
E-Maj 2.0.1
-

a PostgreSQL extension

French acronym for

Enregistrement des Mises A Jour
i.e. “updates recording"



Components

● E-Maj
– PostgreSQL extension

– Open Source (GPL license)

– Available on
● pgxn.org
● github (https://github.com/beaud76/emaj)

● Plug-in for phpPgAdmin 5.1+
– Available on github

(https://github.com/beaud76/emaj_ppa_plugin)
● Documentation source also available on github

(https://github.com/beaud76/emaj_doc)



E-Maj objectives

● Record application tables updates in order to: 
– look at them (audit)
– cancel them if needed

● Usable 
– with applications in test or in production
– with database of various size



E-Maj Requirements

● Reliability:

– Absolute integrity of databases after « rollbacks »
– Manage all usual objects (tables, sequences, constraints,...)

● Ease of use for all users (DBA, production people, application 
developers and testers,...):

– Easy to understand and use
– Easy to integrate into an automatized production (« script-able »)

● Performance:

– Limited overhead of the log (a few percent)
– Acceptable « rollback » duration

● Maintainability

● Security



E-Maj Concepts

● Tables group = a set of tables and/or sequences belonging 
to one or several schemas and having the same life cycle ;  
it's the only object manipulated by users

● Mark = stable point in the life of a tables group, identified 
by a name and whose state can be set back

● Rollback = positioning of a tables group at its state when 
a mark was previously set
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E-Maj Installation
● Download and install the extension in the 

share/postgres/extension directory of the PostgreSQL software 

● Copy and adapt the sql/emaj.control file directly into the 
share/postgres/extension directory

● Connect to the targer database as superuser and execute 

– CREATE EXTENSION IF NOT EXISTS DBLINK; (recommended)

– CREATE EXTENSION EMAJ;

● The installation in the database adds:

– 1 schema 'emaj' with about 90 functions, 12 technical tables, 7 types, 
1 view and 1 sequence

– 2 event triggers

– 2 roles



E-Maj Initialisation
● 1) Populate emaj_group_def table to define groups and 

the tables/sequences they contain

● 2) For each group :

– SELECT emaj_create_group (group, 
is_rollbackable);
=> creates for each application table:

● 1 log table + 1 sequence into an 'emaj' schema
● 1 trigger + 1 function to log table updates

– SELECT emaj_drop_group (group) 
 … drops a previously created group



E-Maj: Main functions

● emaj_start_group (group, mark)
– Activates log triggers and set an initial mark

● emaj_set_mark_group (group, mark)
– Sets an intermediate mark

● emaj_rollback_group (group, mark)
– Rollbacks tables and sequences of the group to their 

state at mark set
● emaj_logged_rollback_group (group, mark)

– Similar as emaj_rollback_group function but the 
rollback can be later cancelled (rolled-back!)

● emaj_stop_group (group [,mark])
– Deactivates log triggers => rollback no longer possible



E-Maj: tables group life cycle
« unknown »

Create group

« idle »

Drop group

« logging »

Start groupStop group

Rollback group Set a mark



A typical E-Maj sequence ...

Log tables
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Log tables

● Examining log tables may largely help application 
debugging

● A log table contains

– The same columns as the associated application table

– And some technical columns

● A changed row in an application table generates

– 1 log row for an INSERT (new row)

– 1 log row for a DELETE (old row)

– 2 log rows for an UPDATE (old and new rows)

● A TRUNCATE generates 1 log row



Technical columns of log tables

● 8 technical columns at the end of each log row

– emaj_verb : type of change - INS/UPD/DEL/TRU

– emaj_tuple : type of log row - OLD/NEW

– emaj_gid : internal sequence number

– emaj_changed : change timestamp - clock_timestamp()

– emaj_txid : transaction identifier - txid_current()

– emaj_user : client connection role - session_user

– emaj_user_ip : client ip address - inet_client_addr()

– emaj_user_port : client ip port - inet_client_port()



« Simple Rollback »
● Log triggers are de-activated

● Each table is set to its correct state using an optimized algorithm

– Processes only once each primary key

– Takes into account potential foreign keys 
● Cancelled logs and marks are deleted
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« Logged Rollback » (1/2)
● Log triggers are NOT de-activated

● Cancelled logs and marks are kept

● Mark automatically set before and after the rollback

– RLBK_<marque>_<HH.MI.SS.MS>_START

– RLBK_<marque>_<HH.MI.SS.MS>_DONE

● Example of logged rollback … canceled

M1
..._M2_..._START

Del
4

..._M2_..._DONE

emaj_logged_rollback_group(M2)

emaj_rollback_group(M3)

M2 M3

Ins
1

Ins
2

Ins
3

Upd
2->4

Del
1

Ins
1

Ins
2

Ins
5

Del
2

Del
1

Del
5

Ins
4



« Logged Rollback » (2/2)
● Ideal for tests : avoid numerous intermediate saves to replay old 

tests

● During the rollback operation, tables remain accessible for reads

● A logged rollback can be later transformed into a simple 
rollback => "rollback consolidation"

– Intermediate logs and marks are deleted, reclaiming log 
space

– emaj_consolidate_rollback_group(group, 
end_rollback_mark)

– Tables may be updated in parallel



Monitor in progress rollbacks

● Needs dblink, and the setting of the 
“dblink_user_password” parameter in the emaj_param 
table

● SELECT * FROM emaj.emaj_rollback_activity();

● Returns

– Rollback characteristics (group, mark...)

– Rollback state

– Elapse time

– Estimate of the remaining duration and the % done



Protection against accidental 
rollbacks

● 2 functions to manage the tables group protection
– emaj_protect_group (group)

– emaj_unprotect_group (group)

● 2 functions to manage the marks protection
– emaj_protect_mark_group (group, mark)

– emaj_unprotect_mark_group (group, mark)

set_mark M1
rollback M2 set_mark M2

set_mark M3 rollback M1protect_mark M2

RefusedOK



E-Maj possible usages

● Largely helps application tests in providing a way to 
quickly rollback updates issued by a run and repeat those 
tests

● In production, provides a rollback capability on batch 
processing without being obliged to either pg_dump / 
restore tables or physically save and restore the entire 
cluster disk space

– All the more interesting as tables are large, with 
relatively limited updates



Marks usage strategies (1/2)

● « mono-mark » usage to minimise disk space use
– repeat

● start_group (group, mark)
● processing #i
● stop_group (group)

● « multi-marks » usage for more flexibility in rollbacks
– start_group (group, mark1)
– repeat

● processing #i
● emaj_set_mark (group, mark #i+1)

– stop_group (group)



Marks usage strategies (2/2)

● Permanent logging and regular cancellation of oldest 
marks (« rolling log »)

– repeat
● processing #i
● emaj_set_mark (group, mark #i+1)
● emaj_delete_before_mark (group, mark #j)

     (warning, marks deletion may be costly if the logs part to erase is 
important)



Multi-groups functions

● To manage several groups in a single transaction:
– emaj_start_groups (groups array, mark)

– emaj_stop_groups (groups array)

– emaj_set_mark_groups (groups array, mark)

– emaj_rollback_groups (groups array, mark)

– emaj_logged_rollback_groups (groups array, mark)
● 2 syntaxes for a groups array

– ARRAY['group 1','group 2',...]

– '{"group 1", "group 2",...}'



Marks management functions

● emaj_comment_mark_group (group, mark)
– Sets, modifies or deletes a comment on a mark

● emaj_rename_mark_group (group, old mark, new mark)
– Renames a mark

● emaj_delete_mark_group (group, mark)

– Suppress a mark

● emaj_delete_before_mark_group (group, mark)
– Suppress all marks preceeding the supplied mark



Other groups management 
functions
● emaj_comment_group (group, comment)

– Sets, modifies or deletes a comment on a group

● emaj_reset_group (group)
– Purges log tables before the next emaj_start_group call 

(and reclaims disk space)

● emaj_force_stop_group (group)
– Forces a group stop



Other rollbacks management 
functions
● emaj_estimate_rollback_group (group, mark)

– Estimates the time needed to rollback a group to a 
mark

● emaj_consolidate_rollback_group (group, mark)
– Consolidate a logged rollback identified by the tables 

group and the generated end rollback mark. It 
transforms an unlogged rollback into a logged 
rollback by deleting all marks and logs between the 
rollback target mark and the end rollback mark.

● emaj_get_consolidable_rollbacks ()
– List rollback operations that may be consolidated



Statistic functions

● emaj_log_stat_group  (group, begin_mark, end_mark)
– Quickly provides per table statistics about the number 

of rows in log tables between 2 marks or between a 
mark and the current situation

● emaj_detailed_log_stat_group  (group, begin_mark, 
end_mark)

– Delivers statistics from log tables on updates between 
2 marks, 

– Per table, per statement type (INSERT / UPDATE / 
DELETE) and per ROLE that initiated the updates



Export functions

● emaj_snap_group (group, directory, copy_options)
– Snaps all tables and sequences of a group on individual 

files into a directory

● emaj_snap_log_group (group, start_mark, end_mark, 
directory, copy_options)

– Snaps part of all log tables and sequences of a group 
on individual files into a directory

● emaj_gen_sql_group (group, start_mark, end_mark, 
file_pathname [, tables/seq_list])

– Generates a sql script replaying updates recorded 
between 2 marks for all or several tables and 
sequences of a tables group



Other functions

● emaj_find_previous_mark_group (group, timestamp) or
emaj_find_previous_mark_group (group, mark)

– Retrieves the mark name immediately preceeding a 
point in time or another mark

● emaj_verify_all ()
– Verifies the E-Maj environment consistency



For large databases...

● Dedicated tablespaces may be used for log tables 
and indexes

– tspemaj tablespace used by default if it exists

– To use other tablespaces, 
● Create them 
● Configure its use in emaj_group_def table

● Secondary E-Maj schemas may contain log objects
– To be configured in emaj_group_def table

– Schemas are created and dropped by E-Maj



Parallel rollback client

● A php module performs parallel restore

● Acts as a client for the database

● Automatically spreads the tables to rollback into a given 
number of sessions

● Performs the parallel rollback in a unique transaction
( max_prepared_transaction >= #sessions) 

● emajParallelRollback.php -d <database> -h <host> -p <port> 
-U <user> -W <password> -g <group_name or groups_list> 
-m <mark> -s <#sessions> [-l]

● Other options: --help, -v, --version

● Needs php with the PostgreSQL extension



Rollbacks monitoring client
● A php module to monitor in progress or recently completed 

rollback operations

● emajRollbackMonitor.php -d <database> -h <host> -p 
<port> -U <user> -W <password> -n <#iterations> -i 
<refresh_interval_in_seconds> -l <#completed_rollbacks> -a 
<completed_rollbacks_history_in_hours>

● Other options : --help, -v, --version

 E-Maj (version 1.1.0) - Monitoring rollbacks activity
---------------------------------------------------------------

04/07/2013 - 12:07:17
** rollback 35 started at 2013-07-04 12:06:21.474217+02 for groups {myGroup1}
   status: COMMITTED ; ended at 2013-07-04 12:06:21.787615+02 
-> rollback 36 started at 2013-07-04 12:04:31.769992+02 for groups {group1232}
   status: EXECUTING ; completion 89 % ; 00:00:20 remaining
-> rollback 37 started at 2013-07-04 12:04:21.894546+02 for groups {group1233}
   status: LOCKING ; completion 0 % ; 00:22:20 remaining



Reliability (1/2)

● Many checks, in particular at start_group, set_mark_group 
and rollback_group times: 

– Do all tables, sequences, functions, triggers exist ?
– Are we sure that all application tables and their log tables 

are consistent (columns names and types) ?
● Strong locks on tables at start_group, set_mark_group and 

rollback_group times to be sure no transaction are 
currently accessing/updating application tables

● Rollback all tables et sequences in a single transaction



Reliability (2/2)

● TRUNCATE statements are blocked for logging 
rollbackable groups

● For the most recent PostgreSQL versions (9.3+), some 
“event triggers” block some unattented component drops 
or changes (tables, sequences, functions...)

– 2 functions to disable/re-enable the blocking
● emaj_disable_protection_by_event_triggers()
● emaj_enable_protection_by_event_triggers()



Security

● 2 roles that can be granted :
– emaj_adm for … E-Maj administration

– emaj_viewer to just be able to look at E-Maj 
objects (logs, marks, statistics)

● E-Maj objects are only created by a super-user or a 
member of emaj_adm 

● No other right is granted on the E-Maj schemas, tables 
and functions

● Log triggers are created as « SECURITY DEFINER »
– No need to grant extra rights on application tables

● Protection against SQL injections



Performances

● Log overhead
– Highly depends on hardware and on the application 

read/write SQL ratio

– Typically a few % on elapse times

● Rollback duration
– Highly depends on hardware and database structure 

(row sizes, indexes, constraints...)



PhpPgAdmin plug-in

● Fully integrated into 
phpPgAdmin 5.1+

● Helps administrators and 
viewers

● Shows all E-Maj objects (groups, marks...) and 
their attributes

● Allows all possible actions on E-Maj objects
● Justifies by itself the installation of phpPgAdmin 



Current limits

● Since E-Maj 2.0.0, the minimum required PostgreSQL 
version is 9.1

● Every application table belonging to a rollbackable group 
needs a PRIMARY KEY

● DDL statement cannot be managed by E-Maj



To conclude...

● More information in the documentation + 
README and CHANGES files

● Many thanks for their help to :
– Andreas Scherbaum, Jean-Paul Argudo and Dalibo 

team, CNAF DBAs team, Ronan Dunklau, Don 
Levine

– People who already contacted me for comments, 
requests...

● Feel free to email: phb<dot>emaj<at>free<dot>fr
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