
5->6

ema
j_s

et_
mar

k_g
rou

p(M1)

ema
j_s

et_
mar

k_g
rou

p(M2)

ema
j_s

et_
mar

k_g
rou

p(M3)

Application updates Rollback updates



E
 –

 M
 a

 j

19 / 51

3.1.0

A typical E-Maj usage (production batch processing)

Log tables

Proc. 1 Proc. 2 Proc. 3

start_group set_mark rollback_group
stop_group

set_mark

App. tables

Abort 
!



E
 –

 M
 a

 j

20 / 51

3.1.0

Cancelling updates : the “logged” rollback

● Different from the “simple” rollback 
– Log triggers are NOT deactivated during the operation

=> the updates generated by the rollback are recorded
– Cancelled logs et marks are NOT deleted

● So we can revert an E-Maj rollback ! And more generally let a 
tables group travel back and forth in time !

● 2 marks are automatically set before and after the rollback
– RLBK_<marque cible>_<HH.MI.SS.MS>_START
– RLBK_<marque cible>_<HH.MI.SS.MS>_DONE

● During the rollback, tables remain accessible in read mode



E
 –

 M
 a

 j

21 / 51

3.1.0

A typical E-Maj usage in test environment

● 4 processings to test in sequence
● After test 3, a new version of processing 2 must be re-tested 
● Then perform the remaining tests

Proc. 1 Proc. 2 Proc. 3

M1 M2 M3 M4

Proc. 2’

ema
j_l

ogg
ed_

rol
lba

ck_
gro

up(M2)

Rlbk Proc. 4

ema
j_r

oll
bac

k_g
rou

p(M4)

Rlbk

...M
2...START

...M
2...DONE



E
 –

 M
 a

 j

22 / 51

3.1.0

Estimating an E-Maj rollback duration

● In order to know if we have enough time to perform the operation 
or if another way to recover would be more efficient

● A function estimates the time needed to rollback a group to a 
given mark

– emaj_estimate_rollback_group (group, mark)



E
 –

 M
 a

 j

23 / 51

3.1.0

Executing a parallel E-Maj rollback

● A php or perl client performs rollbacks with parallelism
– emajParallelRollback.php -d <database> -h <host> -p 

<port> -U <user> -W <password> -g <group_name or 
groups_list> -m <mark> -s <nb_sessions> [-l]

● Automatically spreads the tables to process into a given number of 
parallel sessions

● All sessions belong to a single transaction (2PC)
=> max_prepared_transaction >= nb sessions

● Needs php or perl with its PostgreSQL extension



E
 –

 M
 a

 j

24 / 51

3.1.0

Monitoring E-Maj rollbacks in execution

● A function 
– SELECT * FROM emaj.emaj_rollback_activity ();
– returns

● The characteristics of rollbacks (group, mark...)
● Their state
● Their current duration
● An estimate of the remaining duration and the already executed %

● Needs to setup the value of the “dblink_user_password” parameter 
in the emaj_param table



E
 –

 M
 a

 j

25 / 51

3.1.0

Monitoring E-Maj rollbacks

● A php or perl client to monitor the executing or completed 
rollbacks

– emajRollbackMonitor.php -d <database> -h <host> -p 
<port> -U <user> -W <password> -n <nb_iterations> -i 
<refresh_rate_in_seconds> -l <nb_completed rollbacks> -a 
<completed_rollbacks_history_depth_in_hours>

 E-Maj (version 2.2.0) - Monitoring rollbacks activity
---------------------------------------------------------------

04/09/2017 - 12:07:17
** rollback 35 started at 2017-09-04 12:06:21.474217+02 for groups {myGroup1}
   status: COMMITTED ; ended at 2017-09-04 12:06:21.787615+02 
-> rollback 36 started at 2017-09-04 12:04:31.769992+02 for groups {group1232}
   status: EXECUTING ; completion 89 % ; 00:00:20 remaining
-> rollback 37 started at 2017-09-04 12:04:21.894546+02 for groups {group1233}
   status: LOCKING ; completion 0 % ; 00:22:20 remaining



E
 –

 M
 a

 j

26 / 51

3.1.0

Consolidate a “logged” rollback

● “Consolidate” a rollback means transform a “logged rollback” into  
a “simple rollback”

● Intermediate logs and marks are deleted, recovering some place in 
the logs

– emaj_consolidate_rollback_group (groups, 
end_rollback_mark)

● Tables can be updated during the consolidation
● A function returns the list of consolidable rollbacks

– emaj_get_consolidable_rollbacks ()



E
 –

 M
 a

 j

27 / 51

3.1.0

Example of E-Maj rollback consolidation

M1 M2 M3

ema
j_l

ogg
ed_

rol
lba

ck_
gro

up(M2)

rlbk log

ema
j_c

ons
oli

dat
e_r

oll
bac

k_g
rou

p(...M
2...DONE)

...M
2...START

...M
2...DONE

M4

upd logupd log upd log upd log upd log



E
 –

 M
 a

 j

28 / 51

3.1.0

Being protected against unattended E-Maj rollbacks

● 2 functions to manage the protection of a tables group
– emaj_protect_group (group)
– emaj_unprotect_group (group)

● 2 functions to manage the protection of a mark 
– emaj_protect_mark_group (group, mark) blocks any attempt to 

rollback to a mark prior the protected mark
– emaj_unprotect_mark_group (group, mark)

set_mark M1 rollback M2 
set_mark M2

set_mark M3 rollback M1protect_mark M2

RefusedOK



E
 –

 M
 a

 j

29 / 51

3.1.0

Exporting from an E-Maj environment

● Generate a sql script replaying the recorded updates between 2 marks, 
for some or all tables and sequences of a group

– emaj_gen_sql_group (group, start_mark, end_mark, 
dest_file [,tables/seq_list])

● Snap on files in a given directory, by COPY, all tables and sequences of a 
 group

– emaj_snap_group (group, directory, copy_options)
● Snap on files in a given directory, by COPY, a part of log tables and 

sequences of a group
– emaj_snap_log_group (group, start_mark, end_mark, 

directory, copy_options)
● Useful in test to compare several executions of a processing or to 

“replicate” the updates produced by a processing



E
 –

 M
 a

 j

30 / 51

3.1.0

The tables group life cycle
« unknown »

Create group

« idle »

Drop group

« logging »

Start groupStop group

Rollback group Set a mark



E
 –

 M
 a

 j

31 / 51

3.1.0

Modifying the groups structure

● 2 steps
– Modify the content of the emaj_group_def table (insert/delete rows, 

change attributs)
– Call the function emaj_alter_group (group)

● No restriction for tables group in IDLE state
● The tables group may remain in LOGGING state, to

– Modify attributes in emaj_group_def
– Remove a table or a sequence from its tables group
– Add a table or a sequence to a tables group
– Change the group ownership for a table or a sequence



E
 –

 M
 a

 j

32 / 51

2.2.3

Impact of logging group structure changes on 
rollbacks

m1 m2 m3 m4

t1
t2
t3
t4

Table t2 removed at mark m3, t3 added at m2, t4 removed at m2 and added at m3 

emaj_rollback_group(<groupe>,’m1’) would process:

]

]
[

[



E
 –

 M
 a

 j

33 / 51

2.2.3

Impact of logging group structure changes on 
statistics

m1 m2 m3 m4

t1
t2
t3
t4

emaj_log_stat_group(<groupe>,’m1’,’m4’) would report:

]

]
[

[



E
 –

 M
 a

 j

34 / 51

2.2.3

Impact of logging group structure changes on the 
SQL scripts generation

m1 m2 m3 m4

t1
t2
t3
t4

emaj_gen_sql_group(<group>,’m1’,’m4’) would process:

]

]
[

[



E
 –

 M
 a

 j

35 / 51

2.2.3

Modify the structure of a table in a LOGGING group

● For actions like: rename the table, change its schema, 
add/drop/rename a column, change a column type

● The log table structure is impacted
● 3 steps

– Remove the table from its tables group
– ALTER TABLE
– Add the table into its tables group

● Constraint: an E-Maj rollback to a prior mark will not be able to go 
beyond the structure change

● Idem to rename a sequence of change its schema



E
 –

 M
 a

 j

36 / 51

3.1.0

Processing several groups in a single operation

● Some “multi-groups” variants of functions
– emaj_start_groups (groups_array, … )
– emaj_stop_groups (groups_array, … ) 
– emaj_set_mark_groups (groups_array, … )
– emaj_rollback_groups (groups_array, … )
– emaj_logged_rollback_groups (groups_array, … )
– emaj_log_stat_groups (groups_array, … )
– emaj_gen_sql_groups (groups_array, … )
– emaj_alter_groups (groups_array, … )

● Allows to get marks shared by several groups
● Both PostgreSQL syntaxes for groups arrays

– ARRAY['group 1', 'group 2', … ]
– '{"group 1", "group 2", … }'



E
 –

 M
 a

 j

37 / 51

3.1.0

Managing marks

● Comment a mark for a group (add/modify/suppress)
– emaj_comment_mark_group (group, mark, comment)

● Rename a mark
– emaj_rename_mark_group (group, old_name, new_name)

● Delete a mark
– emaj_delete_mark_group (group, mark)
– If the deleted mark is the first one, logs prior the second one are deleted

● Delete all marks prior a given mark
– emaj_delete_before_mark_group (group, mark)
– Deletes logs prior the mark (it may take a long time...)



E
 –

 M
 a

 j

38 / 51

3.1.0

Managing mark (2)

● Search for marks
– emaj_find_previous_mark_group (group, date-time) returns the 

mark immediately preceeding a given date and time
– emaj_find_previous_mark_group (group, mark) returns the mark 

immediately preceeding a given mark
● “EMAJ_LAST_MARK” represents the last set mark for a group

– Usable for all parameters defining an existing mark



E
 –

 M
 a

 j

39 / 51

3.1.0

Other actions on groups

● Comment a group (add/modify/suppress)
– emaj_comment_group (group, comment)

● Purge log tables of a stopped group (anticipating its next restart)
– emaj_reset_group (group)

● Force a group stop (in case of problem with the normal stop 
function)

– emaj_force_stop_group (group)



E
 –

 M
 a

 j

40 / 51

3.1.0

Other actions

● Verify the good health of the E-Maj installation
– emaj_verify_all ()

● Get the current log table of a given application table
– emaj_get_current_log_table ()



E
 –

 M
 a

 j

41 / 51

3.1.0

Temporary or permanent logging?

● Temporary logging = steps like
– emaj_start_group()
– repeat

● processiong
● emaj_set_mark()

– emaj_stop_group()
● At next start, old logs are purged
● But stops and starts set very 

heavy locks

● Permanent logging = no 
repeated group stop/restart

– Obsolete data in log tables must 
be regularly deleted, using the  
emaj_delete_before_mark() 
function 

● The deletion can be costly if the 
volume of log to delete is big



E
 –

 M
 a

 j

42 / 51

3.1.0

For large databases...

● Log tables and indexes can be stored into tablespaces
– Can be configured for each table in emaj_group_def



E
 –

 M
 a

 j

43 / 51

3.1.0

To ensure the reliability

● No change in the PostgreSQL engine
● Many systematic checks, in particular at group start, mark set or  

rollback times:
– Do all required tables, sequences, functions and triggers exist?
– Consistency of columns between the application tables and the related log 

tables (existence, type)?
● Heavy locks on tables at start_group, set_mark_group and 
rollback_group, to be sure that no transaction is currently updating 
application tables

– The order of lock setting can be influence by a priority level defined 
for each table into the emaj_group_def table

● Rollback all tables and sequences by a single transaction



E
 –

 M
 a

 j

44 / 51

3.1.0

To ensure the reliability (2)

● TRUNCATE statements are blocked for active “rollbackable” groups
● “event triggers” block unintentional drops or some component changes 

(tables, sequences, functions...)
– 2 functions to deactivate/reactivate the lock-in
– emaj_disable_protection_by_event_triggers ()
– emaj_enable_protection_by_event_triggers ()



E
 –

 M
 a

 j

45 / 51

3.1.0

Impact of application triggers on E-Maj rollbacks

● Triggers of type BEFORE on a table belonging to a tables group
– Values really inserted into the database are recorded into the log
– The trigger needs to be disabled at E-Maj rollback

● Triggers of type AFTER updating a table belonging to the same tables group
– The trigger must be disabled at E-Maj rollback
– The rollback will reset both tables with the right content

● Triggers of type AFTER updating a table not belonging to the same tables group, 
or more complex triggers

– Study the impacts ! Just disabling the trigger may not be sufficient
● By default, application triggers are automatically disabled by E-Maj rollbacks
● A trigger may be left in its state at rollback time if it is registered with the 
emaj_ignore_app_trigger () function



E
 –

 M
 a

 j

46 / 51

3.1.0

To contribute to the security

● 2 NOLOGIN roles whose rigths may be granted:
– emaj_adm for the E-Maj administration
– emaj_viewer to just look at E-Maj objects (logs, marks, statistics)

● E-Maj objects are only created and handled by a super-user or a member 
of the emaj_adm role

● No other right has to be granted on E-Maj schemas, tables and functions
● Log triggers are created with the “SECURITY DEFINER” attribute
● No need to give additional rights to application tables or sequences



E
 –

 M
 a

 j

47 / 51

3.1.0

Performances

● Log overhead
– Highly depends on hardware and on the application read/write SQL ratio
– Typically a few % on elapse times
– But can be much higher on pure data loading

● Rollback duration
– Of course depends on the number of updates to cancel
– Also highly depends on 

● The hardware configuration
● Tables structure (row sizes, indexes, foreign keys, other 

constraints…)
– But almost always shorter than a logical restore



E
 –

 M
 a

 j

48 / 51

3.1.0

Emaj_web

● For administrators 
and users

● Shows all E-Maj 
objects (groups, 
marks...) and their 
attributes

● Allows (almost) all 
possible actions on 
E-Maj objects

Tables groups list



E
 –

 M
 a

 j

49 / 51

3.1.0

Emaj_web : tables group details



E
 –

 M
 a

 j

50 / 51

3.1.0

Current limitations

● Since E-Maj 3.0, the minimum required PostgreSQL version is 9.5
● Every application table belonging to a rollbackable group needs a 
PRIMARY KEY

● Table TRUNCATE statements cannot be canceled
● DDL statement cannot be managed by E-Maj



E
 –

 M
 a

 j

51 / 51

3.1.0

To conclude...

● Many more informations in the documentation and in the README 
et CHANGES files

● Many thanks for their help to :
– Andreas Scherbaum, Jean-Paul Argudo and the Dalibo team, CNAF DBA, 

Don Levine (for the english translation)
– People who already contacted me for comments, requests...

● Feel free to give any feedback through github or email 
(phb.emaj@free.fr)


	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

