
E-Maj 0.10.0
-

a PostgreSQL extension

From the idea of logical restore to
… E-Maj
● Original idea = table_log contrib from Andreas

Scherbaum
– 1 trigger per table to log all updates into a log table
– 1 function to cancel the updates

● Development of plpgsql
functions extending the
concept to build a
solution usable on
production

E-Maj

French acronym for
« Enregistrement des Mises A Jour »,

i.e. Updates recording

E-Maj objectives

● Record application tables updates in order to:
– Look at them (audit)
– Rollback them if needed

● Open Source Extension available on
pgFoundry.org

The basics of updates logging

SQL

Log trigger and
function

Rollback
function

Insert
Update
Delete

Delete
Update
Insert

InsertApplication
tables

Log
tables

E-Maj: general principles

SQL

Log trigger and
function

Rollback
function

Insert
Update
Delete

Delete
Update
Insert

InsertApplication
tables

Log
tables

emaj schema

Tables group

emaj_viewer
role

emaj_adm
role

E-Maj Requirements

● Reliability:
– Absolute integrity of databases after « rollbacks »
– Manage all usual objects (tables, séquences, contraintes,...)

● Ease of use for all users (DBAs, production people,
application developers,...):

– Easy to understand and use
– Easy to automatize (« scriptable »)

● Performance:
– Limited overhead of the log (a few percents)
– Acceptable « rollback » duration

● Maintainability
● Security

E-Maj Concepts

● Tables group = a set of tables and/or sequences belonging
to one or several schemas and having the same life cycle ;
it's the object on which « marks » and « rollbacks » are
applied ; it's the only object manipulated by users

● Mark = stable point in the life of a tables group, whose
state can be set back ; is identified by a name

● Rollback = positionning of a tables group at its state when
a mark was previously set

E-Maj Installation
● Cluster preliminary operation:

– CREATE TABLESPACE tspemaj LOCATION...
● Database preliminary operation:

– CREATE LANGUAGE plpgsql; (pg < 9.0)
● Then, as super-user:

– \i .../sql/emaj.sql or
– CREATE EXTENSION emaj; (pg 9.1+)

● The installation in a database adds:
– 1 schema 'emaj' with 61 functions, 10 technical tables

and 2 types
– 2 roles for E-Maj management

E-Maj Initialisation
● 1) Populate emaj_group_def table to define groups and

the tables/sequences they contain
● 2) For each group :

– SELECT emaj_create_group (group,
is_rollbackable);

– Creates for each application table:
● 1 log table into schema emaj and tablespace tspemaj
● 1 trigger + 1 function to log table updates
● 1 function to « rollback » the updates on the

application table (if rollbackable group)
– SELECT emaj_drop_group (group)

 … drops a previously created group

E-Maj: Main functions
● emaj_start_group (group, mark)

– Activates log triggers and set an initial mark
● emaj_set_mark_group (group, mark)

– Sets an intermediate mark
● emaj_rollback_group (group, mark)

– Rollbacks tables and sequences of the group to their
state at mark set

● emaj_logged_rollback_group (group, mark)
– Similar as emaj_rollback_group function but the

rollback can be later canceled (rollbacked!)
● emaj_stop_group (group)

– Deactivates log triggers => rollback no longer possible

E-Maj: tables group life cycle
« unknown »

Create group

« idle »

Drop group

« logging »

Start groupStop group

Rollback group Set a mark

A typical E-Maj sequence ...

Log tables

proc. 1 proc. 2 proc. 3

start_group set_mark rollback_group
stop_group

set_mark

Appl.tables

Abort
!

E-Maj possible usages

● Provides a rollback capability on batch processing without
being obliged to either pgdump/restore tables or physicaly
save and restore the entire cluster disk space

● All the more interesting as tables are large, with relatively
limited updates

● Can also help application tests in providing a way to
quickly rollback updates issued by a run and repeat those
tests

Marks usage strategies (1/2)
● « mono-mark » usage to minimise disk space use

– repeat
● start_group (group, mark)
● processing #i
● stop_group (group)

● « multi-marks » usage for more flexibility in rollbacks
– start_group (group, mark1)
– repeat

● processing #i
● emaj_set_mark (group, mark #i+1)

– stop_group (group)

Marks usage strategies (2/2)
● Permanent logging and regular cancellation of oldest

marks (« rolling log »)
– repeat

● processing #i
● emaj_set_mark (group, mark #i+1)
● emaj_delete_before_mark (group, mark #j)

 (warning, marks deletion may be costly)

Multi-groups functions
● emaj_start_groups (groups array, mark)

– Starts several groups at once and set a common mark
● emaj_set_mark_groups (groups array, mark)

– Sets a common mark for several groups
● emaj_rollback_groups (groups array, mark)

– Rollbacks several groups at once (i.e. in a single
transaction) to a common mark

● emaj_logged_rollback_groups (groups array, mark)
– Similar as emaj_rollback_groups function but the rollback

can be later canceled
● emaj_stop_groups (groups array)

– Stops several groups at once

Statistic functions

● emaj_log_stat_group (group, begin_mark, end_mark)
– Quickly provides per table statistics about the number

of rows in log tables between 2 marks or between a
mark and the current situation

● emaj_detailed_log_stat_group (group, begin_mark,
end_mark)

– Delivers statistics from log tables on updates between
2 marks, per table, per statement type (INSERT /
UPDATE / DELETE) and per ROLE that initiated
the updates

Other secondary functions (1/3)
● emaj_estimate_rollback_duration (group, mark)

– Estimates the time needed to rollback a group to a
mark

● emaj_rollback_and_stop_group (group, mark)
– Chains the calls to rollback_group and stop_group

functions - this allows to differ the rows deletion
from log tables in order to get quicker rollback

● emaj_comment_group (group, comment)
– Sets, modifies or deletes a comment on a group

● emaj_reset_group (group)
– Purges log tables before the next emaj_start_group call

(and reclaims disk space)

Other secondary functions (2/3)
● emaj_comment_mark_group (group, mark)

– Sets, modifies or deletes a comment on a mark
● emaj_find_previous_mark_group (group, timestamp)

– Retrieves the mark name immediately preceeding a
point in time

● emaj_delete_mark_group (group, mark)
– Suppress a mark

● emaj_delete_before_mark_group (group, mark)
– Suppress all marks preceeding the supplied mark

● emaj_rename_mark_group (group, old mark, new mark)
– Renames a mark

Other secondary functions (3/3)
● emaj_force_drop_group (group)

– Forces the suppression of a group (in case
emaj_drop_group function is not usable)

● emaj_verify_group (group)
– Verifies the E-Maj internal consistency of a group

● emaj_snap_group (group, directory)
– Snaps all tables and sequences of a group on individual

files located on a directory
– Rows are ordered by primary keys
– Snap files can be diff with a reference to be sure the

log and rollback operations worked properly

Parallel rollback client

● A php module performs parallel restore
● Acts as a client for the database
● Automaticaly spreads the group(s) to rollback into a given

number of sessions
● Performs the parallel rollback in a unique transaction (2PC)

(max_prepared_transaction >= #sessions)
● emajParallelRollback.php -d <database> -h <host> -p <port>

-U <user> -W <password> -g <group_name or groups_list>
-m <mark> -s <#sessions> [-l]

● Other options: --help, -v, --version
● Needs php with the PostgreSQL extension

Reliability

● Many checks, in particular at start_group and
rollback_group time

– Do all listed tables and sequences exists ?
– Do the triggers and log tables exist with the right columns

and types ?
– Are we sure the table stuctures have not changed between

emaj_start_group and eamj_rollback_group functions call
● Strong locks on tables at start_group, set_mark_group and

rollback_group times to be sure no transaction are
currently accessing/updating application tables

● Rollback all tables et sequences in a single transaction

Security

● 2 roles that can be granted :
– emaj_adm for ... emaj administrators
– emaj_viewer to just be able to look at log tables

● E-Maj objects are only created by a super-user or a
member of emaj_adm

● No other right is granted on the emaj schema and all its
related tables and functions

● Log triggers are created as « SECURITY DEFINER »
– No need to grant extra rights on application tables

● Protection against SQL injections

Performances

● Log overhead
– Highly depends on hardware and sql read/write

ratio
– Typically a few % on elapse times

● Rollback duration
– Highly depends on hardware and database

structure (row sizes, indexes, constraints...)
– Measured on recent hardware with a real

application: about 10Gb of log in 1 hour

PhpPgAdmin plugin

● A plugin for phpPgAdmin 5 is available to help
administrator or viewer

– Shows all E-Maj objects and their attributes
– Allows all possible actions on E-Maj objects

● Ask for it, if you want to try...

Current limits

● PostgreSQL version : from 8.2 up to 9.1
● Every application table belonging to a rollbackable group

needs a PRIMARY KEY
● Schema name length + application table name length <=

52 characters
● DDL or TRUNCATE operations cannot be managed by

E-Maj.
– TRUNCATEs are just blocked when pg version > 8.3

To conclude...

● More information in the documentation +
README and CHANGES files

● Many thanks for their help to :
– Andreas Scherbaum
– Jean-Paul Argudo and Dalibo team
– CNAF DBAs team
– People who already contacted me for comments,

requests...
● Feel free to email: phb<dot>emaj<at>free<dot>fr

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27

