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a PostgreSQL extension



From the idea of logical restore to 
… E-Maj
● Original idea = table_log contrib from Andreas 

Scherbaum
– 1 trigger per table to log all updates into a log table
– 1 function to cancel the updates

● Development of plpgsql 
functions extending the 
concept to build a 
solution usable on 
production

E-Maj

French acronym for 
« Enregistrement des Mises A Jour »,

i.e. Updates recording



E-Maj objectives

● Record application tables updates in order to: 
– Look at them (audit)
– Rollback them if needed

● Open Source Extension available on 
pgFoundry.org
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E-Maj: general principles
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E-Maj Requirements

● Reliability:
– Absolute integrity of databases after « rollbacks »
– Manage all usual objects (tables, séquences, contraintes,...)

● Ease of use for all users (DBAs, production people, 
application developers,...):

– Easy to understand and use
– Easy to automatize (« scriptable »)

● Performance:
– Limited overhead of the log (a few percents)
– Acceptable « rollback » duration

● Maintainability
● Security



E-Maj Concepts

● Tables group = a set of tables and/or sequences belonging 
to one or several schemas and having the same life cycle ; 
it's the object on which « marks » and « rollbacks » are 
applied ; it's the only object manipulated by users

● Mark = stable point in the life of a tables group, whose 
state can be set back ; is identified by a name

● Rollback = positionning of a tables group at its state when 
a mark was previously set



E-Maj Installation
● Cluster preliminary operation:

– CREATE TABLESPACE tspemaj LOCATION...
● Database preliminary operation:

– CREATE LANGUAGE plpgsql; (pg < 9.0)
● Then, as super-user:

– \i .../sql/emaj.sql or
– CREATE EXTENSION emaj; (pg 9.1+)

● The installation in a database adds:
– 1 schema 'emaj' with 61 functions, 10 technical tables 

and 2 types
– 2 roles for E-Maj management



E-Maj Initialisation
● 1) Populate emaj_group_def table to define groups and 

the tables/sequences they contain
● 2) For each group :

– SELECT emaj_create_group (group, 
is_rollbackable);

– Creates for each application table:
● 1 log table into schema emaj and tablespace tspemaj
● 1 trigger + 1 function to log table updates
● 1 function to « rollback » the updates on the 

application table (if rollbackable group)
– SELECT emaj_drop_group (group) 

 … drops a previously created group



E-Maj: Main functions
● emaj_start_group (group, mark)

– Activates log triggers and set an initial mark
● emaj_set_mark_group (group, mark)

– Sets an intermediate mark
● emaj_rollback_group (group, mark)

– Rollbacks tables and sequences of the group to their 
state at mark set

● emaj_logged_rollback_group (group, mark)
– Similar as emaj_rollback_group function but the 

rollback can be later canceled (rollbacked!)
● emaj_stop_group (group)

– Deactivates log triggers => rollback no longer possible



E-Maj: tables group life cycle
« unknown »

Create group

« idle »

Drop group

« logging »

Start groupStop group

Rollback group Set a mark



A typical E-Maj sequence ...

Log tables

proc. 1 proc. 2 proc. 3

start_group set_mark rollback_group
stop_group

set_mark

Appl.tables

Abort 
!



E-Maj possible usages

● Provides a rollback capability on batch processing without 
being obliged to either pgdump/restore tables or physicaly 
save and restore the entire cluster disk space

● All the more interesting as tables are large, with relatively 
limited updates

● Can also help application tests in providing a way to 
quickly rollback updates issued by a run and repeat those 
tests



Marks usage strategies (1/2)
● « mono-mark » usage to minimise disk space use

– repeat
● start_group (group, mark)
● processing #i
● stop_group (group)

● « multi-marks » usage for more flexibility in rollbacks
– start_group (group, mark1)
– repeat

● processing #i
● emaj_set_mark (group, mark #i+1)

– stop_group (group)



Marks usage strategies (2/2)
● Permanent logging and regular cancellation of oldest 

marks (« rolling log »)
– repeat

● processing #i
● emaj_set_mark (group, mark #i+1)
● emaj_delete_before_mark (group, mark #j)

     (warning, marks deletion may be costly)



Multi-groups functions
● emaj_start_groups (groups array, mark)

– Starts several groups at once and set a common mark
● emaj_set_mark_groups (groups array, mark)

– Sets a common mark for several groups
● emaj_rollback_groups (groups array, mark)

– Rollbacks several groups at once (i.e. in a single 
transaction) to a common mark

● emaj_logged_rollback_groups (groups array, mark)
– Similar as emaj_rollback_groups function but the rollback 

can be later canceled
● emaj_stop_groups (groups array)

– Stops several groups at once



Statistic functions

● emaj_log_stat_group  (group, begin_mark, end_mark)
– Quickly provides per table statistics about the number 

of rows in log tables between 2 marks or between a 
mark and the current situation

● emaj_detailed_log_stat_group  (group, begin_mark, 
end_mark)

– Delivers statistics from log tables on updates between 
2 marks, per table, per statement type (INSERT / 
UPDATE / DELETE) and per ROLE that initiated 
the updates



Other secondary functions (1/3)
● emaj_estimate_rollback_duration (group, mark)

– Estimates the time needed to rollback a group to a 
mark

● emaj_rollback_and_stop_group (group, mark)
– Chains the calls to rollback_group and stop_group 

functions - this allows to differ the rows deletion 
from log tables in order to get quicker rollback

● emaj_comment_group (group, comment)
– Sets, modifies or deletes a comment on a group

● emaj_reset_group (group)
– Purges log tables before the next emaj_start_group call 

(and reclaims disk space)



Other secondary functions (2/3)
● emaj_comment_mark_group (group, mark)

– Sets, modifies or deletes a comment on a mark
● emaj_find_previous_mark_group (group, timestamp)

– Retrieves the mark name immediately preceeding a 
point in time

● emaj_delete_mark_group (group, mark)
– Suppress a mark

● emaj_delete_before_mark_group (group, mark)
– Suppress all marks preceeding the supplied mark

● emaj_rename_mark_group (group, old mark, new mark)
– Renames a mark



Other secondary functions (3/3)
● emaj_force_drop_group (group)

– Forces the suppression of a group (in case 
emaj_drop_group function is not usable)

● emaj_verify_group (group)
– Verifies the E-Maj internal consistency of a group

● emaj_snap_group (group, directory)
– Snaps all tables and sequences of a group on individual 

files located on a directory
– Rows are ordered by primary keys
– Snap files can be diff with a reference to be sure the 

log and rollback operations worked properly



Parallel rollback client

● A php module performs parallel restore
● Acts as a client for the database
● Automaticaly spreads the group(s) to rollback into a given 

number of sessions
● Performs the parallel rollback in a unique transaction (2PC)

( max_prepared_transaction >= #sessions) 
● emajParallelRollback.php -d <database> -h <host> -p <port> 

-U <user> -W <password> -g <group_name or groups_list> 
-m <mark> -s <#sessions> [-l]

● Other options: --help, -v, --version
● Needs php with the PostgreSQL extension



Reliability

● Many checks, in particular at start_group and 
rollback_group time

– Do all listed tables and sequences exists ?
– Do the triggers and log tables exist with the right columns 

and types ?
– Are we sure the table stuctures have not changed between 

emaj_start_group and eamj_rollback_group functions call
● Strong locks on tables at start_group, set_mark_group and 

rollback_group times to be sure no transaction are 
currently accessing/updating application tables

● Rollback all tables et sequences in a single transaction



Security

● 2 roles that can be granted :
– emaj_adm for ... emaj administrators
– emaj_viewer to just be able to look at log tables 

● E-Maj objects are only created by a super-user or a 
member of emaj_adm 

● No other right is granted on the emaj schema and all its 
related tables and functions

● Log triggers are created as « SECURITY DEFINER »
– No need to grant extra rights on application tables

● Protection against SQL injections



Performances

● Log overhead
– Highly depends on hardware and sql read/write 

ratio
– Typically a few % on elapse times

● Rollback duration
– Highly depends on hardware and database 

structure (row sizes, indexes, constraints...)
– Measured on recent hardware with a real 

application: about 10Gb of log in 1 hour



PhpPgAdmin plugin

● A plugin for phpPgAdmin 5 is available to help 
administrator or viewer

– Shows all E-Maj objects and their attributes
– Allows all possible actions on E-Maj objects

● Ask for it, if you want to try...



Current limits

● PostgreSQL version : from 8.2 up to 9.1
● Every application table belonging to a rollbackable group 

needs a PRIMARY KEY
● Schema name length + application table name length <= 

52 characters
● DDL or TRUNCATE operations cannot be managed by 

E-Maj.
– TRUNCATEs are just blocked when pg version > 8.3



To conclude...

● More information in the documentation + 
README and CHANGES files

● Many thanks for their help to :
– Andreas Scherbaum
– Jean-Paul Argudo and Dalibo team
– CNAF DBAs team
– People who already contacted me for comments, 

requests...
● Feel free to email: phb<dot>emaj<at>free<dot>fr
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