
openBarter

openBarter implements a barter market place organized as a central limit order book allowing
exchange with more than two partners in a single transaction. It is a matching engine accepting
exchange orders of owners, and providing movements changing ownership of values according to
orders and market rules. It is an extension of postgreSQL.

1 The market rules
An order is expressed by the owner as:

I want to provide a value in exchange of an other value

By value, we mean a couple (quality,quantity) where quality is a name and quantity is an
integer.

The quantity of the value provided is owned by the author of the order, and the quantity of the
value required is the minimum expected in exchange. Obviously, the quality provided must be
different from the quality required.

Two orders are related when the quality provided by the first equals the one required by the
other. When related orders define a single cycle, these orders are matched, producing an agreement
recorded by a single transaction a set of movements.

Exchange agreements are formed when the ratio (quantity provided/quantity required)
produced by the agreement is smaller than that defined by the order. This rule extends the minimum
limit of the order to the case where the quantity provided by the agreement is not that of the order.

When several exchange comply with this constraint, the best (minimum ratio quantity
provided/quantity required) is chosen for the final agreement.

Due to the number of possible combinations, two limits has been set:

• the maximum number of partners of an agreement is MAXCYCLE (<8).

• the number of agreements on which the competition is performed is limited to
MAXORDERFETCH (by default 100).

Even with these limits, openBarter remains far more efficient than what could be done by hand
without any computational assistance.

Among all possible agreements, the second limit explores agreements having the smallest
number of partners.

 MovementsopenBarterOrders

2 The model
Let ω be the a ratio (quantity provided/quantity required) defined by an order. It measures the

pain to give an amount of the quality provided compared to the pleasure to receive a unit of the
quality required. The dimension of this measurement is (quality provided/quality required).

For a cycle of orders, let be Ω the product of their ω. This product is non dimensional.

When Ω equals to 1, an agreement can be formed where each partner provides some value to
an other.

When Ω≠1, ω are divided by the geometric mean of ω of the cycle. This division converts ω
to ω' in such a way that the product of ω' equals to 1 . This adjustment is a bartering. It is fair when
all partners are distinct. When it is not the case, the fairness is maintained by sharing first between
partners, then sharing between orders of each partner.

To satisfy the minimum quantity required by the order, we must have ω>ω', that is Ω>1.
Otherwise, the cycle is ignored.

When an order forms several cycles, a competition is performed between them by choosing the
one having the maximum Ω. This rule applied to cycles formed by two orders is equivalent to the
best price rule of a regular market.

3 Implementation
The market is seen as a directed graph where orders define nodes, and relations between orders
define arrows. This graph is used to transform orders into agreements when cycles appear on this
graph. This can occurs each time an order is added. A competition also occurs between possible
cycles when more than one cycles are found. Quantities corresponding to an agreement reduce
quantities provided by orders.

The main time consuming primitives of the server are:

• make a quote,

• make an order.

openBarter is an extension of postgreSQL. Stored procedures act on a model representing qualities,
owners, orders and movements.

3.1 Database model
The database is described by src/sql/model.sql. It consists in related tables, stored procedures

and a special type called “flow” representing a draft agreement that performs fast calculations in C
language.

3.1.1 Order book

A table torder represents the order book. When an order is inserted in this table and a cycle is
found with Ω≥1 movements are created are inserted in a table tmvt, decreasing the quantity
provided by the order.

An order is be moved out from this book when it is empty (the provided quantity is 0) to an
other table torderremoved. This keeps the order book as small as possible for performance.

3.1.2 Market opening and closing

The life cycle of the market is represented as follows:

A client can use the market during the service phase. Clients must remove all remaining movements
and orders at the closure phase. The preparation phase can start at this condition. Then tables are
truncated, ready and for a new service cycle.

The service phase stops and closure starts when admin executes:

 SELECT fclose();
All remaining orders are converted to dummy movements (owner to the same owner).

The closure phase stops and preparation starts when admin user executes:

 SELECT fprepare();
This function can be used only when the table of movements tmvt is empty.

The phase preparation stops and service starts when admin executes:

preparation service closure preparation

 SELECT fopen();
The market is opened when the market is intialized.

3.1.3 Users

PostgreSQL implements an extensive set of security mechanisms including authentification and
access rules. All objects of openbarter can only be modified through predefined functions. A single
user “admin” is allowed to perform administration tasks. A role “client” groups the rest of the
database users. Clients can get a quote and set an order only during the service phase. They can
remove movements and orders only during service and closure phase.

The admin can register a new client, open or close the market, but cannot participate to the market.

The super user that creates the database is distinct from admin and clients. This super user must be
used only for this purpose.

3.1.4 Objects

All objects are stored in a schema of the database having the name 't'.

Table Description

tmvt History of movements where the ownership of values are
modified. It is the output flow of the market.

tmvtremoved Movement removed

torder Orders, value provided, value required and owner

towner Owners

tquality Qualities

torderremoved Orders removed

tuser Description of clients

tmarket History of market

3.1.4.1 Owner

Users should not be confused with owners. Owners are the authors of orders, while users connect to
the database and act on the market on the behalf of owners.

3.1.4.2 Quality

A quality is a string of the form <client_name>/<quality_name>, and belongs to a single client. For
example “bankofbali/coconuts” belong to “bankofbali”.

The quality provided by an order must belong to the client that insert it.

Likewise, a client can only remove movements whose quality belongs to him.

A value belongs to an owner while a quality belongs to a client.

3.1.4.3 Movement

Agreement are formed by a set of movements where each partner provides a value he owns to an
other partner. An agreement is simply a set of successive record in the table tmvt, where each
defines the value, the provider, the receiver (see §3.2.9 for details).

3.2 Application programming interface
The “market” role acts through stored procedures that must be integrated in transactions in the read-
commited mode that is the default mode of postgreSQL.

The following list presents functions and views. Some low level routines are written in C language,
integrated in a special type “flow”.

Function and views action Defined in Roles allowed

finsertorder Inserts an order sql/order.sql market

fgetquote Gets a quote sql/quote.sql market

fremoveorder Removes an order sql/order.sql market

fgetstats Produces statistics sql/stat.sql admin

vorder List of orders sql/init.sql

vorderremoved List of removed orders sql/init.sql

vmvt List of movements sql/init.sql

vmarket Market status sql/admin.sql

fopen Open the market sql/admin.sql admin

fprepare Prepare market opening sql/admin.sql admin

fclose Close the market sql/admin.sql admin

fcreateuser Creates a user sql/admin.sql admin

fremoveagreement Remove agreement sql/user.sql market

In case of error, an exception is raised depending on it's type.

Error codes Type

YA001 Quantity of a given quality overflows

YA002 accounting error

YA003 internal error

YU001 abort dues to incorrect use of a primitive

In the following, int is used for 32 bit integer, and int8 for 64 bits integer.

3.2.1 finsertorder

SELECT finsertorder(
_owner text,
_qualityprovided text,

_qttprovided int8,
_qttrequired int8,
_qualityrequired text);

conditions :

• _qttprovided > 0

• _qttrequired > 0

the function inserts an order made by _owner providing the value (_qttprovided,_qualityprovided)
in exchange of a a value having the _qualityrequired and for a minimum quantity of _qttrequired.

The order is inserted in the order book, and possible cycles are found.

Returns a list of records (_uuid text,_dim int,_grp int) representing agreement produced. _uuid
is a unique label given by the market to an order and common to all records. _dim is the number of
partners of the agreement, and _grp is the reference grouping movements representing the
agreement in the tmvt table.

3.2.2 fgetquote

SELECT fgetquote (_owner text,_qualityprovided text,_qualityrequired text);
conditions :

• _qualityprovided and _qualityrequired has been already recorded by previous orders,

Gets a quote for the given couple (_qualityprovided, _qualityrequired) and or the owner _owner.

The quote depends on the owner because fairness of the bartering depends on it (see §2).

Returns records (_dim,_quantityprovided,_quantityrequired), ordered by increasing ratio
_quantityprovided/_quantityrequired. _dim is the number of partners of the exchange. Each record
represents a cyclec that would be produced if an order with such qualities was submitted. The first
ratio has the best ratio.

If for example fgetomega('q/copper','q/iron') returns: (3,5,8),(4,9,10)

then an order finsertorder('me','q/copper',5,8,'q/iron') would produce an agreement with 3 patners
exchanging 5 'copper' for 8 'iron'.

and an order finsertorder('me','q/copper',9,10,'q/iron') submitted immediately after would exchange
9 'copper' for 10 'iron'.

It also mean that a total quantity of 8+10 of 'iron' is available on the market for exchange with
'copper'.

3.2.3 fremoveorder

SELECT fremoveorder(_uuid text)

conditions:

• an order with the label _uuid exists

The order is removed from the order book.

Returns a row representing the order just removed, as the view vorder does.

3.2.4 fremoveagreement

SELECT fremoveagreement(_grp int)
conditions :

• an agreement _grp exists

The function is called by a client when all movements of the exchange are red from the table of
movements. It moves movements of this exchange belonging to this client to the table
tmvtremoved. The function returns an integer tha is the number of movements removed.

3.2.5 fcreateuser

SELECT fcreateuser(_username text)

The function creates the user and provides access to he database with the role client. It can only be
executed by admin.

3.2.6 fstats

SELECT fstats(_extra bool)

gives general informations about the database:

Column Type

with MAXCYCLE and MAXORDERFETCH int

 Number of qualities int

 Number of owners int

 Number of orders in the order book int

 Number of order removed int

 Number of connections between orders * int

 Number of movements int

 For each _dim, number of agreements with _dim partners * int

 Total number of agreements * int

 Errors on quantities in movements (significant until some movement is removed) * int

 Errors on qualities in movements (significant until some movement is removed) * int

Lines with (*) are only provided when the _extra parameter is true.

3.2.7 vorder

Gives a description of the order.

 Column Type Meaning

id int Internal reference of the order

uuid text External reference of the order

owner text Name of the owner

qua_requ text Quality required

qtt_requ int8 Quantity required

qua_requ text Quality required

qtt_requ int8 Quantity required

qtt int8 Quantity not yet exchanged for this order

created timestamp Time when the order was inserted

updated timestamp Time when the order was last updated

examples

SELECT * FROM vorder WHERE owner='jack';
List of orders owned by the owner 'jack'.

3.2.8 vorderremoved

Same as vorder.

When the quantity left in order is 0, the order is appears in this view. When the order is removed by
a client, it also appears here with a qtt >0.

3.2.9 vmvt

It is the list of movements.

Column Type Meaning

id int Internal id of the movement

nb int Number of movements of the agreement

oruuid text Reference to the order that produced it

grp int id of the agreement. It is the id of the first movement of this
agreement.

provider text Owner providing the value

nat text Quality of the value moved

qtt int8 Quantity of the value moved

receiver text Owner receiving the value

created timestamp Time when the agreement was formed

examples:

SELECT * FROM vmvt WHERE quality='gold';
List of movements of the quality 'gold'.

3.2.10 vmvtremoved

Same as vmvt but for the table tmvtremoved.

3.3 Installation

3.3.1 Build from sources

Following instructions has been experimented on linux 32 bits and 64 bits architecture.

If you are in the contrib/ directory of postgres, and have unzipped the package into openBarter:

>> cd openBarter/src
>> make
>> make install

Restart postgres server, and verify test are running:

>> make check
…
============== running regression test queries ==============
test testflow_1 ... ok
test testflow_2 ... ok
test testflow_3 ... ok
test testflow_4 ... ok
============== shutting down postmaster ==============

=====================
 All 4 tests passed.
=====================

3.3.2 Install the model

The model is defined by the file openBarter/src/sql/model.sql. It is recommended to execute it
with a superuser role that is never user for market operations. When you are in openBarter/src:

>> createdb market
>> psql market
market=# CREATE SCHEMA t;
market=# SET SCHEMA 't';
market=# \i sql/model.sql
market=# GRANT USAGE ON SCHEMA t TO market,admin;
market=# REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA t FROM public;
market=# REVOKE ALL ON ALL TABLES IN SCHEMA t FROM public;

The model does not depend of any schema, and creates roles “market”,”client” and “admin” if
they do not exist yet, and modify them otherwise.

To start operation, just connect to the database as admin, and create some clients with the
function like this:

>> psql -Uadmin market
market=> SELECT t.createuser('username')

3.4 Releases
0.1.0

First release. Tests units are functional [Olivier Chaussavoine].

0.1.1
Berkeley-db is resides in memory instead of files in $PGDATA. This increases global

performance of searches. [Olivier Chaussavoine]

0.1.2
rights of roles of the database model are defined globally using schemas instead of granted

individually for each function. [Olivier Chaussavoine]

0.1.6
ported on postgres9.1.0

0.2.0
The use of berkeleydb is replaced by WITH .. SELECT of PostgreSQL. A new type “flow”

is defined, containing low level calculations. Tests units are functional [Olivier Chaussavoine].

0.2.1
Memory allocation and code cleaned. Tests units are functional [Olivier Chaussavoine].

0.2.2
Core algorithms optimized. Tests units are functional [Olivier Chaussavoine].

ob_fget_omegas(np,nr) provides the list of all prices found, even those not requested.
[Olivier Chaussavoine]

1.0.0
Complete redesign. [Olivier Chaussavoine].

	1 The market rules
	2 The model
	3 Implementation
	3.1 Database model
	3.1.1 Order book
	3.1.2 Market opening and closing
	3.1.3 Users
	3.1.4 Objects
	3.1.4.1 Owner
	3.1.4.2 Quality
	3.1.4.3 Movement

	3.2 Application programming interface
	3.2.1 finsertorder
	3.2.2 fgetquote
	3.2.3 fremoveorder
	3.2.4 fremoveagreement
	3.2.5 fcreateuser
	3.2.6 fstats
	3.2.7 vorder
	3.2.8 vorderremoved
	3.2.9 vmvt
	3.2.10 vmvtremoved

	3.3 Installation
	3.3.1 Build from sources
	3.3.2 Install the model

	3.4 Releases

