
E-Maj 2.0.1
-

a PostgreSQL extension

French acronym for

Enregistrement des Mises A Jour
i.e. “updates recording"

Components

● E-Maj
– PostgreSQL extension

– Open Source (GPL license)

– Available on
● pgxn.org
● github (https://github.com/beaud76/emaj)

● Plug-in for phpPgAdmin 5.1+
– Available on github

(https://github.com/beaud76/emaj_ppa_plugin)
● Documentation source also available on github

(https://github.com/beaud76/emaj_doc)

E-Maj objectives

● Record application tables updates in order to:
– look at them (audit)
– cancel them if needed

● Usable
– with applications in test or in production
– with database of various size

E-Maj Requirements

● Reliability:

– Absolute integrity of databases after « rollbacks »
– Manage all usual objects (tables, sequences, constraints,...)

● Ease of use for all users (DBA, production people, application
developers and testers,...):

– Easy to understand and use
– Easy to integrate into an automatized production (« script-able »)

● Performance:

– Limited overhead of the log (a few percent)
– Acceptable « rollback » duration

● Maintainability

● Security

E-Maj Concepts

● Tables group = a set of tables and/or sequences belonging
to one or several schemas and having the same life cycle ;
it's the only object manipulated by users

● Mark = stable point in the life of a tables group, identified
by a name and whose state can be set back

● Rollback = positioning of a tables group at its state when
a mark was previously set

The basics of updates logging

SQL

Log triggers
and functions

Rollback
function

Insert
Update
Delete

Delete
Insert

InsertApplication
tables

Log
tables

E-Maj: general principles

SQL

Log triggers
and functions

Rollback
function

Insert
Update
Delete

Delete
Insert

InsertApplication
tables

Log
tables

emaj schema

Tables group

emaj_viewer
role

emaj_adm
role

E-Maj Installation
● Download and install the extension in the

share/postgres/extension directory of the PostgreSQL software

● Copy and adapt the sql/emaj.control file directly into the
share/postgres/extension directory

● Connect to the targer database as superuser and execute

– CREATE EXTENSION IF NOT EXISTS DBLINK; (recommended)

– CREATE EXTENSION EMAJ;

● The installation in the database adds:

– 1 schema 'emaj' with about 90 functions, 12 technical tables, 7 types,
1 view and 1 sequence

– 2 event triggers

– 2 roles

E-Maj Initialisation
● 1) Populate emaj_group_def table to define groups and

the tables/sequences they contain

● 2) For each group :

– SELECT emaj_create_group (group,
is_rollbackable);
=> creates for each application table:

● 1 log table + 1 sequence into an 'emaj' schema
● 1 trigger + 1 function to log table updates

– SELECT emaj_drop_group (group)
 … drops a previously created group

E-Maj: Main functions

● emaj_start_group (group, mark)
– Activates log triggers and set an initial mark

● emaj_set_mark_group (group, mark)
– Sets an intermediate mark

● emaj_rollback_group (group, mark)
– Rollbacks tables and sequences of the group to their

state at mark set
● emaj_logged_rollback_group (group, mark)

– Similar as emaj_rollback_group function but the
rollback can be later cancelled (rolled-back!)

● emaj_stop_group (group [,mark])
– Deactivates log triggers => rollback no longer possible

E-Maj: tables group life cycle
« unknown »

Create group

« idle »

Drop group

« logging »

Start groupStop group

Rollback group Set a mark

A typical E-Maj sequence ...

Log tables

proc. 1 proc. 2 proc. 3

start_group set_mark rollback_group
stop_group

set_mark

Appl.tables

Abort
!

Log tables

● Examining log tables may largely help application
debugging

● A log table contains

– The same columns as the associated application table

– And some technical columns

● A changed row in an application table generates

– 1 log row for an INSERT (new row)

– 1 log row for a DELETE (old row)

– 2 log rows for an UPDATE (old and new rows)

● A TRUNCATE generates 1 log row

Technical columns of log tables

● 8 technical columns at the end of each log row

– emaj_verb : type of change - INS/UPD/DEL/TRU

– emaj_tuple : type of log row - OLD/NEW

– emaj_gid : internal sequence number

– emaj_changed : change timestamp - clock_timestamp()

– emaj_txid : transaction identifier - txid_current()

– emaj_user : client connection role - session_user

– emaj_user_ip : client ip address - inet_client_addr()

– emaj_user_port : client ip port - inet_client_port()

« Simple Rollback »
● Log triggers are de-activated

● Each table is set to its correct state using an optimized algorithm

– Processes only once each primary key

– Takes into account potential foreign keys
● Cancelled logs and marks are deleted

M1

Ins
1

Ins
1

e_rlbk_grp(M2)

Del
3

Ins
2

Ins
3

Upd
2->4

Del
1

M2 M3

Upd
4->5

Del
6

Ins
2

Upd
5->6

« Logged Rollback » (1/2)
● Log triggers are NOT de-activated

● Cancelled logs and marks are kept

● Mark automatically set before and after the rollback

– RLBK_<marque>_<HH.MI.SS.MS>_START

– RLBK_<marque>_<HH.MI.SS.MS>_DONE

● Example of logged rollback … canceled

M1
..._M2_..._START

Del
4

..._M2_..._DONE

emaj_logged_rollback_group(M2)

emaj_rollback_group(M3)

M2 M3

Ins
1

Ins
2

Ins
3

Upd
2->4

Del
1

Ins
1

Ins
2

Ins
5

Del
2

Del
1

Del
5

Ins
4

« Logged Rollback » (2/2)
● Ideal for tests : avoid numerous intermediate saves to replay old

tests

● During the rollback operation, tables remain accessible for reads

● A logged rollback can be later transformed into a simple
rollback => "rollback consolidation"

– Intermediate logs and marks are deleted, reclaiming log
space

– emaj_consolidate_rollback_group(group,
end_rollback_mark)

– Tables may be updated in parallel

Monitor in progress rollbacks

● Needs dblink, and the setting of the
“dblink_user_password” parameter in the emaj_param
table

● SELECT * FROM emaj.emaj_rollback_activity();

● Returns

– Rollback characteristics (group, mark...)

– Rollback state

– Elapse time

– Estimate of the remaining duration and the % done

Protection against accidental
rollbacks

● 2 functions to manage the tables group protection
– emaj_protect_group (group)

– emaj_unprotect_group (group)

● 2 functions to manage the marks protection
– emaj_protect_mark_group (group, mark)

– emaj_unprotect_mark_group (group, mark)

set_mark M1
rollback M2 set_mark M2

set_mark M3 rollback M1protect_mark M2

RefusedOK

E-Maj possible usages

● Largely helps application tests in providing a way to
quickly rollback updates issued by a run and repeat those
tests

● In production, provides a rollback capability on batch
processing without being obliged to either pg_dump /
restore tables or physically save and restore the entire
cluster disk space

– All the more interesting as tables are large, with
relatively limited updates

Marks usage strategies (1/2)

● « mono-mark » usage to minimise disk space use
– repeat

● start_group (group, mark)
● processing #i
● stop_group (group)

● « multi-marks » usage for more flexibility in rollbacks
– start_group (group, mark1)
– repeat

● processing #i
● emaj_set_mark (group, mark #i+1)

– stop_group (group)

Marks usage strategies (2/2)

● Permanent logging and regular cancellation of oldest
marks (« rolling log »)

– repeat
● processing #i
● emaj_set_mark (group, mark #i+1)
● emaj_delete_before_mark (group, mark #j)

 (warning, marks deletion may be costly if the logs part to erase is
important)

Multi-groups functions

● To manage several groups in a single transaction:
– emaj_start_groups (groups array, mark)

– emaj_stop_groups (groups array)

– emaj_set_mark_groups (groups array, mark)

– emaj_rollback_groups (groups array, mark)

– emaj_logged_rollback_groups (groups array, mark)
● 2 syntaxes for a groups array

– ARRAY['group 1','group 2',...]

– '{"group 1", "group 2",...}'

Marks management functions

● emaj_comment_mark_group (group, mark)
– Sets, modifies or deletes a comment on a mark

● emaj_rename_mark_group (group, old mark, new mark)
– Renames a mark

● emaj_delete_mark_group (group, mark)

– Suppress a mark

● emaj_delete_before_mark_group (group, mark)
– Suppress all marks preceeding the supplied mark

Other groups management
functions
● emaj_comment_group (group, comment)

– Sets, modifies or deletes a comment on a group

● emaj_reset_group (group)
– Purges log tables before the next emaj_start_group call

(and reclaims disk space)

● emaj_force_stop_group (group)
– Forces a group stop

Other rollbacks management
functions
● emaj_estimate_rollback_group (group, mark)

– Estimates the time needed to rollback a group to a
mark

● emaj_consolidate_rollback_group (group, mark)
– Consolidate a logged rollback identified by the tables

group and the generated end rollback mark. It
transforms an unlogged rollback into a logged
rollback by deleting all marks and logs between the
rollback target mark and the end rollback mark.

● emaj_get_consolidable_rollbacks ()
– List rollback operations that may be consolidated

Statistic functions

● emaj_log_stat_group (group, begin_mark, end_mark)
– Quickly provides per table statistics about the number

of rows in log tables between 2 marks or between a
mark and the current situation

● emaj_detailed_log_stat_group (group, begin_mark,
end_mark)

– Delivers statistics from log tables on updates between
2 marks,

– Per table, per statement type (INSERT / UPDATE /
DELETE) and per ROLE that initiated the updates

Export functions

● emaj_snap_group (group, directory, copy_options)
– Snaps all tables and sequences of a group on individual

files into a directory

● emaj_snap_log_group (group, start_mark, end_mark,
directory, copy_options)

– Snaps part of all log tables and sequences of a group
on individual files into a directory

● emaj_gen_sql_group (group, start_mark, end_mark,
file_pathname [, tables/seq_list])

– Generates a sql script replaying updates recorded
between 2 marks for all or several tables and
sequences of a tables group

Other functions

● emaj_find_previous_mark_group (group, timestamp) or
emaj_find_previous_mark_group (group, mark)

– Retrieves the mark name immediately preceeding a
point in time or another mark

● emaj_verify_all ()
– Verifies the E-Maj environment consistency

For large databases...

● Dedicated tablespaces may be used for log tables
and indexes

– tspemaj tablespace used by default if it exists

– To use other tablespaces,
● Create them
● Configure its use in emaj_group_def table

● Secondary E-Maj schemas may contain log objects
– To be configured in emaj_group_def table

– Schemas are created and dropped by E-Maj

Parallel rollback client

● A php module performs parallel restore

● Acts as a client for the database

● Automatically spreads the tables to rollback into a given
number of sessions

● Performs the parallel rollback in a unique transaction
( max_prepared_transaction >= #sessions)

● emajParallelRollback.php -d <database> -h <host> -p <port>
-U <user> -W <password> -g <group_name or groups_list>
-m <mark> -s <#sessions> [-l]

● Other options: --help, -v, --version

● Needs php with the PostgreSQL extension

Rollbacks monitoring client
● A php module to monitor in progress or recently completed

rollback operations

● emajRollbackMonitor.php -d <database> -h <host> -p
<port> -U <user> -W <password> -n <#iterations> -i
<refresh_interval_in_seconds> -l <#completed_rollbacks> -a
<completed_rollbacks_history_in_hours>

● Other options : --help, -v, --version

 E-Maj (version 1.1.0) - Monitoring rollbacks activity

04/07/2013 - 12:07:17
** rollback 35 started at 2013-07-04 12:06:21.474217+02 for groups {myGroup1}
 status: COMMITTED ; ended at 2013-07-04 12:06:21.787615+02
-> rollback 36 started at 2013-07-04 12:04:31.769992+02 for groups {group1232}
 status: EXECUTING ; completion 89 % ; 00:00:20 remaining
-> rollback 37 started at 2013-07-04 12:04:21.894546+02 for groups {group1233}
 status: LOCKING ; completion 0 % ; 00:22:20 remaining

Reliability (1/2)

● Many checks, in particular at start_group, set_mark_group
and rollback_group times:

– Do all tables, sequences, functions, triggers exist ?
– Are we sure that all application tables and their log tables

are consistent (columns names and types) ?
● Strong locks on tables at start_group, set_mark_group and

rollback_group times to be sure no transaction are
currently accessing/updating application tables

● Rollback all tables et sequences in a single transaction

Reliability (2/2)

● TRUNCATE statements are blocked for logging
rollbackable groups

● For the most recent PostgreSQL versions (9.3+), some
“event triggers” block some unattented component drops
or changes (tables, sequences, functions...)

– 2 functions to disable/re-enable the blocking
● emaj_disable_protection_by_event_triggers()
● emaj_enable_protection_by_event_triggers()

Security

● 2 roles that can be granted :
– emaj_adm for … E-Maj administration

– emaj_viewer to just be able to look at E-Maj
objects (logs, marks, statistics)

● E-Maj objects are only created by a super-user or a
member of emaj_adm

● No other right is granted on the E-Maj schemas, tables
and functions

● Log triggers are created as « SECURITY DEFINER »
– No need to grant extra rights on application tables

● Protection against SQL injections

Performances

● Log overhead
– Highly depends on hardware and on the application

read/write SQL ratio

– Typically a few % on elapse times

● Rollback duration
– Highly depends on hardware and database structure

(row sizes, indexes, constraints...)

PhpPgAdmin plug-in

● Fully integrated into
phpPgAdmin 5.1+

● Helps administrators and
viewers

● Shows all E-Maj objects (groups, marks...) and
their attributes

● Allows all possible actions on E-Maj objects
● Justifies by itself the installation of phpPgAdmin

Current limits

● Since E-Maj 2.0.0, the minimum required PostgreSQL
version is 9.1

● Every application table belonging to a rollbackable group
needs a PRIMARY KEY

● DDL statement cannot be managed by E-Maj

To conclude...

● More information in the documentation +
README and CHANGES files

● Many thanks for their help to :
– Andreas Scherbaum, Jean-Paul Argudo and Dalibo

team, CNAF DBAs team, Ronan Dunklau, Don
Levine

– People who already contacted me for comments,
requests...

● Feel free to email: phb<dot>emaj<at>free<dot>fr

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39

