
pg_xnode - user documentation

1. Introduction

pg_xnode is PostgreSQL extension. The purpose is to

• provide the PostgreSQL database server with ability to query and modify XML documents in an
efficient and convenient way.

• introduce a set of data types to represent XML document (DOM) tree, its parts (nodes, subtrees) and
XPath expressions.

• provide an extensible platform for non-traditional approaches to XML storage and processing.

pg_xnode doesn’t rely on any third-party library.

Caution

The current version is not ready for use in production environments. The extension
may be subject to significant changes, including those of the binary data format.
Migration from versions lower than 1.0 won’t be supported.

In addition, comprehensive testing has to be performed before 1.0 gets released.

2. Installation

Make sure PostgreSQL database server is installed (the current version of pg_xnode has been developed
on top of PostgreSQL 9.1).

1. Extract the archive.

2. make

3. sudo make install 1

4. Connect to your database.

5. CREATE EXTENSION xnode; 2

1



pg_xnode - user documentation

3. Data types

pg_xnode defines data types to store various XML-related objects in binary form. This helps to avoid
(repeated) unnecessary parsing and serialization of those objects and thus provides potential for efficient
data processing.

3.1. xml.node

xml.node type represents a node of XML document tree. Following are the valid node kinds: document,
document type declaration (DTD), element, attribute, comment, character data (CDATA), processing
instruction (PI) and text node.

Special node type document fragment exists to represent a set of nodes.

Example:

CREATE TABLE nodes (
data xml.node

);

INSERT INTO nodes
VALUES (’<element/>’), (’<!--comment-->’), (’plain text’), (’<?app?>’);

SELECT *
FROM nodes;

data
----------------
<element/>
<!--comment-->
plain text
<?app?>

(4 rows)

3.2. xml.doc

xml.doc represents well-formed XML document. 3

Example:

CREATE TABLE ecosystems (

2



pg_xnode - user documentation

id int,
data xml.doc

);

INSERT INTO ecosystems VALUES (1,
’<zoo city="Wien"><penguin name="Pingu"/><elephant name="Sandeep"/></zoo>’);

INSERT INTO ecosystems VALUES (2,
’<africa><hipo weight="2584"/><elephant age="28"/></africa>’);

INSERT INTO ecosystems VALUES (3,
’<zoo city="Dublin"><rhino/><giraffe/><elephant name="Yasmin"/></zoo>’);

3.3. xml.pathval

xml.pathval represents a result of xml.path() functions (see bellow). Depending on the XPath used
for a search, the xml.pathval value contains value of one of the following types: number, string,
boolean, xml.node.

4. Functions

4.1. xml.node_kind()
xml.node_kind(xml.node node) returns text

Returns textual expression for the kind of node, e.g. element, comment, etc.

Example:

SELECT xml.node_kind(data)
FROM nodes;

node_kind
------------------------
XML element
XML comment
text node
processing instruction

(4 rows)

3



pg_xnode - user documentation

4.2. xml.path() - scalar
xml.path(xml.path xpath, xml.doc document) returns xml.pathval

Returns result of XPath expression (passed as xpath) applied to document. If xpath is a location path
and there are multiple qualifying nodes in the document then the returnedxml.pathval contains a
document fragment containing all the qualifying nodes.

Example:

SELECT xml.path(’//elephant’, e.data)
FROM ecosystems e;

elephants
----------------------------
<elephant name="Sandeep"/>
<elephant age="28"/>
<elephant name="Yasmin"/>

(3 rows)

4.3. xml.path() - vector
xml.path(xml.path basePath, xml.path[] columnPaths, xml.doc doc) returns xml.pathval[]

Returns table-like output. For each occurrence of basePath in doc an array of xml.pathval values is
returned where n-th element is value of relative XPath expression passed as n-th element of
columnPaths. All values of columnPaths array are relative to basePath.

Example:

SELECT xml.path(’/zoo’,
’{"@city", "count(elephant)", "count(penguin)"}’, e.data) as counts

FROM ecosystems e;

counts
----------------------------
{Wien,1.000000,1.000000}
{Dublin,1.000000,0.000000}

(2 rows)

4



pg_xnode - user documentation

4.4. xml.add()
xml.add(xml.doc doc, xml.path path, xml.node newNode, xml.add_mode mode) returns xml.doc

Adds newNode to all occurrences of path in doc. Depending on mode value, the new node can be added
before (b) or after (a) the target node (where target node is the the node path points at).

If target node kind is element and mode is i, then the new node is added into that element. If that element
is not empty, the new node is added as the last.

If mode is r then the target node is replaced with newNode.

A document is returned where all the additions have been done as required in the input parameters.

Example:

UPDATE ecosystems e
SET data=xml.add(e.data, ’/africa’, ’<gorilla/>’, ’i’)
where e.id=2;

SELECT data FROM ecosystems e where e.id=2;

data
------------------------------------------------------------------------------
<africa><hipo weight="2584"/><elephant age="28"/><gorilla/></africa>

(1 row)

4.5. xml.remove()
xml.remove(xml.doc doc, xml.path path) returns xml.doc

Removes all occurrences of path from docu.

A document is returned where all the removals have been done as required in the input parameters.

Example:

UPDATE ecosystems e

5



pg_xnode - user documentation

SET data=xml.remove(e.data, ’/zoo/elephant’)
WHERE e.id in (1, 3);

SELECT xml.path(’count(/zoo/elephant)’, data)
FROM ecosystems e
WHERE e.id in (1, 3);

path
----------
0.000000
0.000000

(2 rows)

4.6. xml.node_debug_print()
xml.node_debug_print(xml.node node) returns text

Shows tree structure of node tree. Instead of content, position (offset) of each node in the binary value is
displayed, as well as its size.

4.7. xml.path_debug_print()
xml.path_debug_print(xml.path xpath) returns text

Returns text string showing structure of XPath expression passed as xpath.

Notes
1. If PATH environment variable doesn’t seem to contain pg_xnode, specify the full path, e.g. sudo

env PG_CONFIG=/usr/local/pgsql/bin/pg_config make install

2. If earlier version already exists where version number <=1.0, then the extension must be dropped
(with CASCADE option) and re-created. If the CREATE command step is skipped in such a case
instead, then data in obsolete format remain in the database and pg_node’s behaviour becomes
undefined.

This only applies to pre-releases. Migration functionality will be delivered for versions > 1.0;

3. Unlike other node kinds (comment, element, etc.) there’s no polymorphism between xml.node and
xml.doc. That is, functions do not consider xml.doc a special case of xml.node. However an
implicit xml.node:xml.doc cast exists for cases where conversion to a well-formed XML
document does make sense.

6


	1. Introduction
	2. Installation
	3. Data types
	3.1. xml.node
	3.2. xml.doc
	3.3. xml.pathval

	4. Functions
	4.1. xml.nodekind()
	4.2. xml.path() scalar
	4.3. xml.path() vector
	4.4. xml.add()
	4.5. xml.remove()
	4.6. xml.nodedebugprint()
	4.7. xml.pathdebugprint()


