
openBarter

 openBarter

“the greatest wealth for the lowest collective effort”

Abstract

openBarter is a server based on the database postgreSql implementing a barter engine that
produces movements from barter orders submitted.

Author

Olivier Chaussavoine, Project leader of openBarter

olivier.chaussavoine@gmail.com

page 1/21

openBarter

1 Introduction
Use of money is widespread due to low liquidity of bilateral barter. If you want to provide a

value in exchange of an other it is unlikely that you find someone that wants to provide the value
you are looking for in exchange of the one you provide. This “double coincidence of wants
problem” is simply solved using money. But the problem should disappear when non bilateral
exchange are also considered.

In practice, the number of possible exchange combinations grows for markets where the
diversity of the kinds of values exchanged is low. Typical examples are raw materials markets and
any markets exchanging most vital resources. These values are fungible since they can be measured
by a quantity using a physical standard (for example Kg). This is the case even for green house
gases, radioactive pollution or surface of forest.

A regular market implements the best price rule. It is the lowest price for the buyer and the
highest for the seller. Among possible relations between unmatched orders of the market, this rule
determines the bilateral cycle between a buyer and a seller chosen to form two movements. The first
is one where the buyer provides money to the seller. The second is one where the seller provides
some good – also a value - to the buyer. Both movements make the cycle and the transaction.

openBarter represents fungible values by a couple (quality, quantity) where the quality is a
name describing a quality standard and where the quantity is an integer. It extends the central limit
order book mechanism by exploring non-bilateral cycles and produces transactions with more than
two movements. It does not require the expression of prices, but use quantities exchanged to
implement mechanism that is equivalent to the best price rule when it is applied to bilateral cycles
where money is one of the fungible values exchanges.

The value of a resource is simply measured by it's quantity without any reference to a currency
standard. For a given quality, the value is proportional to the quantity. The proportionality is limited
by boundaries defining different markets such as gallon and barrel for petrol in England. But values
with distinct qualities can only be compared subjectively by the market.

2 Architecture
The market is seen as a flow where input are orders and output are movements.

Primitives are available to submit orders and consume movements. The production of orders is
done by a function launched by a batch.

page 2/21

openBarter

It uses four tables. The order book stored in a table torder, a stack accepting orders as input and
a stack storing movements to be consumed. A table towner is used to store names of owners of the
orders of the order book.

3 Installation

3.1 Build from sources
Following instructions has been tested on linux 32 bits and 64 bits architecture with version 9.2

of postgreSql.

Follow instructions of postgreSql manual to install the sources of the database.

In the contrib/ directory of the sources of postgreSql, install the sources of openbarter using the
package you downloaded from github:

$ cd contrib
$ gunzip olivierchopenBartervx.y.z.tar.gz
$ tar xf olivierchopenBartervx.y.z.tar

the package is compiled with:

$ cd openBarter/src
$ make
$ make install

3.2 Tests
To run tests, cd to openBarter/src and:

$ make installcheck
…
============== running regression test queries ==============
test testflow_1 ... ok
...
test testflow_n ... ok
============== shutting down postmaster ==============

=====================
 All n tests passed.
=====================

page 3/21

tstack tstack torder tmvts

openBarter

3.3 Install the model
When the postgreSql server is running, the model can be installed. It is defined by the file

openBarter/src/sql/model.sql. You must connect with the superuser role postgres used for
installation of the database, but never user for market operations. When you are in openBarter/src:

$ createdb Upostgres market
$ psql Upostgres market
psql (9.2.0)
Type "help" for help.

market=# \i sql/model.sql
…..

The model does not depend of any schema, and creates some roles if they do not exist yet. You
quit psql by typing ctr-D.

4 Use cases

4.1 Non bilateral exchange cycle
If you start a client of postgres, you can obtain the version of the model with the command:

$ psql Upostgres market
psql (9.2.0)
Type "help" for help.

market=# select * from fversion();
 fversion

 openBarter VERSIONX.Y.Z
(1 row)

We consider three partners a,b,c where:

• a provides 20 q1 and requires 10 q2

• b provides 20 q2 and requires 10 q3

• c provides 20 q3 and requires 10 q1

The market can find a relation between these orders to for a cycle with partners a, b and c. We
insert these orders with the following commands:

market=# select * from fsubmitbarter(1,'a',NULL,'q2',10,'q1',20,NULL);
 id | diag
+
 1 | 0
(1 row)
market=# select * from fsubmitbarter(1,'b',NULL,'q3',10,'q2',20,NULL);
 id | diag
+
 2 | 0
(1 row)
market=# select * from fsubmitbarter(1,'c',NULL,'q1',10,'q3',20,NULL);

page 4/21

openBarter

 id | diag
+
 3 | 0
(1 row)

The diag=0 means the commmand where accepted into the input. The id field returns the
number given by the market to the order. Commands are now stacked into the table tstack.

A batch should be set to consume this table and submit orders to the orderbook. When this
batch is not installed, you must type the following command:

market=# select * from femptystack();
 femptystack

 3
(1 row)

The three commands have been submitted to the order book and produced the following:

market=# select id,nbc,grp,own_src,own_dst,qtt,nat from tmvt;
 id | nbc | grp | own_src | own_dst | qtt | nat
++++++
 1 | 3 | 1 | c | b | 20 | q3
 2 | 3 | 1 | b | a | 20 | q2
 3 | 3 | 1 | a | c | 20 | q1
(3 rows)

Three movements have been created where the partner:

• c provided 20 q3 to b

• b provided 20 q2 to a

• a provided 20 q1 to c

 A movement is inserted with the name of the database user that inserted the order.

market=# select usr,ack from tmvt order by id asc limit 1;
 usr | ack
+
 postgres | f
(1 row)

The function fackmvt() is used to acknowledge the oldest movement:

market=# select fackmvt();
 fackmvt

 1
(1 row)

select usr,ack from tmvt order by id asc limit 1;
 usr | ack
+
 postgres | t
(1 row)

The ack flag is set when a movement is acknowledged. An exchange cycle is removed from
tmvt when all its movements were acknowledged:

market=# select fackmvt();
 fackmvt

 1

page 5/21

openBarter

(1 row)
market=# select fackmvt();
 fackmvt

 1
(1 row)
market=# select usr,ack from tmvt;
 usr | ack
+
(0 rows)

4.2 Several orders for the same value provided
Several orders of the same owner can be made on a single value. It is done by using as third

parameter of fsubmitorder the reference of a previous order providing this value.

We suppose for example that:

• a provides 10 q1 and requires 10 q2 or 10q3

• b provides 5q2 and requires 5q1

• c provides 5q3 and requires 5q1

market=# select * from fsubmitbarter(1,'a',NULL,'q2',10,'q1',10,NULL);
 id | diag
+
 4 | 0
(1 row)
market=# select * from fsubmitbarter(1,'a',4,'q3',10,NULL,NULL,NULL);
 id | diag
+
 5 | 0
market=# select * from fsubmitbarter(1,'b',NULL,'q1',5,'q2',5,NULL);
 id | diag
+
 6 | 0
market=# select femptystack();

 3
(1 row)

Two movements were produced where a and b exchanged 5q2 for 5q1. These movements are
acknowledged:

market=# select id,nbc,grp,own_src,own_dst,qtt,nat from tmvt;
 id | nbc | grp | own_src | own_dst | qtt | nat
++++++
 4 | 2 | 4 | b | a | 5 | q2
 5 | 2 | 4 | a | b | 5 | q1
(2 rows)
market=# select fackmvt();
 fackmvt

 1

page 6/21

openBarter

(1 row)
market=# select fackmvt();
 fackmvt

 1
(1 row)

Two orders remain unmatched in the order book:

market=# select id,own,oid,qtt_requ,qua_requ,qtt_prov,qua_prov,qtt from
vorder;
 id | own | oid | qtt_requ | qua_requ | qtt_prov | qua_prov | qtt
+++++++
 5 | a | 4 | 10 | q3 | 10 | q1 | 5
 4 | a | 4 | 10 | q2 | 10 | q1 | 5
(2 rows)

The quantity of q1 owned by a remaining available for exchange is 5.

We insert a new order from c:

market=# select * from fsubmitbarter(1,'c',NULL,'q1',5,'q3',5);
 id | diag
+
 7 | 0
market=# select femptystack();

 1

Two new movements were produced:

market=# select id,nbc,grp,own_src,own_dst,qtt,nat from tmvt;
 id | nbc | grp | own_src | own_dst | qtt | nat
++++++
 6 | 2 | 6 | c | a | 5 | q3
 7 | 2 | 6 | a | c | 5 | q1
(2 rows)
market=# select fackmvt();
 fackmvt

 1
(1 row)
market=# select fackmvt();
 fackmvt

 1
(1 row)

Where the remaining quantity of q1 owned by a is exchanged for 5 q3 that was owned by c.

The order book is now empty, as tables tmvt and torder.

4.3 BEST and LIMIT barter
An owner defines a ratio ω between provided and required quantities. When a cycle is produced

from this order, the ratio ω' between provided and received quantities of movements is not equal to
ω, but the result of a barter between partners of the exchange cycle. An order is LIMIT when the
owner requires that ω' < ω. A barter order is BEST when this condition is not required.

Cycles produced by the market have Ω >=1 except when all orders of the cycle are BEST. In
that particular case, cycles can have Ω <1.

page 7/21

openBarter

The first parameter of fsubmitbarter is 1 for limit and 2 for best. We had barter limit in previous
examples.

We suppose that:

• a provides 10 q1 and requires 20 q2 (barter best)

• b provides 10 q2 and requires 20 q1 (barter best)

market=# select * from fsubmitbarter(2,'a',NULL,'q2',20,'q1',10);
 id | diag
+
 8 | 0
(1 row)
market=# select * from fsubmitbarter(2,'b',NULL,'q1',20,'q2',10);
 id | diag
+
 9 | 0
market=# select femptystack();

 2
(1 row)

Two movements were produced where a and b exchanged 10 q2 for 10 q1 even if the ratio of
movements is not better than those of orders:

market=# select id,nbc,grp,own_src,own_dst,qtt,nat from tmvt;
 id | nbc | grp | own_src | own_dst | qtt | nat
++++++
 8 | 2 | 8 | b | a | 10 | q2
 9 | 2 | 8 | a | b | 10 | q1
(2 rows)
market=# select fackmvt();
 fackmvt

 1
(1 row)
market=# select fackmvt();
 fackmvt

 1
(1 row)

These orders would not produce any movement if orders were barter limit instead of barter
best.

4.4 Quote
A quote gives the best path of the market from a quality to an other.

We submit three barter with two possible exchanges of q1 in exchange of q3 and a quote
(unnecessary responses à omitted):

market=# select * from fsubmitbarter(1,'a',NULL,'q2',20,'q1',80,NULL);
market=# select * from fsubmitbarter(1,'b',NULL,'q3',10,'q2',20,NULL);
market=# select * from fsubmitbarter(1,'c',NULL,'q3',10,'q1',70,NULL);
market=# select * from fsubmitquote(1,'d','q1','q3');

page 8/21

openBarter

market=# select * from femptystack();
market=# select json from tmvt;
 json

 {"qtt_requ":80,"qtt_prov":10,"qtt":10,”qtt_reci”:80,”qtt_give”:10,"paths":[
+
 [{"type":1, "id":11, "oid":11, "own":2, "qtt_requ":10, "qtt_prov":20, "qtt":20, "flowr":20},+
 {"type":1, "id":10, "oid":10, "own":1, "qtt_requ":20, "qtt_prov":80, "qtt":80, "flowr":80}, +
 {"type":13, "id":13, "oid":13, "own":4, "qtt_requ":80, "qtt_prov":10, "qtt":10, "flowr":10}]+
]}
(1 row)

market=# select fackmvt();
market=# select fsubmitbarter(1,'d',NULL,'q1',80,'q3',10,NULL);
market=# select * from femptystack();
market=# select id,nbc,grp,own_src,own_dst,qtt,nat from tmvt;
 id | nbc | grp | own_src | own_dst | qtt | nat
++++++
 11 | 3 | 11 | d | b | 10 | q3
 12 | 3 | 11 | b | a | 20 | q2
 13 | 3 | 11 | a | d | 80 | q1
(3 rows)
market=# select fackmvt();select fackmvt();select fackmvt();

A single row is produced by fsubmitquote() with a field json of the table tmvt giving qtt_requ
and qtt_prov that can be obtained with the best path of the market, and the details of the cycle
found. This single row does not represent an exchange, but the result of the quote.

A barter of these quantities give the expected cycle.

page 9/21

openBarter

5 Principle
The barter market accepts exchange orders of the form:

I propose a value in exchange of a value of an other quality for a minimum quantity

submitted by the owner of the value proposed.

The market finds potential exchange cycles with two partners or more. Agreements can be formed
from them, defined by a set of movements where each partner provides a quantity to an other and
receives at the same time a value of an other quality. By allowing more than two partners the
liquidity of the market is not limited by the double coincidence of wants problem.

For an order, we define ω as a ratio between provided quantity and minimum required quantity. This
ratio measures the will to exchange as would do a price but without the need of a currency. The
dimension of ω depends on qualities exchanges and compare such values would not make any sense
when these qualities are different. For a cycle formed by several orders where quality offered and
required match, we compute an Ω as the product of ω of orders of a cycle. Since Ω a dimensionless
quantity, compare these values could have a meaning. When Ω is lower than 1, the collective will to
exchange is not sufficient to find an agreement between partners due to minimum quantities
required. When Ω is 1 it is easy to find an agreement than match minimum ratio ω required by
maximizing the flow of values through the cycle within limits defined by available quantities. When
Ω is greater than 1 the excess Ω-1 can be shared fairly for the benefit of partners in order to form
the exchange. This share changes ω to a value ω'=ω∗Ω

−1/n where n is the number of partners so
that the product of ω' is 1. The value ω' lower than or equal to ω represents a benefit for the
corresponding partner. The share is fair since the ratio ω ' /ω is the same for all partners of the
cycle.

When an owner submits an order, that's because he considers that the value expected is more useful
that the one he owns, and ω measures how much this exchange would be useful for him. For a given
cycle Ω is proportional to any ω of it's orders since Ω is their product. In other words Ω is an
aggregate common to all partners of the cycle measuring how much the exchange is useful for
them, even if usefulness depends on the view point. When a common order belongs to several
possible exchange cycles, the author of this order can use Ω as the measurement of the usefulness of
potential cycles and compare them to choose the best. For bilateral exchanges, it has be shown 1 that
the choice of the cycle having Ω maximum is the same as what would be obtained with the best
price rule. In other words, Ω maximization extends the best price rule to non-bilateral exchanges.
By maximizing Ω the market meets the goal of utilitarians by maximizing utility but with a
definition of utility that would be independent of any currency. Most importantly, it maximizes the
collective will to exchange and the common wealth.

 The extension of the best price rule to non-bilateral exchange is not unique, and could also be
obtained by maximizing individual profit1 instead of the collective will to exchange. The use of
money maintains a confusion between these two distinct goals with assessed social economic
consequences.

1 minimize ω', that is minimizing Ω
−1 /n

or maximizing Ω
1 /n

instead of Ω .

page 10/21

openBarter

This market proceeds as a regular market – a central limit order book (CLOB) - by processing
orders one after the other. We describe here what is common between these markets. The input of
the market is a flow of orders and it's output is a flow of movements. It records unmatched orders in
an order book. When a new order is submitted, a competition is performed between potential cycles
created by the new order and pending orders in the book to choose the cycle that will form the
exchange. If no matching is found, the new order is added to the book. Otherwise, movements
forming the exchange are produced from the best cycle and the values offered by matched orders
are decreased of the values exchanged. If some cycles remain the competition is repeated as long as
the new order is not exhausted.

The difference between this barter market and a regular CLOB is only that 1) exchange cycles can
be non-bilateral 2) competition is performed with Ω instead of price.

page 11/21

openBarter

6 Interfaces
Interfaces allow insertion of new orders into the input stack and consumption of movements

produced. A batch performs regular submission of orders using the stack as input. The results of this
batch are inserted into the movements table tmvt.

Orders can be a barter, a quote or remove.

For a barter, the owner offers the value provided in exchange of a value required.

A barter can be limit; meaning that exchange cycles produced from this barter will have a ratio
(quantity provided/quantity received) lower or equal to the ratio (qua_prov/qua_requ) of the order.
A barter is best otherwise.

A barter can express a different requirement for a value already offered by a previous barter.
This previous barter is called is parent.

A quote provides information on possible exchange of the market, but does not change the
order book. The result is recorded as a single movement containing informations on the best path of
the market for the qualities that would be required and provided.

A barter can be removed from the order book.

6.1 Input

6.1.1 barter

A barter is submitted with the following syntax:

=> SELECT * FROM
fsubmitbarter(type,own,oid,qua_requ,qtt_requ,qua_prov,qtt,duration);

Where:

type int 1 barter limit

2 barter best

own text the name of the owner,

oid int id of a parent order,

qua_requ text the quality required,

qtt_requ int8 Defines ω = qtt_prov/qtt_requ with the field qtt_prov ,

qua_prov text the quality provided.

qtt_prov int8 Defines ω = qtt_prov/qtt_requ with the field qtt_requ ,

page 12/21

openBarter

qtt int8 The quantity provided

Duration duration Validity delay of the order. It has the type interval of postgres, for example:
'1 hour'::interval

The response has the type yressubmit with the field 'id' and 'diag'. It returns diag=0 and an int in
the id field. This id is given by the market to this order. It can be used later in other child orders or
movements. On error, diag contains the code of the error, and id is 0.

For a parent order, it is of the form:

=> SELECT * FROM
fsubmitbarter(type,own,NULL,qua_requ,qtt_requ,qua_prov,qtt_prov,qtt,dura
tion);

oid is set to NULL when this barter is a parent order.

For a child order:

=> SELECT * FROM
fsubmitbarter(type,own,oid,qua_requ,qtt_requ,NULL,NULL,NULL);

it defines a new requirement for a value already offered by a parent order oid. The fields
qua_prov,qtt_prov and duration are ignored.

Possible error codes returned by diag are:

diag meaning

0 no error. The field id of the response is the number given by the market to the order,

-1 qua_prov and qua_requ must be different

-2 Incorrect parent order

-4 Incorrect child order

6.1.2 quotation

For a regular market, the result of a quote depends on the quality, the quantity of the value
quoted and on the price . It depends here on the couple (quality provided, quality required), on the
ratio ω (qtt_prov/qtt_requ) and on qtt, the quantity provided. For a given couple (quality provided,
quality required), a prequote gives paths requiring and providing theses qualities, while a quote
gives the result that would be obtained with a barter order.

6.1.2.1 quote

A quote is submitted with the following syntaxes:

It can be form 1:

page 13/21

openBarter

=> SELECT * FROM fsubmitquote(type,own,qua_requ,qua_prov);

or form2:

=> SELECT * FROM
fsubmitquote(type,own,qua_requ,qtt_requ,qua_prov,qtt_prov);

or form 3:

=> SELECT * FROM
fsubmitquote(type,own,qua_requ,qtt_requ,qua_prov,qtt_prov,qtt);

All these forms return the quantities that would be given and received, and the parameters of the
barter command (qtt_requ,qtt_prov,qtt) that would produce this result. The first form gives the flow
for the best ω, the second the maximum quantity available for the given ω, and the last form gives
the result that would be returned by a barter with these parameters.

The response has the type yressubmit with the field 'id' and 'diag'. Returns diag=0 and an int in
the id field. This id is the primary key given by the market to this order that will be referred later in
other orders or movements. On error, diag contains the code of the error, and id is 0.

A quote does not insert anything into the order book, but records a dummy movement into the
movement table with the informations required.

Possible error codes returned by diag are:

diag meaning

0 no error. The field id is the number given by the market to the order,

-1 qua_prov and qua_requ must be different

-3 Incorrect order type

A quote submission produces a movement where the json field describes the best cycles of the
market require-ring and providing the qualities specified. This json string is described in the
paragraph 6.1.2.3.

6.1.2.2 prequote

A prequote is submitted with the following syntaxes:

=> SELECT * FROM fsubmitprequote(own,qua_requ,qua_prov);

A prequote submission produces a movement where the json field describes the paths of the
market require-ring and providing the qualities specified. This json string is described in the
paragraph 6.1.2.3.

There is no barter between orders since ω is not defined. It describes the maximum flow of
values going through paths.

page 14/21

openBarter

6.1.2.3 Json returned by a quote or a prequote

The movement produced by a quote or a prequote has a json field, a dictionary with the
following fields:

qtt_requ int Fields qtt_prov,qtt_requ,qtt are what should contain the barter order to
obtain the paths if this barter was submitted.

These fields are 0 for a prequote.
qtt_prov int

qtt int

qtt_reci int quantity received, sum of quantities produced by the paths

qtt_give int the quality given, sum of quantities required by the paths

paths text The details of paths found

paths is a list of dictionaries representing a path. The dictionary has the following fields:

type int The type of the order

id int id of the order

oid int oid of the order

own int owner of the order

qtt_requ int defines ω of this order (qtt_prov/qtt_requ)

qtt_prov int

qtt int Quantity remaining available for this order

flowr int quantity of the flow for this order

For example:

select * from fsubmitquote(1,'d','q2',10,'q1',10);
 id | diag
+
 27 | 0
(1 row)

select json from fproducemvt();
json

{"qtt_requ":10,"qtt_prov":10,"qtt":41,"qtt_reci":60,"qtt_give":41,

page 15/21

openBarter

"paths":[+
 [{"type":1, "id":23, "oid":23, "own":3, "qtt_requ":10, "qtt_prov":30,
"qtt":30, "flowr":30},
{"type":133, "id":27, "oid":27, "own":4, "qtt_requ":10, "qtt_prov":10,
"qtt":17, "flowr":17}],
[{"type":1, "id":22, "oid":22, "own":2, "qtt_requ":10, "qtt_prov":20,
"qtt":20, "flowr":20},
{"type":133, "id":27, "oid":27, "own":4, "qtt_requ":10, "qtt_prov":10,
"qtt":14, "flowr":14}],
[{"type":2, "id":21, "oid":21, "own":1, "qtt_requ":10, "qtt_prov":10,
"qtt":10, "flowr":10},
{"type":133, "id":27, "oid":27, "own":4, "qtt_requ":10, "qtt_prov":10,
"qtt":10, "flowr":10}]]}

Represents 3 cycles of orders, the last order representing the quote (type&15=128). Quantities flowr
of this order are 17,14 and 10, and the sum is 41. The order before the order representing the quote
is that providing a flow, the values are 30,20,10 and the sum is 60. qtt_reci and qtt_give are those
sums.

Meaning that the order:

=> SELECT * FROM fsubmitbarter(1,'d',NULL,'q2',10,'q1',10,41,NULL);
would produce movements providing 60 q2 to d in exchange of 41 q1.

6.2 Batch
The function that can be called to consume the input stack is the following:

=> SELECT * FROM fproducemvt();
This function unstack a single order.

=> SELECT * FROM femtystack();
This function unstack all order of tstack in a single transaction.

6.3 Read the order book
The order book can be red with the following select:

=> SELECT * FROM vorder o WHERE o.qua_prov ='gold' DESC LIMIT 10
The parameters in bold give the quality provided.

The columns returns are the following:

id int Serial number of the order

own text Author of the order

oid int Referenced order

qtt_requ int8 Quantity required

qua_requ text Quality required

page 16/21

openBarter

qtt_prov int8 Quantity provided

qua_prov text Quality provided

qtt int8 Quantity provided remaining for barter

created datetime When the order was submitted

Qtt is the quantity available for exchange while qtt_prov and qtt_requ defined the ω of the
order. Qtt is reduced each time a movement is created from this order.

When oid is not NULL, the fields qtt,qtt_prov are those of the order referenced by oid.

6.4 Output
The table of movements can be read with a SELECT statement.

This table contains results of barter. Each row is a statement where an owner (own_src)
provides a value (nat,qtt) to an other (own_dst).

An exchange cycle produced by a barter is described by rows with the same (grp) field.

A single row is produced with (own_src=own_dst) for a quote or when an order was rejected by
the batch.

A row of the table tmvt has the following fields:

id int Serial number of the movement

type int Field defining the order type:

type & 3 :
 1=LIMIT,2=BEST

type & (64|128):
 0=barter ,64=prequote,128=quote

json text Information provided by quotes or an error message.

nbc int number of movements in the cycle

nbt int number of movements in the transactions

grp int id of the first movement of the cycle

xid int order origin of this movement

usr text database user that inserted the order

xoid int Parent of the order origin of this movement

own_src text owner providing the value

page 17/21

openBarter

own_dst text owner receiving the value

qtt int8 quantity moved

nat text quality moved

ack boolean movement acknowledged (boolean)

exhausted boolean quantity of the order exhausted (boolean)

refused int Error code when order is refused:

0 no error

-1 the parent order was not found in the order book

-2 owner of order and parent are different

-3 the parent have a parent order

When refused !=0 , then then nbc = 1 and nbt = 1

The json field gives a text for this error.

order_created datetime date submission of the parent order if there is one or of the order
otherwise.

created datetime Date of the transaction.

The oldest movement can be accepted with the command:

=> SELECT * FROM fackmvt();
A movement is accepted by the database user that submitted the corresponding order. All
movements with the same (grp) field are removed when they are all accepted.

6.5 Roles
The users must inherit from the role role_client to submit an order, acknowledge a movement or
read tables. A super user can disabled/enabled access of users with the command:

=> REVOQUE ROLE role_co FROM role_client;
=> GRANT ROLE role_co TO role_client;

A single user role_batch is allowed to execute batch functions. A super user can disabled/enabled
access of users with the command:

=> REVOQUE ROLE role_bo FROM role_batch;
=> GRANT ROLE role_bo TO role_batch;

page 18/21

openBarter

7 Parameters
Parameters of the model are the following:

MAXCYLE 64 maximum number of partners of a cycle. This
value can be at maximum 64.

MAXPATHFETCHED 1024 maximum number of cycles on witch competition
occurs

MAXMVTPERTRANS 128 Maximum number of movements produced by a
single transaction.

MAXCYCLE and MAXPATHFETCHED determine the breadth and depth of the exploration of
combination of matching between orders. The default values can be changed by a super user while
the model is running. By increasing these values, the liquidity of the market grows, and the
computation time to process orders increases.

A single transaction can record many cycles, and MAXMVTPERTRANS is used to limit the
volume of data of the transaction. When this limit is reached, the transaction is committed without
any error.

8 Installation

8.1 Build from sources
Following instructions has been tested on linux 32 bits and 64 bits architecture with version 9.2

of postgreSql.

Follow instructions of postgreSql manual to install the sources of the database.

In the contrib/ directory of the sources of postgreSql, install the sources of openbarter using the
package you downloaded from github:

$ cd contrib
$ gunzip olivierchopenBartervx.y.z.tar.gz
$ tar xf olivierchopenBartervx.y.z.tar

the package is compiled with:

$ cd openBarter/src
$ make
$ make install

8.2 Tests
To run tests, cd to openBarter/src and:

$ make installcheck

page 19/21

openBarter

…
============== running regression test queries ==============
test testflow_1 ... ok
...
test testflow_n ... ok
============== shutting down postmaster ==============

=====================
 All n tests passed.
=====================

8.3 Install the model
When the postgreSql server is running, the model can be installed. It is defined by the file

openBarter/src/sql/model.sql. You must connect with a superuser role that is never user for market
operations. When you are in openBarter/src:

$ createdb Upostgres market
$ psql Upostgres market
psql (9.2.0)
Type "help" for help.

market=# \i sql/model.sql
…..

The model does not depend of any schema, and creates roles client and admin if they do not
exist yet. You quit psql by typing ctr-D.

8.4 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1
Berkeley-db is resides in memory instead of files in $PGDATA. This increases global

performance of searches. [Olivier Chaussavoine]

0.1.2
rights of roles of the database model are defined globally using schemas instead of granted

individually for each function. [Olivier Chaussavoine]

0.1.6
ported on postgres9.1.0

0.2.0
The use of berkeleydb is replaced by WITH .. SELECT of PostgreSQL. A new type “flow”

is defined, containing low level calculations. Tests units are functional [Olivier Chaussavoine].

0.2.1
Memory allocation and code cleaned. Tests units are functional [Olivier Chaussavoine].

0.2.2
Core algorithms optimized. Tests units are functional [Olivier Chaussavoine].

ob_fget_omegas(np,nr) provides the list of all prices found, even those not requested.

page 20/21

openBarter

[Olivier Chaussavoine]

0.3.0
The constraint of acyclic graph is removed. Complete redesign. [Olivier Chaussavoine].

0.4.0
quote and prequote added. [Olivier Chaussavoine].

Order rejection mechanism added [Olivier Chaussavoine].

0.4.1
ported on postgreSql 9.2. [Olivier Chaussavoine].

Bug fixes [Olivier Chaussavoine].

0.4.2
Bug fixes [Olivier Chaussavoine].

0.5.0
fgeterrs() optimized, it can be run when the market is running,

index optimization in fcreate_temp()

increasing preformance of fgetprequote(),fgetquote(),fexecquote(),finsertorder()

X6 faster

MAXCYCLE was 8, it can now be up to 64 [Olivier Chaussavoine].

0.6.0
New model with only 4 tables [Olivier Chaussavoine].

0.6.1
Bug fixes [Olivier Chaussavoine].

0.7.0
barter limit, barter best and quote added [Olivier Chaussavoine].

Schema removed.

0.7.1

new forms of quote,

validity delay added to barter orders.

0.8.0

new unit tests,

validity delay added to barter orders.

page 21/21

	1 Introduction
	2 Architecture
	3 Installation
	3.1 Build from sources
	3.2 Tests
	3.3 Install the model

	4 Use cases
	4.1 Non bilateral exchange cycle
	4.2 Several orders for the same value provided
	4.3 BEST and LIMIT barter
	4.4 Quote

	5 Principle
	6 Interfaces
	6.1 Input
	6.1.1 barter
	6.1.2 quotation
	6.1.2.1 quote
	6.1.2.2 prequote
	6.1.2.3 Json returned by a quote or a prequote

	6.2 Batch
	6.3 Read the order book
	6.4 Output
	6.5 Roles

	7 Parameters
	8 Installation
	8.1 Build from sources
	8.2 Tests
	8.3 Install the model
	8.4 Releases

