CREATE SCHEMA query_single_shard_table; SET search_path TO query_single_shard_table; SET citus.next_shard_id TO 1620000; SET citus.shard_count TO 32; SET citus.shard_replication_factor TO 1; SET client_min_messages TO NOTICE; CREATE TABLE nullkey_c1_t1(a int, b int); CREATE TABLE nullkey_c1_t2(a int, b int); SELECT create_distributed_table('nullkey_c1_t1', null, colocate_with=>'none'); SELECT create_distributed_table('nullkey_c1_t2', null, colocate_with=>'nullkey_c1_t1'); INSERT INTO nullkey_c1_t1 SELECT i, i FROM generate_series(1, 8) i; INSERT INTO nullkey_c1_t2 SELECT i, i FROM generate_series(2, 7) i; CREATE TABLE nullkey_c2_t1(a int, b int); CREATE TABLE nullkey_c2_t2(a int, b int); SELECT create_distributed_table('nullkey_c2_t1', null, colocate_with=>'none'); SELECT create_distributed_table('nullkey_c2_t2', null, colocate_with=>'nullkey_c2_t1', distribution_type=>null); INSERT INTO nullkey_c2_t1 SELECT i, i FROM generate_series(2, 7) i; INSERT INTO nullkey_c2_t2 SELECT i, i FROM generate_series(1, 8) i; CREATE TABLE nullkey_c3_t1(a int, b int); SELECT create_distributed_table('nullkey_c3_t1', null, colocate_with=>'none'); INSERT INTO nullkey_c3_t1 SELECT i, i FROM generate_series(1, 8) i; RESET citus.shard_replication_factor; CREATE TABLE reference_table(a int, b int); SELECT create_reference_table('reference_table'); INSERT INTO reference_table SELECT i, i FROM generate_series(0, 5) i; CREATE TABLE distributed_table(a int, b int); SELECT create_distributed_table('distributed_table', 'a'); INSERT INTO distributed_table SELECT i, i FROM generate_series(3, 8) i; CREATE TABLE citus_local_table(a int, b int); SELECT citus_add_local_table_to_metadata('citus_local_table'); INSERT INTO citus_local_table SELECT i, i FROM generate_series(0, 10) i; CREATE TABLE postgres_local_table(a int, b int); INSERT INTO postgres_local_table SELECT i, i FROM generate_series(5, 10) i; CREATE TABLE articles_hash ( id bigint NOT NULL, author_id bigint NOT NULL, title varchar(20) NOT NULL, word_count integer ); INSERT INTO articles_hash VALUES ( 4, 4, 'altdorfer', 14551),( 5, 5, 'aruru', 11389), (13, 3, 'aseyev', 2255),(15, 5, 'adversa', 3164), (18, 8, 'assembly', 911),(19, 9, 'aubergiste', 4981), (28, 8, 'aerophyte', 5454),(29, 9, 'amateur', 9524), (42, 2, 'ausable', 15885),(43, 3, 'affixal', 12723), (49, 9, 'anyone', 2681),(50, 10, 'anjanette', 19519); SET citus.shard_replication_factor TO 1; SELECT create_distributed_table('articles_hash', null, colocate_with=>'none'); CREATE TABLE raw_events_first (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint, UNIQUE(user_id, value_1)); SELECT create_distributed_table('raw_events_first', null, colocate_with=>'none', distribution_type=>null); CREATE TABLE raw_events_second (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint, UNIQUE(user_id, value_1)); SELECT create_distributed_table('raw_events_second', null, colocate_with=>'raw_events_first', distribution_type=>null); CREATE TABLE agg_events (user_id int, value_1_agg int, value_2_agg int, value_3_agg float, value_4_agg bigint, agg_time timestamp, UNIQUE(user_id, value_1_agg)); SELECT create_distributed_table('agg_events', null, colocate_with=>'raw_events_first', distribution_type=>null); CREATE TABLE users_ref_table (user_id int); SELECT create_reference_table('users_ref_table'); INSERT INTO raw_events_first VALUES (1, '1970-01-01', 10, 100, 1000.1, 10000), (3, '1971-01-01', 30, 300, 3000.1, 30000), (5, '1972-01-01', 50, 500, 5000.1, 50000), (2, '1973-01-01', 20, 200, 2000.1, 20000), (4, '1974-01-01', 40, 400, 4000.1, 40000), (6, '1975-01-01', 60, 600, 6000.1, 60000); CREATE TABLE modify_fast_path(key int, value_1 int, value_2 text); SELECT create_distributed_table('modify_fast_path', null); CREATE TABLE modify_fast_path_reference(key int, value_1 int, value_2 text); SELECT create_reference_table('modify_fast_path_reference'); CREATE TABLE bigserial_test (x int, y int, z bigserial); SELECT create_distributed_table('bigserial_test', null); RESET citus.shard_replication_factor; CREATE TABLE append_table (text_col text, a int); SELECT create_distributed_table('append_table', 'a', 'append'); SELECT master_create_empty_shard('append_table') AS shardid1 \gset SELECT master_create_empty_shard('append_table') AS shardid2 \gset SELECT master_create_empty_shard('append_table') AS shardid3 \gset COPY append_table (text_col, a) FROM STDIN WITH (format 'csv', append_to_shard :shardid1); abc,234 bcd,123 bcd,234 cde,345 def,456 efg,234 \. COPY append_table (text_col, a) FROM STDIN WITH (format 'csv', append_to_shard :shardid2); abc,123 efg,123 hij,123 hij,234 ijk,1 jkl,0 \. CREATE TABLE range_table(a int, b int); SELECT create_distributed_table('range_table', 'a', 'range'); CALL public.create_range_partitioned_shards('range_table', '{"0","25"}','{"24","49"}'); INSERT INTO range_table VALUES (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 50); \set users_table_data_file :abs_srcdir '/data/users_table.data' \set events_table_data_file :abs_srcdir '/data/events_table.data' SET citus.shard_replication_factor TO 1; CREATE TABLE users_table (user_id int, time timestamp, value_1 int, value_2 int, value_3 float, value_4 bigint); SELECT create_distributed_table('users_table', null, colocate_with=>'none'); \set client_side_copy_command '\\copy users_table FROM ' :'users_table_data_file' ' WITH CSV;' :client_side_copy_command CREATE TABLE non_colocated_users_table (id int, value int); SELECT create_distributed_table('non_colocated_users_table', null, colocate_with => 'none'); INSERT INTO non_colocated_users_table (id, value) VALUES(1, 2),(2, 3),(3,4); CREATE TABLE colocated_events_table (user_id int, time timestamp, event_type int, value_2 int, value_3 float, value_4 bigint); SELECT create_distributed_table('colocated_events_table', null, colocate_with=>'users_table'); \set client_side_copy_command '\\copy colocated_events_table FROM ' :'events_table_data_file' ' WITH CSV;' :client_side_copy_command CREATE TABLE non_colocated_events_table (user_id int, time timestamp, event_type int, value_2 int, value_3 float, value_4 bigint); SELECT create_distributed_table('non_colocated_events_table', null, colocate_with=>'non_colocated_users_table'); \set client_side_copy_command '\\copy non_colocated_events_table FROM ' :'events_table_data_file' ' WITH CSV;' :client_side_copy_command CREATE TABLE users_table_local AS SELECT * FROM users_table; CREATE TABLE colocated_users_table (id int, value int); SELECT create_distributed_table('colocated_users_table', null, colocate_with => 'users_table'); INSERT INTO colocated_users_table (id, value) VALUES(1, 2),(2, 3),(3,4); CREATE TABLE users_reference_table (like users_table including all); SELECT create_reference_table('users_reference_table'); CREATE TABLE events_reference_table (like colocated_events_table including all); SELECT create_reference_table('events_reference_table'); CREATE FUNCTION func() RETURNS TABLE (id int, value int) AS $$ SELECT 1, 2 $$ LANGUAGE SQL; SET client_min_messages to DEBUG2; -- simple insert INSERT INTO nullkey_c1_t1 VALUES (1,2), (2,2), (3,4); INSERT INTO nullkey_c1_t2 VALUES (1,3), (3,4), (5,1), (6,2); INSERT INTO nullkey_c2_t1 VALUES (1,0), (2,5), (4,3), (5,2); INSERT INTO nullkey_c2_t2 VALUES (2,4), (3,2), (5,2), (7,4); -- simple select SELECT * FROM nullkey_c1_t1 ORDER BY 1,2; -- for update / share SELECT * FROM modify_fast_path WHERE key = 1 FOR UPDATE; SELECT * FROM modify_fast_path WHERE key = 1 FOR SHARE; SELECT * FROM modify_fast_path FOR UPDATE; SELECT * FROM modify_fast_path FOR SHARE; -- cartesian product with different table types -- with other table types SELECT COUNT(*) FROM distributed_table d1, nullkey_c1_t1; SELECT COUNT(*) FROM reference_table d1, nullkey_c1_t1; SELECT COUNT(*) FROM citus_local_table d1, nullkey_c1_t1; SELECT COUNT(*) FROM postgres_local_table d1, nullkey_c1_t1; -- with a colocated single-shard table SELECT COUNT(*) FROM nullkey_c1_t1 d1, nullkey_c1_t2; -- with a non-colocated single-shard table SELECT COUNT(*) FROM nullkey_c1_t1 d1, nullkey_c2_t1; -- First, show that nullkey_c1_t1 and nullkey_c3_t1 are not colocated. SELECT (SELECT colocationid FROM pg_dist_partition WHERE logicalrelid = 'query_single_shard_table.nullkey_c1_t1'::regclass) != (SELECT colocationid FROM pg_dist_partition WHERE logicalrelid = 'query_single_shard_table.nullkey_c3_t1'::regclass); -- Now verify that we can join them via router planner because it doesn't care -- about whether two tables are colocated or not but physical location of shards -- when citus.enable_non_colocated_router_query_pushdown is set to on. SET citus.enable_non_colocated_router_query_pushdown TO ON; SELECT COUNT(*) FROM nullkey_c1_t1 JOIN nullkey_c3_t1 USING(a); SET citus.enable_non_colocated_router_query_pushdown TO OFF; SET citus.enable_repartition_joins TO ON; SET client_min_messages TO DEBUG1; SELECT COUNT(*) FROM nullkey_c1_t1 JOIN nullkey_c3_t1 USING(a); SET client_min_messages TO DEBUG2; SET citus.enable_repartition_joins TO OFF; RESET citus.enable_non_colocated_router_query_pushdown; -- colocated join between single-shard tables SELECT COUNT(*) FROM nullkey_c1_t1 JOIN nullkey_c1_t2 USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN nullkey_c1_t2 USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN nullkey_c1_t2 USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT * FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE EXISTS ( SELECT * FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b IN ( SELECT b+1 FROM nullkey_c1_t2 t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b NOT IN ( SELECT a FROM nullkey_c1_t2 t2 WHERE t2.b > t1.a ); -- non-colocated inner joins between single-shard tables SET client_min_messages to DEBUG1; SET citus.enable_repartition_joins TO ON; SELECT * FROM nullkey_c1_t1 JOIN nullkey_c2_t1 USING(a) ORDER BY 1,2,3; SELECT * FROM (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 JOIN nullkey_c2_t1 USING(a) ORDER BY 1,2,3; SELECT * FROM nullkey_c2_t1 JOIN (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 USING(a) ORDER BY 1,2,3; SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a ) q USING(a); SET citus.enable_repartition_joins TO OFF; SET client_min_messages to DEBUG2; -- non-colocated outer joins between single-shard tables SELECT * FROM nullkey_c1_t1 LEFT JOIN nullkey_c2_t2 USING(a) ORDER BY 1,2,3 LIMIT 4; SELECT * FROM nullkey_c1_t1 FULL JOIN nullkey_c2_t2 USING(a) ORDER BY 1,2,3 LIMIT 4; SELECT * FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a ) q USING(a) ORDER BY 1,2,3 OFFSET 3 LIMIT 4; SELECT COUNT(*) FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE EXISTS ( SELECT * FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b IN ( SELECT b+1 FROM nullkey_c2_t2 t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b NOT IN ( SELECT a FROM nullkey_c2_t2 t2 WHERE t2.b > t1.a ); -- join with a reference table SELECT COUNT(*) FROM nullkey_c1_t1, reference_table WHERE nullkey_c1_t1.a = reference_table.a; WITH cte_1 AS (SELECT * FROM nullkey_c1_t1, reference_table WHERE nullkey_c1_t1.a = reference_table.a ORDER BY 1,2,3,4 FOR UPDATE) SELECT COUNT(*) FROM cte_1; -- join with postgres / citus local tables SELECT * FROM nullkey_c1_t1 JOIN postgres_local_table USING(a) ORDER BY 1,2,3; SELECT * FROM nullkey_c1_t1 JOIN citus_local_table USING(a) ORDER BY 1,2,3; SET citus.local_table_join_policy TO 'prefer-distributed'; SELECT * FROM nullkey_c1_t1 JOIN citus_local_table USING(a) ORDER BY 1,2,3; RESET citus.local_table_join_policy; -- join with a distributed table SET citus.enable_repartition_joins TO ON; SET client_min_messages TO DEBUG1; SELECT * FROM distributed_table d1 JOIN nullkey_c1_t1 USING(a) ORDER BY 1,2,3; SELECT * FROM (SELECT * FROM distributed_table) d1 JOIN nullkey_c1_t1 USING(a) ORDER BY 1,2,3; SELECT * FROM nullkey_c1_t1 JOIN (SELECT * FROM distributed_table) d1 USING(a) ORDER BY 1,2,3; SELECT * FROM distributed_table d1 JOIN (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 USING(a) ORDER BY 1,2,3; SELECT * FROM (SELECT * FROM nullkey_c1_t1) nullkey_c1_t1 JOIN distributed_table d1 USING(a) ORDER BY 1,2,3; -- test joins with non-colocated distributed tables, by using subqueries SELECT * FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM distributed_table) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM (SELECT * FROM nullkey_c1_t1) t1 JOIN nullkey_c2_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM distributed_table t1 JOIN (SELECT * FROM nullkey_c1_t1) t2 USING (a) JOIN (SELECT b as a FROM distributed_table) t3 USING (a) ORDER BY 1,2,3 LIMIT 1; SELECT * FROM (SELECT * FROM nullkey_c2_t1) t1 JOIN nullkey_c1_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c2_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM distributed_table) t2 USING (a) JOIN (SELECT * FROM distributed_table) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM (SELECT * FROM nullkey_c1_t1) t1 JOIN nullkey_c2_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c2_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM distributed_table t1 JOIN (SELECT * FROM nullkey_c1_t1) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM (SELECT * FROM nullkey_c2_t1) t1 JOIN nullkey_c1_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM nullkey_c1_t1) t2 USING (a) JOIN distributed_table t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM nullkey_c1_t1 t1 JOIN nullkey_c1_t1 t2 USING (a) JOIN nullkey_c2_t1 t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM (SELECT * FROM distributed_table) t1 JOIN distributed_table t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT * FROM (SELECT * FROM nullkey_c2_t1) t1 JOIN nullkey_c2_t1 t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t1) t3 USING (a) ORDER BY 1,2,3,4 LIMIT 1; SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT * FROM distributed_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT *, random() FROM distributed_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM distributed_table t1 JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); SET client_min_messages TO DEBUG2; SET citus.enable_repartition_joins TO OFF; -- outer joins with different table types SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN reference_table USING(a); SELECT COUNT(*) FROM reference_table LEFT JOIN nullkey_c1_t1 USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN citus_local_table USING(a); SELECT COUNT(*) FROM citus_local_table LEFT JOIN nullkey_c1_t1 USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 LEFT JOIN postgres_local_table USING(a); SELECT COUNT(*) FROM postgres_local_table LEFT JOIN nullkey_c1_t1 USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN citus_local_table USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN postgres_local_table USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 FULL JOIN reference_table USING(a); SET citus.enable_repartition_joins TO ON; SET client_min_messages TO DEBUG1; SELECT COUNT(*) FROM nullkey_c1_t1 JOIN append_table USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 JOIN range_table USING(a); SET client_min_messages TO DEBUG2; SET citus.enable_repartition_joins TO OFF; SET citus.enable_non_colocated_router_query_pushdown TO ON; SELECT COUNT(*) FROM nullkey_c1_t1 JOIN range_table USING(a) WHERE range_table.a = 20; SET citus.enable_non_colocated_router_query_pushdown TO OFF; SET citus.enable_repartition_joins TO ON; SET client_min_messages TO DEBUG1; SELECT COUNT(*) FROM nullkey_c1_t1 JOIN range_table USING(a) WHERE range_table.a = 20; SET client_min_messages TO DEBUG2; SET citus.enable_repartition_joins TO OFF; RESET citus.enable_non_colocated_router_query_pushdown; -- lateral / semi / anti joins with different table types -- with a reference table SELECT COUNT(*) FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM reference_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE EXISTS ( SELECT * FROM reference_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE NOT EXISTS ( SELECT * FROM reference_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b IN ( SELECT b+1 FROM reference_table t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b NOT IN ( SELECT a FROM reference_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT * FROM reference_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM reference_table t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM reference_table t1 WHERE EXISTS ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM reference_table t1 WHERE t1.b IN ( SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM reference_table t1 WHERE t1.b NOT IN ( SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM reference_table t1 JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); -- with a distributed table SELECT COUNT(*) FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM distributed_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE EXISTS ( SELECT * FROM distributed_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE NOT EXISTS ( SELECT * FROM distributed_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b IN ( SELECT b+1 FROM distributed_table t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b NOT IN ( SELECT a FROM distributed_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM distributed_table t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM distributed_table t1 WHERE EXISTS ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM distributed_table t1 WHERE t1.b IN ( SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM distributed_table t1 WHERE t1.b NOT IN ( SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); -- with postgres / citus local tables SELECT COUNT(*) FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE EXISTS ( SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE NOT EXISTS ( SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b IN ( SELECT b+1 FROM citus_local_table t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b NOT IN ( SELECT a FROM citus_local_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT * FROM citus_local_table t2 WHERE t2.b > t1.a ) q USING(a); -- The following and a few other tests in this file unnecessarily go through -- recursive planning. This is because we recursive plan distributed tables -- when they are referred in the inner side of an outer join, if the outer -- side is a recurring rel. In future, we can optimize that such that we -- can skip recursively planning the single-shard table because such a join -- wouldn't result in returning recurring tuples. -- -- And specifically for the tests that contains a sublink (as below), things -- get even more interesting. We try to recursively plan the single-shard -- table but we cannot do so due to the sublink. However, the final query -- can go through router planner and hence is supported. SELECT COUNT(*) FROM citus_local_table t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM postgres_local_table t1 LEFT JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM citus_local_table t1 WHERE EXISTS ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM citus_local_table t1 WHERE t1.b IN ( SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM citus_local_table t1 WHERE t1.b NOT IN ( SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM citus_local_table t1 JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 LEFT JOIN LATERAL ( SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE EXISTS ( SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE NOT EXISTS ( SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b IN ( SELECT b+1 FROM postgres_local_table t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 WHERE t1.b NOT IN ( SELECT a FROM postgres_local_table t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN LATERAL ( SELECT * FROM postgres_local_table t2 WHERE t2.b > t1.a ) q USING(a); SELECT COUNT(*) FROM postgres_local_table t1 WHERE EXISTS ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM postgres_local_table t1 WHERE t1.b IN ( SELECT b+1 FROM nullkey_c1_t1 t2 WHERE t2.b = t1.a ); SELECT COUNT(*) FROM postgres_local_table t1 WHERE t1.b NOT IN ( SELECT a FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ); SELECT COUNT(*) FROM postgres_local_table t1 JOIN LATERAL ( SELECT * FROM nullkey_c1_t1 t2 WHERE t2.b > t1.a ) q USING(a); -- insert .. select -- between two colocated single-shard tables -- The target list of "distributed statement"s that we send to workers -- differ(*) in Postgres versions < 15. For this reason, we temporarily -- disable debug messages here and run the EXPLAIN'ed version of the -- command. -- -- (*): < SELECT a, b > vs < SELECT table_name.a, table_name.b > SET client_min_messages TO WARNING; EXPLAIN (ANALYZE TRUE, TIMING FALSE, COSTS FALSE, SUMMARY FALSE, VERBOSE FALSE) INSERT INTO nullkey_c1_t1 SELECT * FROM nullkey_c1_t2; SET client_min_messages TO DEBUG2; -- between two non-colocated single-shard tables INSERT INTO nullkey_c1_t1 SELECT * FROM nullkey_c2_t1; -- between a single-shard table and a table of different type SET client_min_messages TO WARNING; EXPLAIN (ANALYZE TRUE, TIMING FALSE, COSTS FALSE, SUMMARY FALSE, VERBOSE FALSE) INSERT INTO nullkey_c1_t1 SELECT * FROM reference_table; SET client_min_messages TO DEBUG2; INSERT INTO nullkey_c1_t1 SELECT * FROM distributed_table; INSERT INTO nullkey_c1_t1 SELECT * FROM citus_local_table; INSERT INTO nullkey_c1_t1 SELECT * FROM postgres_local_table; INSERT INTO reference_table SELECT * FROM nullkey_c1_t1; INSERT INTO distributed_table SELECT * FROM nullkey_c1_t1; INSERT INTO citus_local_table SELECT * FROM nullkey_c1_t1; INSERT INTO postgres_local_table SELECT * FROM nullkey_c1_t1; -- test subquery SELECT count(*) FROM ( SELECT * FROM (SELECT * FROM nullkey_c1_t2) as subquery_inner ) AS subquery_top; -- test cte inlining WITH cte_nullkey_c1_t1 AS (SELECT * FROM nullkey_c1_t1), cte_postgres_local_table AS (SELECT * FROM postgres_local_table), cte_distributed_table AS (SELECT * FROM distributed_table) SELECT COUNT(*) FROM cte_distributed_table, cte_nullkey_c1_t1, cte_postgres_local_table WHERE cte_nullkey_c1_t1.a > 3 AND cte_distributed_table.a < 5; -- test recursive ctes WITH level_0 AS ( WITH level_1 AS ( WITH RECURSIVE level_2_recursive(x) AS ( VALUES (1) UNION ALL SELECT a + 1 FROM nullkey_c1_t1 JOIN level_2_recursive ON (a = x) WHERE a < 2 ) SELECT * FROM level_2_recursive RIGHT JOIN reference_table ON (level_2_recursive.x = reference_table.a) ) SELECT * FROM level_1 ) SELECT COUNT(*) FROM level_0; WITH level_0 AS ( WITH level_1 AS ( WITH RECURSIVE level_2_recursive(x) AS ( VALUES (1) UNION ALL SELECT a + 1 FROM nullkey_c1_t1 JOIN level_2_recursive ON (a = x) WHERE a < 100 ) SELECT * FROM level_2_recursive JOIN distributed_table ON (level_2_recursive.x = distributed_table.a) ) SELECT * FROM level_1 ) SELECT COUNT(*) FROM level_0; -- grouping set SELECT id, substring(title, 2, 1) AS subtitle, count(*) FROM articles_hash WHERE author_id = 1 or author_id = 2 GROUP BY GROUPING SETS ((id),(subtitle)) ORDER BY id, subtitle; -- subquery in SELECT clause SELECT a.title AS name, (SELECT a2.id FROM articles_hash a2 WHERE a.id = a2.id LIMIT 1) AS special_price FROM articles_hash a ORDER BY 1,2; -- test having clause SELECT COUNT(*), b FROM nullkey_c1_t1 GROUP BY 2 HAVING (SELECT COUNT(*) FROM nullkey_c1_t2) > 0 ORDER BY 1,2; SELECT COUNT(*), b FROM nullkey_c1_t1 GROUP BY 2 HAVING (SELECT COUNT(*) FROM nullkey_c2_t1) > 0 ORDER BY 1,2; SELECT COUNT(*), b FROM nullkey_c1_t1 GROUP BY 2 HAVING (SELECT COUNT(*) FROM distributed_table) > 0 ORDER BY 1,2; SELECT COUNT(*), b FROM nullkey_c1_t1 t4 GROUP BY 2 HAVING ( SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM nullkey_c1_t2) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a) WHERE t2.b > t4.b ) > 5 ORDER BY 1,2; SELECT COUNT(*), b FROM distributed_table t4 GROUP BY 2 HAVING ( SELECT COUNT(*) FROM nullkey_c1_t1 t1 JOIN (SELECT * FROM distributed_table) t2 USING (a) JOIN (SELECT * FROM nullkey_c1_t2) t3 USING (a) WHERE t2.b > t4.b ) > 5 ORDER BY 1,2; -- test prepared statements -- prepare queries can be router plannable PREPARE author_1_articles as SELECT * FROM articles_hash WHERE author_id = 1; EXECUTE author_1_articles; EXECUTE author_1_articles; EXECUTE author_1_articles; EXECUTE author_1_articles; EXECUTE author_1_articles; EXECUTE author_1_articles; -- parametric prepare queries can be router plannable PREPARE author_articles(int) as SELECT * FROM articles_hash WHERE author_id = $1; EXECUTE author_articles(1); EXECUTE author_articles(1); EXECUTE author_articles(1); EXECUTE author_articles(1); EXECUTE author_articles(1); EXECUTE author_articles(1); EXECUTE author_articles(NULL); EXECUTE author_articles(NULL); EXECUTE author_articles(NULL); EXECUTE author_articles(NULL); EXECUTE author_articles(NULL); EXECUTE author_articles(NULL); EXECUTE author_articles(NULL); PREPARE author_articles_update(int) AS UPDATE articles_hash SET title = 'test' WHERE author_id = $1; EXECUTE author_articles_update(NULL); EXECUTE author_articles_update(NULL); EXECUTE author_articles_update(NULL); EXECUTE author_articles_update(NULL); EXECUTE author_articles_update(NULL); EXECUTE author_articles_update(NULL); EXECUTE author_articles_update(NULL); -- More tests with insert .. select. -- -- The target list of "distributed statement"s that we send to workers -- might differ(*) in Postgres versions < 15 and they are reported when -- "log level >= DEBUG2". For this reason, we set log level to DEBUG1 to -- avoid reporting them. -- -- DEBUG1 still allows reporting the reason why given INSERT .. SELECT -- query is not distributed / requires pull-to-coordinator. SET client_min_messages TO DEBUG1; INSERT INTO bigserial_test (x, y) SELECT x, y FROM bigserial_test; INSERT INTO bigserial_test (x, y) SELECT a, a FROM reference_table; INSERT INTO agg_events (user_id) SELECT f2.id FROM (SELECT id FROM (SELECT users_ref_table.user_id AS id FROM raw_events_first, users_ref_table WHERE raw_events_first.user_id = users_ref_table.user_id ) AS foo) as f INNER JOIN (SELECT v4, v1, id FROM (SELECT SUM(raw_events_second.value_4) AS v4, SUM(raw_events_first.value_1) AS v1, raw_events_second.user_id AS id FROM raw_events_first, raw_events_second WHERE raw_events_first.user_id = raw_events_second.user_id GROUP BY raw_events_second.user_id HAVING SUM(raw_events_second.value_4) > 1000) AS foo2 ) as f2 ON (f.id = f2.id) WHERE f.id IN (SELECT user_id FROM raw_events_second); -- upsert with returning INSERT INTO agg_events AS ae ( user_id, value_1_agg, agg_time ) SELECT user_id, value_1, time FROM raw_events_first ON conflict (user_id, value_1_agg) DO UPDATE SET agg_time = EXCLUDED.agg_time WHERE ae.agg_time < EXCLUDED.agg_time RETURNING user_id, value_1_agg; -- using a left join INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first LEFT JOIN raw_events_second ON raw_events_first.user_id = raw_events_second.user_id WHERE raw_events_second.user_id = 10 OR raw_events_second.user_id = 11; INSERT INTO agg_events (user_id) SELECT users_ref_table.user_id FROM users_ref_table LEFT JOIN raw_events_second ON users_ref_table.user_id = raw_events_second.user_id WHERE raw_events_second.user_id = 10 OR raw_events_second.user_id = 11; INSERT INTO agg_events (user_id) SELECT COALESCE(raw_events_first.user_id, users_ref_table.user_id) FROM raw_events_first RIGHT JOIN (users_ref_table LEFT JOIN raw_events_second ON users_ref_table.user_id = raw_events_second.user_id) ON raw_events_first.user_id = users_ref_table.user_id; -- using a full join INSERT INTO agg_events (user_id, value_1_agg) SELECT t1.user_id AS col1, t2.user_id AS col2 FROM raw_events_first t1 FULL JOIN raw_events_second t2 ON t1.user_id = t2.user_id; -- using semi join INSERT INTO raw_events_second (user_id) SELECT user_id FROM raw_events_first WHERE user_id IN (SELECT raw_events_second.user_id FROM raw_events_second, raw_events_first WHERE raw_events_second.user_id = raw_events_first.user_id AND raw_events_first.user_id = 200); -- using lateral join INSERT INTO raw_events_second (user_id) SELECT user_id FROM raw_events_first WHERE NOT EXISTS (SELECT 1 FROM raw_events_second WHERE raw_events_second.user_id =raw_events_first.user_id); INSERT INTO raw_events_second (user_id) SELECT user_id FROM users_ref_table WHERE NOT EXISTS (SELECT 1 FROM raw_events_second WHERE raw_events_second.user_id = users_ref_table.user_id); -- using inner join INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first INNER JOIN raw_events_second ON raw_events_first.user_id = raw_events_second.value_1 WHERE raw_events_first.value_1 IN (10, 11,12) OR raw_events_second.user_id IN (1,2,3,4); INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first INNER JOIN users_ref_table ON raw_events_first.user_id = users_ref_table.user_id WHERE raw_events_first.value_1 IN (10, 11,12) OR users_ref_table.user_id IN (1,2,3,4); -- limit / offset clause INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first LIMIT 1; INSERT INTO agg_events (user_id) SELECT raw_events_first.user_id FROM raw_events_first OFFSET 1; INSERT INTO agg_events (user_id) SELECT users_ref_table.user_id FROM users_ref_table LIMIT 1; -- using a materialized cte WITH cte AS MATERIALIZED (SELECT max(value_1)+1 as v1_agg, user_id FROM raw_events_first GROUP BY user_id) INSERT INTO agg_events (value_1_agg, user_id) SELECT v1_agg, user_id FROM cte; INSERT INTO raw_events_second WITH cte AS MATERIALIZED (SELECT * FROM raw_events_first) SELECT user_id * 1000, time, value_1, value_2, value_3, value_4 FROM cte; INSERT INTO raw_events_second (user_id) WITH cte AS MATERIALIZED (SELECT * FROM users_ref_table) SELECT user_id FROM cte; -- using a regular cte WITH cte AS (SELECT * FROM raw_events_first) INSERT INTO raw_events_second SELECT user_id * 7000, time, value_1, value_2, value_3, value_4 FROM cte; INSERT INTO raw_events_second WITH cte AS (SELECT * FROM raw_events_first) SELECT * FROM cte; INSERT INTO agg_events WITH sub_cte AS (SELECT 1) SELECT raw_events_first.user_id, (SELECT * FROM sub_cte) FROM raw_events_first; -- we still support complex joins via INSERT's cte list .. WITH cte AS ( SELECT DISTINCT(reference_table.a) AS a, 1 AS b FROM distributed_table RIGHT JOIN reference_table USING (a) ) INSERT INTO raw_events_second (user_id, value_1) SELECT (a+5)*-1, b FROM cte; -- .. and via SELECT's cte list too INSERT INTO raw_events_second (user_id, value_1) WITH cte AS ( SELECT DISTINCT(reference_table.a) AS a, 1 AS b FROM distributed_table RIGHT JOIN reference_table USING (a) ) SELECT (a+5)*2, b FROM cte; -- using set operations INSERT INTO raw_events_first(user_id) (SELECT user_id FROM raw_events_first) INTERSECT (SELECT user_id FROM raw_events_first); INSERT INTO raw_events_first(user_id) (SELECT user_id FROM users_ref_table) INTERSECT (SELECT user_id FROM raw_events_first); -- group by clause inside subquery INSERT INTO agg_events (user_id) SELECT f2.id FROM (SELECT id FROM (SELECT raw_events_second.user_id AS id FROM raw_events_first, raw_events_second WHERE raw_events_first.user_id = raw_events_second.user_id ) AS foo) as f INNER JOIN (SELECT v4, v1, id FROM (SELECT SUM(raw_events_second.value_4) AS v4, SUM(raw_events_first.value_1) AS v1, raw_events_second.user_id AS id FROM raw_events_first, raw_events_second WHERE raw_events_first.user_id = raw_events_second.user_id GROUP BY raw_events_second.user_id HAVING SUM(raw_events_second.value_4) > 1000) AS foo2 ) as f2 ON (f.id = f2.id) WHERE f.id IN (SELECT user_id FROM raw_events_second); -- group by clause inside lateral subquery INSERT INTO agg_events (user_id, value_4_agg) SELECT averages.user_id, avg(averages.value_4) FROM (SELECT t1.user_id FROM raw_events_second t1 JOIN raw_events_second t2 on (t1.user_id = t2.user_id) ) reference_ids JOIN LATERAL (SELECT user_id, value_4 FROM raw_events_first) as averages ON averages.value_4 = reference_ids.user_id GROUP BY averages.user_id; -- using aggregates INSERT INTO agg_events (value_3_agg, value_4_agg, value_1_agg, value_2_agg, user_id) SELECT SUM(value_3), Count(value_4), user_id, SUM(value_1), Avg(value_2) FROM raw_events_first GROUP BY user_id; INSERT INTO agg_events (value_3_agg, value_1_agg) SELECT AVG(user_id), SUM(user_id) FROM users_ref_table GROUP BY user_id; -- using generate_series INSERT INTO raw_events_first (user_id, value_1, value_2) SELECT s, s, s FROM generate_series(1, 5) s; CREATE SEQUENCE insert_select_test_seq; -- nextval() expression in select's targetlist INSERT INTO raw_events_first (user_id, value_1, value_2) SELECT s, nextval('insert_select_test_seq'), (random()*10)::int FROM generate_series(100, 105) s; -- non-immutable function INSERT INTO modify_fast_path (key, value_1) VALUES (2,1) RETURNING value_1, random() * key; SET client_min_messages TO DEBUG2; -- update / delete UPDATE nullkey_c1_t1 SET a = 1 WHERE b = 5; UPDATE nullkey_c1_t1 SET a = 1 WHERE a = 5; UPDATE nullkey_c1_t1 SET a = random(); UPDATE nullkey_c1_t1 SET a = 1 WHERE a = random(); DELETE FROM nullkey_c1_t1 WHERE b = 5; DELETE FROM nullkey_c1_t1 WHERE a = random(); -- simple update queries between different table types / colocated tables UPDATE nullkey_c1_t1 SET b = 5 FROM nullkey_c1_t2 WHERE nullkey_c1_t1.b = nullkey_c1_t2.b; UPDATE nullkey_c1_t1 SET b = 5 FROM nullkey_c2_t1 WHERE nullkey_c1_t1.b = nullkey_c2_t1.b; UPDATE nullkey_c1_t1 SET b = 5 FROM reference_table WHERE nullkey_c1_t1.b = reference_table.b; UPDATE nullkey_c1_t1 SET b = 5 FROM distributed_table WHERE nullkey_c1_t1.b = distributed_table.b; UPDATE nullkey_c1_t1 SET b = 5 FROM distributed_table WHERE nullkey_c1_t1.b = distributed_table.a; UPDATE nullkey_c1_t1 SET b = 5 FROM citus_local_table WHERE nullkey_c1_t1.b = citus_local_table.b; UPDATE nullkey_c1_t1 SET b = 5 FROM postgres_local_table WHERE nullkey_c1_t1.b = postgres_local_table.b; UPDATE reference_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = reference_table.b; UPDATE distributed_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.b; UPDATE distributed_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.a; UPDATE citus_local_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = citus_local_table.b; UPDATE postgres_local_table SET b = 5 FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b = postgres_local_table.b; -- simple delete queries between different table types / colocated tables DELETE FROM nullkey_c1_t1 USING nullkey_c1_t2 WHERE nullkey_c1_t1.b = nullkey_c1_t2.b; DELETE FROM nullkey_c1_t1 USING nullkey_c2_t1 WHERE nullkey_c1_t1.b = nullkey_c2_t1.b; DELETE FROM nullkey_c1_t1 USING reference_table WHERE nullkey_c1_t1.b = reference_table.b; DELETE FROM nullkey_c1_t1 USING distributed_table WHERE nullkey_c1_t1.b = distributed_table.b; DELETE FROM nullkey_c1_t1 USING distributed_table WHERE nullkey_c1_t1.b = distributed_table.a; DELETE FROM nullkey_c1_t1 USING citus_local_table WHERE nullkey_c1_t1.b = citus_local_table.b; DELETE FROM nullkey_c1_t1 USING postgres_local_table WHERE nullkey_c1_t1.b = postgres_local_table.b; DELETE FROM reference_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = reference_table.b; DELETE FROM distributed_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.b; DELETE FROM distributed_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = distributed_table.a; DELETE FROM citus_local_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = citus_local_table.b; DELETE FROM postgres_local_table USING nullkey_c1_t1 WHERE nullkey_c1_t1.b = postgres_local_table.b; -- slightly more complex update queries UPDATE nullkey_c1_t1 SET b = 5 WHERE nullkey_c1_t1.b IN (SELECT b FROM distributed_table); WITH cte AS materialized( SELECT * FROM distributed_table ) UPDATE nullkey_c1_t1 SET b = 5 FROM cte WHERE nullkey_c1_t1.b = cte.a; WITH cte AS ( SELECT reference_table.a AS a, 1 AS b FROM distributed_table RIGHT JOIN reference_table USING (a) ) UPDATE nullkey_c1_t1 SET b = 5 WHERE nullkey_c1_t1.b IN (SELECT b FROM cte); UPDATE nullkey_c1_t1 SET b = 5 FROM reference_table WHERE EXISTS ( SELECT 1 FROM reference_table LEFT JOIN nullkey_c1_t1 USING (a) WHERE nullkey_c1_t1.b IS NULL ); UPDATE nullkey_c1_t1 tx SET b = ( SELECT nullkey_c1_t2.b FROM nullkey_c1_t2 JOIN nullkey_c1_t1 ON (nullkey_c1_t1.a != nullkey_c1_t2.a) WHERE nullkey_c1_t1.a = tx.a ORDER BY 1 LIMIT 1 ); UPDATE nullkey_c1_t1 tx SET b = t2.b FROM nullkey_c1_t1 t1 JOIN nullkey_c1_t2 t2 ON (t1.a = t2.a); WITH cte AS ( SELECT * FROM nullkey_c1_t2 ORDER BY 1,2 LIMIT 10 ) UPDATE nullkey_c1_t1 SET b = 5 WHERE nullkey_c1_t1.a IN (SELECT b FROM cte); UPDATE modify_fast_path SET value_1 = value_1 + 12 * value_1 WHERE key = 1; UPDATE modify_fast_path SET value_1 = NULL WHERE value_1 = 15 AND (key = 1 OR value_2 = 'citus'); UPDATE modify_fast_path SET value_1 = 5 WHERE key = 2 RETURNING value_1 * 15, value_1::numeric * 16; UPDATE modify_fast_path SET value_1 = 1 FROM modify_fast_path_reference WHERE modify_fast_path.key = modify_fast_path_reference.key AND modify_fast_path.key = 1 AND modify_fast_path_reference.key = 1; PREPARE p1 (int, int, int) AS UPDATE modify_fast_path SET value_1 = value_1 + $1 WHERE key = $2 AND value_1 = $3; EXECUTE p1(1,1,1); EXECUTE p1(2,2,2); EXECUTE p1(3,3,3); EXECUTE p1(4,4,4); EXECUTE p1(5,5,5); EXECUTE p1(6,6,6); EXECUTE p1(7,7,7); PREPARE prepared_zero_shard_update(int) AS UPDATE modify_fast_path SET value_1 = 1 WHERE key = $1 AND false; EXECUTE prepared_zero_shard_update(1); EXECUTE prepared_zero_shard_update(2); EXECUTE prepared_zero_shard_update(3); EXECUTE prepared_zero_shard_update(4); EXECUTE prepared_zero_shard_update(5); EXECUTE prepared_zero_shard_update(6); EXECUTE prepared_zero_shard_update(7); -- slightly more complex delete queries DELETE FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b IN (SELECT b FROM distributed_table); WITH cte AS materialized( SELECT * FROM distributed_table ) DELETE FROM nullkey_c1_t1 USING cte WHERE nullkey_c1_t1.b = cte.a; WITH cte AS ( SELECT reference_table.a AS a, 1 AS b FROM distributed_table RIGHT JOIN reference_table USING (a) ) DELETE FROM nullkey_c1_t1 WHERE nullkey_c1_t1.b IN (SELECT b FROM cte); DELETE FROM nullkey_c1_t1 USING reference_table WHERE EXISTS ( SELECT 1 FROM reference_table LEFT JOIN nullkey_c1_t1 USING (a) WHERE nullkey_c1_t1.b IS NULL ); DELETE FROM nullkey_c1_t1 tx USING nullkey_c1_t1 t1 JOIN nullkey_c1_t2 t2 ON (t1.a = t2.a); WITH cte AS ( SELECT * FROM nullkey_c1_t2 ORDER BY 1,2 LIMIT 10 ) DELETE FROM nullkey_c1_t1 WHERE nullkey_c1_t1.a IN (SELECT b FROM cte); DELETE FROM modify_fast_path WHERE value_1 = 15 AND (key = 1 OR value_2 = 'citus'); DELETE FROM modify_fast_path WHERE key = 2 RETURNING value_1 * 15, value_1::numeric * 16; DELETE FROM modify_fast_path USING modify_fast_path_reference WHERE modify_fast_path.key = modify_fast_path_reference.key AND modify_fast_path.key = 1 AND modify_fast_path_reference.key = 1; PREPARE p2 (int, int, int) AS DELETE FROM modify_fast_path WHERE key = ($2)*$1 AND value_1 = $3; EXECUTE p2(1,1,1); EXECUTE p2(2,2,2); EXECUTE p2(3,3,3); EXECUTE p2(4,4,4); EXECUTE p2(5,5,5); EXECUTE p2(6,6,6); EXECUTE p2(7,7,7); PREPARE prepared_zero_shard_delete(int) AS DELETE FROM modify_fast_path WHERE key = $1 AND false; EXECUTE prepared_zero_shard_delete(1); EXECUTE prepared_zero_shard_delete(2); EXECUTE prepared_zero_shard_delete(3); EXECUTE prepared_zero_shard_delete(4); EXECUTE prepared_zero_shard_delete(5); EXECUTE prepared_zero_shard_delete(6); EXECUTE prepared_zero_shard_delete(7); -- test modifying ctes WITH cte AS ( UPDATE modify_fast_path SET value_1 = value_1 + 1 WHERE key = 1 RETURNING * ) SELECT * FROM cte; WITH cte AS ( DELETE FROM modify_fast_path WHERE key = 1 RETURNING * ) SELECT * FROM modify_fast_path; WITH cte AS ( DELETE FROM modify_fast_path WHERE key = 1 RETURNING * ) SELECT * FROM modify_fast_path_reference WHERE key IN (SELECT key FROM cte); WITH cte AS ( DELETE FROM reference_table WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c1_t1 WHERE a IN (SELECT a FROM cte); WITH cte AS ( DELETE FROM nullkey_c1_t1 WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c1_t2 WHERE a IN (SELECT a FROM cte); WITH cte AS ( DELETE FROM nullkey_c1_t1 WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c2_t1 WHERE a IN (SELECT a FROM cte); WITH cte AS ( DELETE FROM nullkey_c1_t1 WHERE a = 1 RETURNING * ) SELECT * FROM distributed_table WHERE a IN (SELECT a FROM cte); -- Below two queries fail very late when -- citus.enable_non_colocated_router_query_pushdown is set to on. SET citus.enable_non_colocated_router_query_pushdown TO ON; WITH cte AS ( DELETE FROM distributed_table WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c1_t1 WHERE a IN (SELECT a FROM cte); WITH cte AS ( DELETE FROM distributed_table WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c1_t1 WHERE b IN (SELECT b FROM cte); SET citus.enable_non_colocated_router_query_pushdown TO OFF; WITH cte AS ( DELETE FROM distributed_table WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c1_t1 WHERE a IN (SELECT a FROM cte); WITH cte AS ( DELETE FROM distributed_table WHERE a = 1 RETURNING * ) SELECT * FROM nullkey_c1_t1 WHERE b IN (SELECT b FROM cte); RESET citus.enable_non_colocated_router_query_pushdown; WITH cte AS ( UPDATE modify_fast_path SET value_1 = value_1 + 1 WHERE key = 1 RETURNING * ) UPDATE modify_fast_path SET value_1 = value_1 + 1 WHERE key = 1; WITH cte AS ( DELETE FROM modify_fast_path WHERE key = 1 RETURNING * ) DELETE FROM modify_fast_path WHERE key = 1; -- test window functions SELECT user_id, avg(avg(value_3)) OVER (PARTITION BY user_id, MIN(value_2)) FROM raw_events_first GROUP BY 1 ORDER BY 2 DESC NULLS LAST, 1 DESC; SELECT user_id, max(value_1) OVER (PARTITION BY user_id, MIN(value_2)) FROM ( SELECT DISTINCT us.user_id, us.value_2, us.value_1, random() as r1 FROM raw_events_first as us, raw_events_second WHERE us.user_id = raw_events_second.user_id ORDER BY user_id, value_2 ) s GROUP BY 1, value_1 ORDER BY 2 DESC, 1; SELECT DISTINCT ON (raw_events_second.user_id, rnk) raw_events_second.user_id, rank() OVER my_win AS rnk FROM raw_events_second, raw_events_first WHERE raw_events_first.user_id = raw_events_second.user_id WINDOW my_win AS (PARTITION BY raw_events_second.user_id, raw_events_first.value_1 ORDER BY raw_events_second.time DESC) ORDER BY rnk DESC, 1 DESC LIMIT 10; -- more tests with ctes and subqueries -- CTEs are recursively planned, and subquery foo is also recursively planned. -- Then the final plan becomes a router plan. WITH cte AS MATERIALIZED ( WITH local_cte AS MATERIALIZED ( SELECT * FROM users_table_local ), dist_cte AS MATERIALIZED ( SELECT user_id FROM colocated_events_table ) SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id ) SELECT count(*) FROM cte, ( SELECT DISTINCT users_table.user_id FROM users_table, colocated_events_table WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4) ORDER BY 1 DESC LIMIT 5 ) AS foo WHERE foo.user_id = cte.user_id; -- CTEs are colocated, route entire query. WITH cte1 AS ( SELECT * FROM users_table WHERE user_id = 1 ), cte2 AS ( SELECT * FROM colocated_events_table WHERE user_id = 1 ) SELECT cte1.user_id, cte1.value_1, cte2.user_id, cte2.event_type FROM cte1, cte2 ORDER BY cte1.user_id, cte1.value_1, cte2.user_id, cte2.event_type LIMIT 5; -- CTEs aren't colocated, CTEs become intermediate results. WITH cte1 AS MATERIALIZED ( SELECT * FROM users_table WHERE user_id = 1 ), cte2 AS MATERIALIZED ( SELECT * FROM non_colocated_events_table WHERE user_id = 6 ) SELECT cte1.user_id, cte1.value_1, cte2.user_id, cte2.user_id FROM cte1, cte2 ORDER BY cte1.user_id, cte1.value_1, cte2.user_id, cte2.event_type LIMIT 5; -- users_table & colocated_users_table are colocated, route entire query. WITH cte1 AS ( SELECT * FROM users_table WHERE user_id = 1 ) UPDATE colocated_users_table dt SET value = cte1.value_1 FROM cte1 WHERE cte1.user_id = dt.id AND dt.id = 1; -- users_table & non_colocated_users_table are not colocated, cte is recursive planned. WITH cte1 AS ( SELECT * FROM users_table WHERE user_id = 1 ) UPDATE non_colocated_users_table dt SET value = cte1.value_1 FROM cte1 WHERE cte1.user_id = dt.id AND dt.id = 1; -- All relations are not colocated, CTEs become intermediate results. WITH cte1 AS MATERIALIZED ( SELECT * FROM users_table WHERE user_id = 1 ), cte2 AS MATERIALIZED ( SELECT * FROM non_colocated_events_table WHERE user_id = 6 ) UPDATE non_colocated_users_table dt SET value = cte1.value_1 + cte2.event_type FROM cte1, cte2 WHERE cte1.user_id = dt.id AND dt.id = 1; -- Volatile function calls should not be routed. WITH cte1 AS MATERIALIZED (SELECT id, value FROM func()) UPDATE colocated_users_table dt SET value = cte1.value FROM cte1 WHERE dt.id = 1; -- CTEs are recursively planned, and subquery foo is also recursively planned. WITH cte AS MATERIALIZED ( WITH local_cte AS MATERIALIZED ( SELECT * FROM users_table_local ), dist_cte AS MATERIALIZED ( SELECT user_id FROM colocated_events_table ) SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id ) SELECT count(*) FROM cte, ( SELECT DISTINCT users_table.user_id FROM users_table, colocated_events_table WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4) ORDER BY 1 DESC LIMIT 5 ) AS foo, colocated_events_table WHERE foo.user_id = cte.user_id AND colocated_events_table.user_id = cte.user_id; -- CTEs are replaced and subquery in WHERE is also replaced. WITH cte AS MATERIALIZED ( WITH local_cte AS MATERIALIZED ( SELECT * FROM users_table_local ), dist_cte AS MATERIALIZED ( SELECT user_id FROM colocated_events_table ) SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id ) SELECT DISTINCT cte.user_id FROM users_table, cte WHERE users_table.user_id = cte.user_id AND users_table.user_id IN ( SELECT DISTINCT value_2 FROM users_table WHERE value_1 >= 1 AND value_1 <= 20 ORDER BY 1 LIMIT 5 ) ORDER BY 1 DESC; -- Subquery in WHERE clause is planned recursively due to the recurring table -- in FROM clause. WITH cte AS MATERIALIZED ( WITH local_cte AS MATERIALIZED ( SELECT * FROM users_table_local ), dist_cte AS MATERIALIZED ( SELECT user_id FROM colocated_events_table ) SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id ) SELECT DISTINCT cte.user_id FROM cte WHERE cte.user_id IN (SELECT DISTINCT user_id FROM users_table WHERE value_1 >= 1 AND value_1 <= 20) ORDER BY 1 DESC; -- CTEs inside a subquery and the final query becomes a router -- query. SELECT user_id FROM ( WITH cte AS MATERIALIZED ( SELECT DISTINCT users_table.user_id FROM users_table, colocated_events_table WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4) ) SELECT * FROM cte ORDER BY 1 DESC ) AS foo ORDER BY 1 DESC; -- CTEs inside a deeper subquery and also the subquery that contains the CTE are -- recursively planned. SELECT DISTINCT bar.user_id FROM ( WITH cte AS MATERIALIZED ( SELECT DISTINCT users_table.user_id FROM users_table, colocated_events_table WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4) ) SELECT * FROM cte ORDER BY 1 DESC ) AS foo, ( SELECT users_table.user_id, some_events.event_type FROM users_table, ( WITH cte AS MATERIALIZED ( SELECT event_type, users_table.user_id FROM users_table, colocated_events_table WHERE users_table.user_id = colocated_events_table.user_id AND value_1 IN (1,2) ) SELECT * FROM cte ORDER BY 1 DESC ) AS some_events WHERE users_table.user_id = some_events.user_id AND event_type IN (1,2,3,4) ORDER BY 2,1 LIMIT 2 ) AS bar WHERE foo.user_id = bar.user_id ORDER BY 1 DESC LIMIT 5; -- Recursively plan subqueries inside the CTEs that contains LIMIT and OFFSET. WITH cte AS MATERIALIZED ( WITH local_cte AS MATERIALIZED ( SELECT * FROM users_table_local ), dist_cte AS MATERIALIZED ( SELECT user_id FROM colocated_events_table, (SELECT DISTINCT value_2 FROM users_table OFFSET 0) as foo WHERE colocated_events_table.user_id = foo.value_2 AND colocated_events_table.user_id IN (SELECT DISTINCT value_1 FROM users_table ORDER BY 1 LIMIT 3) ) SELECT dist_cte.user_id FROM local_cte JOIN dist_cte ON dist_cte.user_id=local_cte.user_id ) SELECT count(*) FROM cte, ( SELECT DISTINCT users_table.user_id FROM users_table, colocated_events_table WHERE users_table.user_id = colocated_events_table.user_id AND event_type IN (1,2,3,4) ORDER BY 1 DESC LIMIT 5 ) AS foo WHERE foo.user_id = cte.user_id; -- more tests with sublinks and subqueries in targetlist SELECT event_type, (SELECT e.value_2 FROM users_reference_table WHERE user_id = 1 AND value_1 = 1), (SELECT e.value_2) FROM non_colocated_events_table e ORDER BY 1,2 LIMIT 1; SELECT event_type, (SELECT time FROM users_table WHERE user_id = e.user_id ORDER BY time LIMIT 1) FROM non_colocated_events_table e ORDER BY 1,2 LIMIT 1; SELECT event_type, (SELECT max(time) FROM users_table WHERE user_id = e.value_2) FROM non_colocated_events_table e ORDER BY 1,2 LIMIT 1; SELECT event_type, (SELECT max(time) FROM users_table) FROM non_colocated_events_table e ORDER BY 1,2 LIMIT 1; WITH cte_1 AS (SELECT max(time) FROM users_table) SELECT event_type, (SELECT * FROM cte_1) FROM non_colocated_events_table e ORDER BY 1,2 LIMIT 1; WITH cte_1 AS (SELECT max(time) FROM users_table) SELECT event_type, (SELECT * FROM cte_1 LIMIT 1) FROM non_colocated_events_table e ORDER BY 1,2 LIMIT 1; WITH cte_1 AS (SELECT max(time) m FROM users_table) SELECT count(*), (SELECT * FROM cte_1 c1 join cte_1 c2 using (m)) FROM non_colocated_events_table e GROUP BY 2 ORDER BY 1,2 LIMIT 1; WITH cte_1 AS (SELECT min(user_id) u, max(time) m FROM users_table) SELECT count(*), (SELECT max(time) FROM users_table WHERE user_id = cte_1.u GROUP BY user_id) FROM cte_1 GROUP BY 2 ORDER BY 1,2 LIMIT 1; SELECT sum(e.user_id) + (SELECT max(value_3) FROM users_table WHERE user_id = e.user_id GROUP BY user_id) FROM non_colocated_events_table e GROUP BY e.user_id ORDER BY 1 LIMIT 3; SELECT e.user_id, sum((SELECT any_value(value_3) FROM users_reference_table WHERE user_id = e.user_id GROUP BY user_id)) OVER (PARTITION BY e.user_id) FROM non_colocated_events_table e ORDER BY 1, 2 LIMIT 3; SELECT (SELECT (SELECT e.user_id + user_id) FROM users_table WHERE user_id = e.user_id GROUP BY user_id) FROM non_colocated_events_table e GROUP BY 1 ORDER BY 1 LIMIT 3; SELECT (SELECT (SELECT e.user_id + user_id) FROM users_reference_table WHERE user_id = e.user_id GROUP BY user_id) FROM non_colocated_events_table e GROUP BY 1 ORDER BY 1 LIMIT 3; WITH cte_1 AS (SELECT user_id FROM users_table ORDER BY 1 LIMIT 1) SELECT (SELECT (SELECT e.user_id + user_id) FROM cte_1 WHERE user_id = e.user_id GROUP BY user_id) FROM non_colocated_events_table e GROUP BY 1 ORDER BY 1 LIMIT 3; SELECT (SELECT (SELECT e.user_id + user_id) FROM (SELECT 1 AS user_id) s WHERE user_id = e.user_id GROUP BY user_id) FROM non_colocated_events_table e GROUP BY 1 ORDER BY 1 LIMIT 3; CREATE TEMP VIEW view_1 AS (SELECT user_id, value_2 FROM users_table WHERE user_id = 1 AND value_1 = 1 ORDER BY 1,2); SELECT (SELECT value_2 FROM view_1 WHERE user_id = e.user_id GROUP BY value_2) FROM non_colocated_events_table e GROUP BY 1 ORDER BY 1 LIMIT 3; SELECT user_id, count(*) FROM non_colocated_events_table e1 GROUP BY user_id HAVING count(*) > (SELECT count(*) FROM (SELECT (SELECT sum(user_id) FROM users_table WHERE user_id = u1.user_id GROUP BY user_id) FROM users_table u1 GROUP BY user_id) as foo) ORDER BY 1 DESC; SELECT count(*) FROM (SELECT (SELECT user_id FROM users_table WHERE user_id = u1.user_id FOR UPDATE) FROM users_table u1 GROUP BY user_id) as foo; -- test single hash repartition join SET citus.log_multi_join_order TO ON; SET client_min_messages TO DEBUG1; SET citus.enable_repartition_joins TO ON; SET citus.enable_single_hash_repartition_joins TO ON; SELECT count(*) FROM nullkey_c1_t1 JOIN distributed_table USING(a); select count(*) from nullkey_c1_t1 JOIN nullkey_c2_t2 USING(a); RESET citus.log_multi_join_order; SET client_min_messages TO DEBUG2; RESET citus.enable_repartition_joins; RESET citus.enable_single_hash_repartition_joins; SET client_min_messages TO DEBUG1; SET citus.enable_repartition_joins TO ON; SET citus.log_multi_join_order TO ON; SELECT count(*), avg(avgsub.a) FROM ( SELECT table_0.a FROM reference_table AS table_0 INNER JOIN nullkey_c1_t1 AS table_1 USING (a) INNER JOIN reference_table AS table_2 USING (a) INNER JOIN nullkey_c2_t1 AS table_3 USING (a) ORDER BY a LIMIT 7 ) AS avgsub; SET citus.enable_single_hash_repartition_joins TO ON; -- We prefer dual-hash repartition join over single-hash repartition join -- even if citus.enable_single_hash_repartition_joins is set to ON. This -- happens because single shard tables don't have a shard key. SELECT count(*), avg(avgsub.a) FROM ( SELECT table_0.a FROM reference_table AS table_0 INNER JOIN nullkey_c1_t1 AS table_1 USING (a) INNER JOIN reference_table AS table_2 USING (a) INNER JOIN nullkey_c2_t1 AS table_3 USING (a) ORDER BY a LIMIT 7 ) AS avgsub; RESET citus.enable_single_hash_repartition_joins; SET client_min_messages TO DEBUG2; RESET citus.enable_repartition_joins; RESET citus.log_multi_join_order; SELECT count(*), avg(avgsub.a) FROM ( SELECT table_0.a FROM nullkey_c1_t1 AS table_0 RIGHT JOIN ( SELECT table_2.a FROM ( SELECT table_3.a FROM nullkey_c2_t1 AS table_3 ORDER BY a LIMIT 0 ) AS table_2 INNER JOIN nullkey_c2_t1 AS table_4 USING (a) WHERE table_4.a < 8 ) AS table_1 USING (a) ) AS avgsub; -- test nested exec CREATE FUNCTION dist_query_single_shard(p_key int) RETURNS bigint LANGUAGE plpgsql AS $$ DECLARE result bigint; BEGIN SELECT count(*) INTO result FROM query_single_shard_table.nullkey_c1_t1 WHERE a = p_key; RETURN result; END; $$; CREATE FUNCTION ref_query() RETURNS bigint LANGUAGE plpgsql AS $$ DECLARE result bigint; BEGIN SELECT count(*) INTO result FROM query_single_shard_table.reference_table; RETURN result; END; $$; SELECT dist_query_single_shard(count(*)::int) FROM nullkey_c1_t1; SELECT ref_query()+count(*) FROM nullkey_c1_t1; SET client_min_messages TO ERROR; DROP SCHEMA query_single_shard_table CASCADE;