/* * Top users/processes display for Unix * Version 3 * * This program may be freely redistributed, * but this entire comment MUST remain intact. * * Copyright (c) 1984, 1989, William LeFebvre, Rice University * Copyright (c) 1989, 1990, 1992, William LeFebvre, Northwestern University */ /* * This file contains various handy utilities used by top. */ #include "os.h" #include #ifdef HAVE_STDARG_H #include #else #undef DEBUG #endif #include "pg_top.h" #include "utils.h" static int alldigits(char *s) { int ch; while ((ch = *s++) != '\0') { if (!isdigit(ch)) { return 0; } } return 1; } int atoiwi(char *str) { register int len; len = strlen(str); if (len != 0) { if (strncmp(str, "infinity", len) == 0 || strncmp(str, "all", len) == 0 || strncmp(str, "maximum", len) == 0) { return (Infinity); } else if (alldigits(str)) { return (atoi(str)); } else { return (Invalid); } } return (0); } /* * itoa - convert integer (decimal) to ascii string for positive numbers * only (we don't bother with negative numbers since we know we * don't use them). */ /* * How do we know that 16 will suffice? Because the biggest number that we * will ever convert will be 2^32-1, which is 10 digits. */ char * itoa(int val) { register char *ptr; static char buffer[16]; /* result is built here */ /* * 16 is sufficient since the largest number we will ever convert will be * 2^32-1, which is 10 digits. */ ptr = buffer + sizeof(buffer); *--ptr = '\0'; if (val == 0) { *--ptr = '0'; } else while (val != 0) { *--ptr = (val % 10) + '0'; val /= 10; } return (ptr); } /* * itoa7(val) - like itoa, except the number is right justified in a 7 * character field. This code is a duplication of itoa instead of * a front end to a more general routine for efficiency. */ char * itoa7(uid_t val) { register char *ptr; static char buffer[16]; /* result is built here */ /* * 16 is sufficient since the largest number we will ever convert will be * 2^32-1, which is 10 digits. */ ptr = buffer + sizeof(buffer); *--ptr = '\0'; if (val == 0) { *--ptr = '0'; } else while (val != 0) { *--ptr = (val % 10) + '0'; val /= 10; } while (ptr > buffer + sizeof(buffer) - 7) { *--ptr = ' '; } return (ptr); } /* * digits(val) - return number of decimal digits in val. Only works for * positive numbers. If val < 0 then digits(val) == 0, but * digits(0) == 1. */ int digits(int val) { register int cnt = 0; if (val == 0) { return 1; } while (val > 0) { cnt++; val /= 10; } return (cnt); } /* * printable(char *str) - make the string pointed to by "str" into one that is * printable (i.e.: all ascii), by converting all non-printable * characters into '?'. Replacements are done in place and a pointer * to the original buffer is returned. */ char * printable(char *str) { register char *ptr; register char ch; ptr = str; while ((ch = *ptr) != '\0') { if (!isprint(ch)) { *ptr = '?'; } ptr++; } return (str); } /* * strecpy(to, from) - copy string "from" into "to" and return a pointer * to the END of the string "to". */ char * strecpy(char *to, char *from) { while ((*to++ = *from++) != '\0'); return (--to); } /* * char * * homogenize(char *str) * * Remove unwanted characters from "str" and make everything lower case. * Newly allocated string is returned: the original is not altered. */ char * homogenize(char *str) { char *ans; char *fr; char *to; int ch; to = fr = ans = strdup(str); while ((ch = *fr++) != '\0') { if (isalnum(ch)) { *to++ = tolower(ch); } } *to = '\0'; return ans; } /* * string_index(string, array) - find string in array and return index */ int string_index(char *string, char **array) { register int i = 0; while (*array != NULL) { if (strcmp(string, *array) == 0) { return (i); } array++; i++; } return (-1); } /* * char *string_list(char **strings) * * Create a comma-separated list of the strings in the NULL-terminated * "strings". Returned string is malloc-ed and should be freed when the * caller is done. Note that this is not an efficient function. */ char * string_list(char **strings) { int cnt = 0; char **pp; char *p; char *result; char *resp = NULL; pp = strings; while ((p = *pp++) != NULL) { cnt += strlen(p) + 2; } if (cnt > 0) { resp = result = (char *) malloc(cnt); pp = strings; while ((p = *pp++) != NULL) { resp = strecpy(resp, p); if (*pp != NULL) { resp = strecpy(resp, ", "); } } } return result; } /* * argparse(line, cntp) - parse arguments in string "line", separating them * out into an argv-like array, and setting *cntp to the number of * arguments encountered. This is a simple parser that doesn't understand * squat about quotes. */ char ** argparse(char *line, int *cntp) { register char *from; register char *to; register int cnt; register int ch; int length; int lastch; register char **argv; char **argarray; char *args; /* * unfortunately, the only real way to do this is to go thru the input * string twice. */ /* step thru the string counting the white space sections */ from = line; lastch = cnt = length = 0; while ((ch = *from++) != '\0') { length++; if (ch == ' ' && lastch != ' ') { cnt++; } lastch = ch; } /* * add three to the count: one for the initial "dummy" argument, one for * the last argument and one for NULL */ cnt += 3; /* allocate a char * array to hold the pointers */ argarray = (char **) malloc(cnt * sizeof(char *)); /* allocate another array to hold the strings themselves */ args = (char *) malloc(length + 2); /* initialization for main loop */ from = line; to = args; argv = argarray; lastch = '\0'; /* create a dummy argument to keep getopt happy */ *argv++ = to; *to++ = '\0'; cnt = 2; /* now build argv while copying characters */ *argv++ = to; while ((ch = *from++) != '\0') { if (ch != ' ') { if (lastch == ' ') { *to++ = '\0'; *argv++ = to; cnt++; } *to++ = ch; } lastch = ch; } *to++ = '\0'; /* set cntp and return the allocated array */ *cntp = cnt; return (argarray); } /* * percentages(cnt, out, new, old, diffs) - calculate percentage change * between array "old" and "new", putting the percentages i "out". * "cnt" is size of each array and "diffs" is used for scratch space. * The array "old" is updated on each call. * The routine assumes modulo arithmetic. This function is especially * useful on BSD mchines for calculating cpu state percentages. */ long percentages(int cnt, int64_t *out, int64_t *new, int64_t *old, int64_t *diffs) { register int i; register int64_t change; register int64_t total_change; register int64_t *dp; int64_t half_total; /* initialization */ total_change = 0; dp = diffs; /* calculate changes for each state and the overall change */ for (i = 0; i < cnt; i++) { if ((change = *new - *old) < 0) { /* this only happens when the counter wraps */ change = (int64_t) ((int64_t) *new - (int64_t) *old); } total_change += (*dp++ = change); *old++ = *new++; } /* avoid divide by zero potential */ if (total_change == 0) { total_change = 1; } /* calculate percentages based on overall change, rounding up */ half_total = total_change / 2l; for (i = 0; i < cnt; i++) { *out++ = (int64_t) ((*diffs++ * 1000 + half_total) / total_change); } /* return the total in case the caller wants to use it */ return (total_change); } /* * errmsg(errnum) - return an error message string appropriate to the * error number "errnum". This is a substitute for the System V * function "strerror". There appears to be no reliable way to * determine if "strerror" exists at compile time, so I make do * by providing something of similar functionality. For those * systems that have strerror and NOT errlist, define * -DHAVE_STRERROR in the module file and this function will * use strerror. */ /* externs referenced by errmsg */ #ifndef HAVE_STRERROR #if !HAVE_DECL_SYS_ERRLIST extern char *sys_errlist[]; #endif extern int sys_nerr; #endif char * errmsg(int errnum) { #ifdef HAVE_STRERROR char *msg = strerror(errnum); if (msg != NULL) { return msg; } #else if (errnum > 0 && errnum < sys_nerr) { return ((char *) (sys_errlist[errnum])); } #endif return ("No error"); } /* format_percent(v) - format a double as a percentage in a manner that * does not exceed 5 characters (excluding any trailing * percent sign). Since it is possible for the value * to exceed 100%, we format such values with no fractional * component to fit within the 5 characters. */ char * format_percent(double v) { static char result[10]; /* enumerate the possibilities */ if (v < 0 || v >= 100000.) { /* we dont want to try extreme values */ strcpy(result, " ???"); } else if (v > 99.99) { sprintf(result, "%5.0f", v); } else { sprintf(result, "%5.2f", v); } return result; } /* format_time(seconds) - format number of seconds into a suitable * display that will fit within 6 characters. Note that this * routine builds its string in a static area. If it needs * to be called more than once without overwriting previous data, * then we will need to adopt a technique similar to the * one used for format_k. */ /* Explanation: We want to keep the output within 6 characters. For low values we use the format mm:ss. For values that exceed 999:59, we switch to a format that displays hours and fractions: hhh.tH. For values that exceed 999.9, we use hhhh.t and drop the "H" designator. For values that exceed 9999.9, we use "???". */ char * format_time(long seconds) { static char result[10]; /* sanity protection */ if (seconds < 0 || seconds > (99999l * 360l)) { strcpy(result, " ???"); } else if (seconds >= (1000l * 60l)) { /* alternate (slow) method displaying hours and tenths */ sprintf(result, "%5.1fH", (double) seconds / (double) (60l * 60l)); /* * It is possible that the sprintf took more than 6 characters. If so, * then the "H" appears as result[6]. If not, then there is a \0 in * result[6]. Either way, it is safe to step on. */ result[6] = '\0'; } else { /* standard method produces MMM:SS */ /* we avoid printf as must as possible to make this quick */ sprintf(result, "%3ld:%02ld", seconds / 60l, seconds % 60l); } return (result); } /* * format_k(amt) - format a kilobyte memory value, returning a string * suitable for display. Returns a pointer to a static * area that changes each call. "amt" is converted to a * string with a trailing "K". If "amt" is 10000 or greater, * then it is formatted as megabytes (rounded) with a * trailing "M". */ /* * Compromise time. We need to return a string, but we don't want the * caller to have to worry about freeing a dynamically allocated string. * Unfortunately, we can't just return a pointer to a static area as one * of the common uses of this function is in a large call to sprintf where * it might get invoked several times. Our compromise is to maintain an * array of strings and cycle thru them with each invocation. We make the * array large enough to handle the above mentioned case. The constant * NUM_STRINGS defines the number of strings in this array: we can tolerate * up to NUM_STRINGS calls before we start overwriting old information. * Keeping NUM_STRINGS a power of two will allow an intelligent optimizer * to convert the modulo operation into something quicker. What a hack! */ #define NUM_STRINGS 8 char * format_k(long amt) { static char retarray[NUM_STRINGS][16]; static int index = 0; register char *ret; register char tag = 'K'; ret = retarray[index]; index = (index + 1) % NUM_STRINGS; if (amt >= 10000) { amt = (amt + 512) / 1024; tag = 'M'; if (amt >= 10000) { amt = (amt + 512) / 1024; tag = 'G'; } } snprintf(ret, sizeof(retarray[index]) - 1, "%ld%c", amt, tag); return (ret); } static int debug_on = 0; #ifdef DEBUG FILE *debugfile; #endif void debug_set(int i) { debug_on = i; #ifdef DEBUG debugfile = fopen("/tmp/top.debug", "w"); #endif } #ifdef DEBUG void xdprintf(char *fmt,...) { va_list argp; va_start(argp, fmt); if (debug_on) { vfprintf(debugfile, fmt, argp); fflush(stdout); } va_end(argp); } #endif