/* * pg_top - a top PostgreSQL users display for Unix * * SYNOPSIS: For FreeBSD-2.x, 3.x, 4.x, and 5.x * * DESCRIPTION: * Originally written for BSD4.4 system by Christos Zoulas. * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider * Order support hacked in from top-3.5beta6/machine/m_aix41.c * by Monte Mitzelfelt * Ported to FreeBSD 5.x by William LeFebvre * * AUTHOR: Christos Zoulas * Steven Wallace * Wolfram Schneider */ #include #include #include #include #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef HAVE_UNISTD_H #include #endif /* Swap */ #include #include #include /* for changes in kernel structures */ #include "machine.h" #include "utils.h" static int check_nlist __P((struct nlist *)); static int getkval __P((unsigned long, int *, int, char *)); extern char *printable __P((char *)); int swapmode __P((int *retavail, int *retfree)); static int smpmode; static int namelength; static int cmdlength; /* get_process_info passes back a handle. This is what it looks like: */ struct handle { struct kinfo_proc **next_proc; /* points to next valid proc pointer */ int remaining; /* number of pointers remaining */ }; /* declarations for load_avg */ #include "loadavg.h" /* macros to access process information */ #if OSMAJOR <= 4 #define PP(pp, field) ((pp)->kp_proc . p_##field) #define EP(pp, field) ((pp)->kp_eproc . e_##field) #define VP(pp, field) ((pp)->kp_eproc.e_vm . vm_##field) #define PRUID(pp) ((pp)->kp_eproc.e_pcred.p_ruid) #else #define PP(pp, field) ((pp)->ki_##field) #define VP(pp, field) ((pp)->ki_##field) #define PRUID(pp) ((pp)->ki_ruid) #endif /* what we consider to be process size: */ #if OSMAJOR <= 4 #define PROCSIZE(pp) (VP((pp), map.size) / 1024) #else #define PROCSIZE(pp) (((pp)->ki_size) / 1024) #endif /* for 5.x and higher we show thread count */ #if OSMAJOR >= 5 #define SHOW_THREADS #endif /* definitions for indices in the nlist array */ static struct nlist nlst[] = { #define X_CCPU 0 {"_ccpu"}, #define X_CP_TIME 1 {"_cp_time"}, #define X_AVENRUN 2 {"_averunnable"}, #define X_BUFSPACE 3 {"_bufspace"}, /* K in buffer cache */ #define X_CNT 4 {"_cnt"}, /* struct vmmeter cnt */ /* Last pid */ #define X_LASTPID 5 {"_nextpid"}, #define X_BOOTTIME 6 {"_boottime"}, {0} }; /* * These definitions control the format of the per-process area */ #ifdef SHOW_THREADS static char smp_header[] = " PID %-*.*s THR PRI NICE SIZE RES STATE C TIME CPU COMMAND"; #define smp_Proc_format \ "%5d %-*.*s %3d %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %s" static char up_header[] = " PID %-*.*s THR PRI NICE SIZE RES STATE TIME CPU COMMAND"; #define up_Proc_format \ "%5d %-*.*s %3d %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %s" #else static char smp_header[] = " PID %-*.*s PRI NICE SIZE RES STATE C TIME WCPU CPU COMMAND"; #define smp_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %s" static char up_header[] = " PID %-*.*s PRI NICE SIZE RES STATE TIME WCPU CPU COMMAND"; #define up_Proc_format \ "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %s" /* define what weighted cpu is. */ #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \ ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu)))) #endif /* process state names for the "STATE" column of the display */ /* the extra nulls in the string "run" are for adding a slash and the processor number when needed */ char *state_abbrev[] = { "", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", }; static kvm_t *kd; /* values that we stash away in _init and use in later routines */ static double logcpu; /* these are retrieved from the kernel in _init */ static load_avg ccpu; /* these are offsets obtained via nlist and used in the get_ functions */ static unsigned long cp_time_offset; static unsigned long avenrun_offset; static unsigned long lastpid_offset; static long lastpid; static unsigned long cnt_offset; static unsigned long bufspace_offset; /* these are for calculating cpu state percentages */ static int64_t cp_time[CPUSTATES]; static int64_t cp_old[CPUSTATES]; static int64_t cp_diff[CPUSTATES]; /* these are for detailing the process states */ int process_states[6]; char *procstatenames[] = { "", " starting, ", " running, ", " sleeping, ", " stopped, ", " zombie, ", NULL }; /* these are for detailing the cpu states */ int64_t cpu_states[CPUSTATES]; char *cpustatenames[] = { "user", "nice", "system", "interrupt", "idle", NULL }; /* these are for detailing the memory statistics */ long memory_stats[7]; char *memorynames[] = { "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", NULL }; long swap_stats[7]; char *swapnames[] = { /* 0 1 2 3 4 5 */ "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", NULL }; /* these are for keeping track of the proc array */ static int nproc; static int onproc = -1; static int pref_len; static struct kinfo_proc *pbase; static struct kinfo_proc **pref; /* these are for getting the memory statistics */ static int pageshift; /* log base 2 of the pagesize */ /* define pagetok in terms of pageshift */ #define pagetok(size) ((size) << pageshift) /* useful externals */ long percentages(); /* sorting orders. first is default */ char *ordernames[] = {"cpu", "size", "res", "time", "pri", NULL}; /* compare routines */ int proc_compare(), compare_size(), compare_res(), compare_time(), compare_prio(); int (*proc_compares[]) () = { proc_compare, compare_size, compare_res, compare_time, compare_prio, NULL }; int machine_init(struct statics * statics) { register int i = 0; register int pagesize; size_t modelen; struct passwd *pw; struct timeval boottime; modelen = sizeof(smpmode); if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || modelen != sizeof(smpmode)) smpmode = 0; while ((pw = getpwent()) != NULL) { if (strlen(pw->pw_name) > namelength) namelength = strlen(pw->pw_name); } if (namelength < 8) namelength = 8; if (smpmode && namelength > 13) namelength = 13; else if (namelength > 15) namelength = 15; if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, "kvm_open")) == NULL) return -1; /* get the list of symbols we want to access in the kernel */ (void) kvm_nlist(kd, nlst); if (nlst[0].n_type == 0) { fprintf(stderr, "pg_top: nlist failed\n"); return (-1); } /* make sure they were all found */ if (i > 0 && check_nlist(nlst) > 0) { return (-1); } /* get number of cpus */ (void) getkval(nlst[X_CCPU].n_value, (int *) (&ccpu), sizeof(ccpu), nlst[X_CCPU].n_name); /* get boot time */ (void) getkval(nlst[X_BOOTTIME].n_value, (int *) (&boottime), sizeof(boottime), nlst[X_BOOTTIME].n_name); /* stash away certain offsets for later use */ cp_time_offset = nlst[X_CP_TIME].n_value; avenrun_offset = nlst[X_AVENRUN].n_value; lastpid_offset = nlst[X_LASTPID].n_value; cnt_offset = nlst[X_CNT].n_value; bufspace_offset = nlst[X_BUFSPACE].n_value; /* this is used in calculating WCPU -- calculate it ahead of time */ logcpu = log(loaddouble(ccpu)); pbase = NULL; pref = NULL; nproc = 0; onproc = -1; /* get the page size with "getpagesize" and calculate pageshift from it */ pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* fill in the statics information */ statics->procstate_names = procstatenames; statics->cpustate_names = cpustatenames; statics->memory_names = memorynames; statics->boottime = boottime.tv_sec; statics->swap_names = swapnames; statics->order_names = ordernames; statics->flags.fullcmds = 1; /* all done! */ return (0); } char * format_header(char *uname_field) { static char Header[128]; snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, namelength, namelength, uname_field); cmdlength = 80 - strlen(Header) + 6; return Header; } static int swappgsin = -1; static int swappgsout = -1; extern struct timeval timeout; void get_system_info(struct system_info * si) { long total; load_avg avenrun[3]; /* get the cp_time array */ (void) getkval(cp_time_offset, (int *) cp_time, sizeof(cp_time), nlst[X_CP_TIME].n_name); (void) getkval(avenrun_offset, (int *) avenrun, sizeof(avenrun), nlst[X_AVENRUN].n_name); (void) getkval(lastpid_offset, (int *) (&lastpid), sizeof(lastpid), "!"); /* convert load averages to doubles */ { register int i; register double *infoloadp; load_avg *avenrunp; #ifdef notyet struct loadavg sysload; int size; getkerninfo(KINFO_LOADAVG, &sysload, &size, 0); #endif infoloadp = si->load_avg; avenrunp = avenrun; for (i = 0; i < 3; i++) { #ifdef notyet *infoloadp++ = ((double) sysload.ldavg[i]) / sysload.fscale; #endif *infoloadp++ = loaddouble(*avenrunp++); } } /* convert cp_time counts to percentages */ total = percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff); /* sum memory & swap statistics */ { struct vmmeter sum; static unsigned int swap_delay = 0; static int swapavail = 0; static int swapfree = 0; static int bufspace = 0; (void) getkval(cnt_offset, (int *) (&sum), sizeof(sum), "_cnt"); (void) getkval(bufspace_offset, (int *) (&bufspace), sizeof(bufspace), "_bufspace"); /* convert memory stats to Kbytes */ memory_stats[0] = pagetok(sum.v_active_count); memory_stats[1] = pagetok(sum.v_inactive_count); memory_stats[2] = pagetok(sum.v_wire_count); memory_stats[3] = pagetok(sum.v_cache_count); memory_stats[4] = bufspace / 1024; memory_stats[5] = pagetok(sum.v_free_count); memory_stats[6] = -1; /* first interval */ if (swappgsin < 0) { swap_stats[4] = 0; swap_stats[5] = 0; } /* compute differences between old and new swap statistic */ else { swap_stats[4] = pagetok(((sum.v_swappgsin - swappgsin))); swap_stats[5] = pagetok(((sum.v_swappgsout - swappgsout))); } swappgsin = sum.v_swappgsin; swappgsout = sum.v_swappgsout; /* call CPU heavy swapmode() only for changes */ if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { swap_stats[3] = swapmode(&swapavail, &swapfree); swap_stats[0] = swapavail; swap_stats[1] = swapavail - swapfree; swap_stats[2] = swapfree; } swap_delay = 1; swap_stats[6] = -1; } /* set arrays and strings */ si->cpustates = cpu_states; si->memory = memory_stats; si->swap = swap_stats; if (lastpid > 0) { si->last_pid = lastpid; } else { si->last_pid = -1; } } static struct handle handle; static int show_fullcmd; caddr_t get_process_info(struct system_info * si, struct process_select * sel, int compare_index, char *conninfo) { register int i; register int total_procs; register int active_procs; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; /* these are copied out of sel for speed */ int show_idle; int show_self; int show_system; int show_uid; PGconn *pgconn; PGresult *pgresult = NULL; nproc = 0; pgconn = connect_to_db(conninfo); if (pgconn != NULL) { pgresult = PQexec(pgconn, QUERY_PROCESSES); nproc = PQntuples(pgresult); if (nproc > onproc) pbase = (struct kinfo_proc *) realloc(pbase, sizeof(struct kinfo_proc) * nproc); } PQfinish(pgconn); if (nproc > onproc) pref = (struct kinfo_proc **) realloc(pref, sizeof(struct kinfo_proc *) * (onproc = nproc)); if (pref == NULL) { (void) fprintf(stderr, "pg_top: Out of memory.\n"); quit(23); } /* get a pointer to the states summary array */ si->procstates = process_states; /* set up flags which define what we are going to select */ show_idle = sel->idle; show_self = 0; show_uid = sel->uid != -1; show_fullcmd = sel->fullcmd; /* count up process states and get pointers to interesting procs */ total_procs = 0; active_procs = 0; memset((char *) process_states, 0, sizeof(process_states)); prefp = pref; for (pp = pbase, i = 0; i < nproc; pp++, i++) { struct kinfo_proc *junk2; int junk; /* * FIXME: How do we keep 'kvm_open: kvm_getprocs: No such process' * from displaying when the process doesn't exist when we get here? */ junk2 = kvm_getprocs(kd, KERN_PROC_PID, atoi(PQgetvalue(pgresult, i, 0)), &junk); if (junk2 == NULL) { continue; } /* * FIXME: This memcpy is so not elegent and the reason why I'm donig * it... */ memcpy(&pbase[i], &junk2[0], sizeof(struct kinfo_proc)); /* * Place pointers to each valid proc structure in pref[]. Process * slots that are actually in use have a non-zero status field. * Processes with P_SYSTEM set are system processes---these get * ignored unless show_sysprocs is set. */ if (PP(pp, stat) != 0 && (show_self != PP(pp, pid)) && (show_system || ((PP(pp, flag) & P_SYSTEM) == 0))) { total_procs++; process_states[(unsigned char) PP(pp, stat)]++; if ((PP(pp, stat) != SZOMB) && (show_idle || (PP(pp, pctcpu) != 0) || (PP(pp, stat) == SRUN)) && (!show_uid || PRUID(pp) == (uid_t) sel->uid)) { *prefp++ = pp; active_procs++; } } } PQclear(pgresult); /* if requested, sort the "interesting" processes */ qsort((char *) pref, active_procs, sizeof(struct kinfo_proc *), proc_compares[compare_index]); /* remember active and total counts */ si->p_total = total_procs; si->p_active = pref_len = active_procs; /* pass back a handle */ handle.next_proc = pref; handle.remaining = active_procs; return ((caddr_t) & handle); } char fmt[MAX_COLS]; /* static area where result is built */ char cmd[MAX_COLS]; char * format_next_process(caddr_t handle, char *(*get_userid) (uid_t)) { register struct kinfo_proc *pp; register long cputime; register double pct; struct handle *hp; char status[16]; int state; /* find and remember the next proc structure */ hp = (struct handle *) handle; pp = *(hp->next_proc++); hp->remaining--; /* get the process's command name in to "cmd" */ if (show_fullcmd) { struct pargs pargs; int len; /* get the pargs structure */ getkval((unsigned long) PP(pp, args), (int *) &pargs, sizeof(pargs), "!pargs"); /* determine workable length */ if ((len = pargs.ar_length) >= MAX_COLS) { len = MAX_COLS - 1; } /* get the string from that */ getkval((unsigned long) PP(pp, args) + sizeof(pargs.ar_ref) + sizeof(pargs.ar_length), (int *) cmd, len, "!cmdline"); } #if OSMAJOR <= 4 else if ((PP(pp, flag) & P_INMEM) == 0) #else else if ((PP(pp, sflag) & PS_INMEM) == 0) #endif { /* Print swapped processes as */ char *p; cmd[0] = '<'; p = strecpy(cmd + 1, PP(pp, comm)); *p++ = '>'; *p = '\0'; } else { /* take it straight out of p_comm */ strncpy(cmd, PP(pp, comm), MAX_COLS - 1); } /* * Convert the process's runtime from microseconds to seconds. This time * includes the interrupt time although that is not wanted here. ps(1) is * similarly sloppy. */ cputime = (PP(pp, runtime) + 500000) / 1000000; /* calculate the base for cpu percentages */ pct = pctdouble(PP(pp, pctcpu)); /* generate "STATE" field */ switch (state = PP(pp, stat)) { case SRUN: if (smpmode && PP(pp, oncpu) != 0xff) sprintf(status, "CPU%d", PP(pp, oncpu)); else strcpy(status, "RUN"); break; case SSLEEP: if (PP(pp, wmesg) != NULL) { #if OSMAJOR <= 4 sprintf(status, "%.6s", EP(pp, wmesg)); #else sprintf(status, "%.6s", PP(pp, wmesg)); #endif break; } /* fall through */ default: if (state >= 0 && state < sizeof(state_abbrev) / sizeof(*state_abbrev)) sprintf(status, "%.6s", state_abbrev[(unsigned char) state]); else sprintf(status, "?%5d", state); break; } /* format this entry */ sprintf(fmt, smpmode ? smp_Proc_format : up_Proc_format, PP(pp, pid), namelength, namelength, (*get_userid) (PRUID(pp)), #ifdef SHOW_THREADS PP(pp, numthreads), #endif #if OSMAJOR <= 4 PP(pp, priority) - PZERO, #else PP(pp, pri.pri_level) - PZERO, #endif /* * normal time -> nice value -20 - +20 real time 0 - 31 -> nice value * -52 - -21 idle time 0 - 31 -> nice value +21 - +52 */ #if OSMAJOR <= 4 (PP(pp, rtprio.type) == RTP_PRIO_NORMAL ? PP(pp, nice) - NZERO : (RTP_PRIO_IS_REALTIME(PP(pp, rtprio.type)) ? (PRIO_MIN - 1 - RTP_PRIO_MAX + PP(pp, rtprio.prio)) : (PRIO_MAX + 1 + PP(pp, rtprio.prio)))), #else (PP(pp, pri.pri_class) == PRI_TIMESHARE ? PP(pp, nice) - NZERO : (PRI_IS_REALTIME(PP(pp, pri.pri_class))) ? (PRIO_MIN - 1 - (PRI_MAX_REALTIME - PP(pp, pri.pri_level))) : (PRIO_MAX + 1 + PP(pp, pri.pri_level) - PRI_MIN_IDLE)), #endif format_k(PROCSIZE(pp)), format_k(pagetok(VP(pp, rssize))), status, smpmode ? PP(pp, lastcpu) : 0, format_time(cputime), #ifndef SHOW_THREADS 100.0 * weighted_cpu(pct, pp), #endif 100.0 * pct, printable(cmd)); /* return the result */ return (fmt); } /* * check_nlist(nlst) - checks the nlist to see if any symbols were not * found. For every symbol that was not found, a one-line * message is printed to stderr. The routine returns the * number of symbols NOT found. */ static int check_nlist(struct nlist * nlst) { register int i; /* check to see if we got ALL the symbols we requested */ /* this will write one line to stderr for every symbol not found */ i = 0; while (nlst->n_name != NULL) { if (nlst->n_type == 0) { /* this one wasn't found */ (void) fprintf(stderr, "kernel: no symbol named `%s'\n", nlst->n_name); i = 1; } nlst++; } return (i); } /* * getkval(offset, ptr, size, refstr) - get a value out of the kernel. * "offset" is the byte offset into the kernel for the desired value, * "ptr" points to a buffer into which the value is retrieved, * "size" is the size of the buffer (and the object to retrieve), * "refstr" is a reference string used when printing error meessages, * if "refstr" starts with a '!', then a failure on read will not * be fatal (this may seem like a silly way to do things, but I * really didn't want the overhead of another argument). * */ static int getkval(unsigned long offset, int *ptr, int size, char *refstr) { if (kvm_read(kd, offset, (char *) ptr, size) != size) { if (*refstr == '!') { return (0); } else { fprintf(stderr, "pg_top: kvm_read for %s: %s\n", refstr, strerror(errno)); quit(23); } } return (1); } /* comparison routines for qsort */ /* * proc_compare - comparison function for "qsort" * Compares the resource consumption of two processes using five * distinct keys. The keys (in descending order of importance) are: * percent cpu, cpu ticks, state, resident set size, total virtual * memory usage. The process states are ordered as follows (from least * to most important): WAIT, zombie, sleep, stop, start, run. The * array declaration below maps a process state index into a number * that reflects this ordering. */ static unsigned char sorted_state[] = { 0, /* not used */ 3, /* sleep */ 1, /* ABANDONED (WAIT) */ 6, /* run */ 5, /* start */ 2, /* zombie */ 4 /* stop */ }; #define ORDERKEY_PCTCPU \ if (lresult = (long) PP(p2, pctcpu) - (long) PP(p1, pctcpu), \ (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) #define ORDERKEY_CPTICKS \ if ((result = PP(p2, runtime) > PP(p1, runtime) ? 1 : \ PP(p2, runtime) < PP(p1, runtime) ? -1 : 0) == 0) #define ORDERKEY_STATE \ if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \ sorted_state[(unsigned char) PP(p1, stat)]) == 0) #if OSMAJOR <= 4 #define ORDERKEY_PRIO \ if ((result = PP(p2, priority) - PP(p1, priority)) == 0) #else #define ORDERKEY_PRIO \ if ((result = PP(p2, pri.pri_user) - PP(p1, pri.pri_user)) == 0) #endif #define ORDERKEY_RSSIZE \ if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0) #define ORDERKEY_MEM \ if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) /* compare_cpu - the comparison function for sorting by cpu percentage */ int proc_compare(struct proc ** pp1, struct proc ** pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_size - the comparison function for sorting by total memory usage */ int compare_size(struct proc ** pp1, struct proc ** pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_MEM ORDERKEY_RSSIZE ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_res - the comparison function for sorting by resident set size */ int compare_res(struct proc ** pp1, struct proc ** pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_RSSIZE ORDERKEY_MEM ORDERKEY_PCTCPU ORDERKEY_CPTICKS ORDERKEY_STATE ORDERKEY_PRIO ; return (result); } /* compare_time - the comparison function for sorting by total cpu time */ int compare_time(struct proc ** pp1, struct proc ** pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_PRIO ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* compare_prio - the comparison function for sorting by cpu percentage */ int compare_prio(struct proc ** pp1, struct proc ** pp2) { register struct kinfo_proc *p1; register struct kinfo_proc *p2; register int result; register pctcpu lresult; /* remove one level of indirection */ p1 = *(struct kinfo_proc **) pp1; p2 = *(struct kinfo_proc **) pp2; ORDERKEY_PRIO ORDERKEY_CPTICKS ORDERKEY_PCTCPU ORDERKEY_STATE ORDERKEY_RSSIZE ORDERKEY_MEM ; return (result); } /* * proc_owner(pid) - returns the uid that owns process "pid", or -1 if * the process does not exist. * It is EXTREMLY IMPORTANT that this function work correctly. * If pg_top runs setuid root (as in SVR4), then this function * is the only thing that stands in the way of a serious * security problem. It validates requests for the "kill" * and "renice" commands. */ uid_t proc_owner(pid_t pid) { register int cnt; register struct kinfo_proc **prefp; register struct kinfo_proc *pp; prefp = pref; cnt = pref_len; while (--cnt >= 0) { pp = *prefp++; if (PP(pp, pid) == (pid_t) pid) { return ((int) PRUID(pp)); } } return (-1); } /* * swapmode is based on a program called swapinfo written * by Kevin Lahey . */ #define SVAR(var) __STRING(var) /* to force expansion */ #define KGET(idx, var) \ KGET1(idx, &var, sizeof(var), SVAR(var)) #define KGET1(idx, p, s, msg) \ KGET2(nlst[idx].n_value, p, s, msg) #define KGET2(addr, p, s, msg) \ if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ return (0); \ } #define KGETRET(addr, p, s, msg) \ if (kvm_read(kd, (u_long)(addr), p, s) != s) { \ warnx("cannot read %s: %s", msg, kvm_geterr(kd)); \ return (0); \ } int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int) ((double) swapary[0].ksw_used * 100.0 / (double) swapary[0].ksw_total); return (n); }