-- -- MULTI_DISTRIBUTED_TRANSACTION_ID -- -- Unit tests for distributed transaction id functionality -- -- get the current transaction id, which should be uninitialized -- note that we skip printing the databaseId, which might change -- per run -- set timezone to a specific value to prevent -- different values on different servers SET TIME ZONE 'PST8PDT'; -- should return uninitialized values if not in a transaction SELECT initiator_node_identifier, transaction_number, transaction_stamp FROM get_current_transaction_id(); BEGIN; -- we should still see the uninitialized values SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- now assign a value SELECT assign_distributed_transaction_id(50, 50, '2016-01-01 00:00:00+0'); -- see the assigned value SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- a backend cannot be assigned another tx id if already assigned SELECT assign_distributed_transaction_id(51, 51, '2017-01-01 00:00:00+0'); ROLLBACK; -- since the transaction finished, we should see the uninitialized values SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- also see that ROLLBACK (i.e., failures in the transaction) clears the shared memory BEGIN; -- we should still see the uninitialized values SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- now assign a value SELECT assign_distributed_transaction_id(52, 52, '2015-01-01 00:00:00+0'); SELECT 5 / 0; COMMIT; -- since the transaction errored, we should see the uninitialized values again SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- we should also see that a new connection means an uninitialized transaction id BEGIN; SELECT assign_distributed_transaction_id(52, 52, '2015-01-01 00:00:00+0'); SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); \c - - :master_host :master_port SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- now show that PREPARE resets the distributed transaction id BEGIN; SELECT assign_distributed_transaction_id(120, 120, '2015-01-01 00:00:00+0'); SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); PREPARE TRANSACTION 'dist_xact_id_test'; -- after the prepare we should see that transaction id is cleared SELECT initiator_node_identifier, transaction_number, transaction_stamp, (process_id = pg_backend_pid()) FROM get_current_transaction_id(); -- cleanup the transaction ROLLBACK PREPARED 'dist_xact_id_test'; -- set back to the original zone SET TIME ZONE DEFAULT; -- parallel safe wrapper for getting the current transaction number CREATE OR REPLACE FUNCTION parallel_worker_transaction_id_test() RETURNS bigint STRICT VOLATILE PARALLEL SAFE AS $$ SELECT transaction_number FROM get_current_transaction_id(); $$ LANGUAGE sql; -- force the transaction ID to be used in a parallel plan BEGIN; SELECT assign_distributed_transaction_id(50, 1234567, '2016-01-01 00:00:00+0'); -- create >8MB table CREATE UNLOGGED TABLE parallel_id_test AS SELECT s AS a, s AS b, s AS c, s AS d, s AS e, s AS f, s AS g, s AS h FROM generate_series(1,150000) s; INSERT INTO parallel_id_test VALUES (1234567), (1234567), (1234568), (1234568); ANALYSE parallel_id_test; SET LOCAL max_parallel_workers_per_gather TO 2; SET LOCAL parallel_tuple_cost TO 0; SET LOCAL parallel_setup_cost TO 0; EXPLAIN (COSTS OFF) SELECT a FROM parallel_id_test WHERE a = parallel_worker_transaction_id_test(); SELECT a FROM parallel_id_test WHERE a = parallel_worker_transaction_id_test(); ROLLBACK;